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ABSTRACT

This paper describes the development of a speech recognition
system for the processing of telephone conversations, starting with
a state-of-the-art broadcast news transcription system. We identify
major changes and improvements in acoustic and language model-
ing, as well as decoding, which are required to achieve state-of-the-
art performance on conversational speech. Some major changes on
the acoustic side include the use of speaker normalization (VTLN),
the need to cope with channel variability, and the need for effi-
cient speaker adaptation and better pronunciation modeling. On
the linguistic side the primary challenge is to cope with the limited
amount of language model training data. To address this issue we
make use of a data selection technique, and a smoothing technique
based on a neural network language model. At the decoding level
lattice rescoring and minimum word error decoding are applied. On
the development data, the improvements yield an overall word er-
ror rate of 24.9% whereas the original BN transcription system had
a word error rate of about 50% on the same data.

1. INTRODUCTION

It is well known that transcribing conversational telephone
speech is a significantly more challenging task than the transcrip-
tion of broadcast news (BN). This paper reports on recent work
at LIMSI on moving from the transcription of BN data to conver-
sational telephone speech data. Conversational telephone speech
recognition has been one of the focal tasks in annual speech recog-
nition benchmarks organized by NIST, using the SwitchBoard
(SWB) family of resources distributed by the LDC [6]. The bench-
mark tests have demonstrated many of the difficulties encountered
in automatic processing of conversational speech [11, 12, 13, 14].

The LIMSI SWB speech-to-text system relies on the same ba-
sic components as the LIMSI BN system [3]. Additional features
specific to the SWB system are: vocal-tract length normalization
(VTLN), multiple regression class MLLR adaptation, pronuncia-
tion probabilities, neural-network language model, and consensus
decoding. Some of these techniques (in particular VTLN and pro-
nunciation probabilities) which had not helped in our BN transcrip-
tion system, quite significantly improve the performance of our
SWB system.

The remainder of this paper is as follows. We first overview
the LIMSI BN system which served as the starting point for the
SWB system. Then the modifications in acoustic modeling, lan-
guage modeling and decoding are described and the performance
improvements demonstrated.

2. BASELINE SYSTEM

The LIMSI broadcast news transcription system has two main
components, an audio partitioner and a word recognizer [3]. The
word recognizer uses continuous density HMMs with Gaussian
mixture for acoustic modeling andn-gram statistics estimated on
large text corpora for language modeling. Each context-dependent
phone model is a tied-state left-to-right CD-HMM with Gaussian
mixture observation densities where the tied states are obtained
by means of a decision tree. The acoustic feature vector has 39-
components comprised of 12 cepstrum coefficients and the log en-
ergy, along with the first and second order derivatives.

Word recognition is performed in three steps. The first step
generates initial hypotheses which are used in cluster-based acous-
tic model adaptation using the MLLR technique [9] prior to word
graph generation in the second step. Both of these steps use a 3-
gram language model (LM). The final hypotheses are generated
with a 4-gram LM and acoustic models adapted with the step 2
hypotheses. The first decoding pass uses a small set of acoustic
models with about 5500 contexts and 6300 tied states. The second
and third pass acoustic models cover about 11000 phone contexts,
represented with a total of 11700 tied-states, and 16/32 Gaussians
per state, respectively. State-tying constructs one tree for each state
of each phone so as to maximize the likelihood of the training data
using single Gaussian state models, penalized by the number of
tied-states. The set of 184 questions concern the phone position,
the distinctive features (and identities) of the phone and the neigh-
boring phones.

Given the level of development of our BN models, it was of
interest to benchmark the system on conversational data without
any modifications. These first experiments were done using the
H5 Eval98 test set which is significantly harder than the Eval01
test used in the rest of the paper (the word error rate is about 25%
higher than on Eval01). The experiments all use the same 3-pass
BN decoding strategy and run in less than 10xRT. Using both the
BN acoustic and language models results in a word error rate of
61.2%. Keeping the same word list (the OOV rate of the H5 Eval98
data is under 1% with the BN wordlist) and retraining the language
model on the SWB transcriptions reduces the word error rate to
57.0%. Using the SWB LM with acoustic models trained on the
SWB data reduces the word error rate to 46.7%. This initial ex-
periment demonstrates that a large part of the mismatch between
the BN system and the SWB data is linked to the acoustic mod-
els, and that simply training models on the SWB data with our BN
recipes was not enough to achieve state-of-the-art performance on
conversational data.
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3. ACOUSTIC MODELING
BN audio data are for the most part wideband, with telephone

speech data accounting for only a very minor portion of the data.
The SWB data consist of 2-channel telephone recordings, and al-
though each conversation side was recorded on a separate chan-
nel, there is significant echo problem for much of the data. As for
BN, the front-end uses 39 PLP-like cepstral features derived from
a Mel frequency spectrum every 10ms. These are estimated on the
0-3.8kHz band as opposed to the 8kHz bandwidth used for BN.
Cepstral mean and variance normalization are carried out on each
conversation side, whereas for BN they are computed per speaker
cluster as determined by the data partitioner.

The SWB phone models use the same topology and are con-
structed in the same manner as the BN models. They are trained on
all of the available transcribed CallHome (240 conversation sides)
and SwitchBoard (4866 conversation sides) and SWB cellular (460
conversation sides, excluding the 2001 eval set) data sets, using the
ISIP transcriptions. About 3% of the CallHome data and 10% of
the SwitchBoard data were rejected during forced alignment. The
acoustic models are trained on a total of about 229 hours of data,
with roughly equal amounts of male and female data.

The acoustic models are position-dependent triphones (28k
phone contexts) with about 11600 tied states, obtained using the
same divisive decision tree based clustering algorithm and the same
set of questions as used in the BN system. The most frequent phone
contexts in the training data are modeled, with separate cross-word
word-internal statistics. Two sets of gender-dependent acoustic
models were built using MAP adaptation of SI seed models [5].
A second set of gender-specific acoustic models were estimated by
MAP adapting the above models with SWB cellular data.

All results reported in this paper were obtained on the H5
Eval01 test set composed of 3 subsets of 20 conversations from
the SwitchBoard-1, SwitchBoard-2, and SwitchBoard-cellular cor-
pora, for a total of about 6 hours of audio data.

Vocal tract length normalization
Vocal tract length normalization, a technique which performs a

simple speaker normalization at the front-end level [1], is now of-
ten used in LVCSR. The normalization consists of performing a
frequency warping to account for differences in vocal tract length,
where the appropriate warping factor is chosen from a set of can-
didate values by maximizing the test data likelihood based on a
first decoding pass transcription and some acoustic models (some
sites use GMMs with no need for transcriptions). In the past we
tried applying VTLN to the BN task, but were unsuccessful at sig-
nificantly improving our state-of-the-art results. However given the
significant gains reported by other sites on conversational telephone
speech data [7], we decided to reconsider our point of view. Fol-
lowing [7], the MEL power spectrum is computed with a VTLN
warped filter bank using a piecewise linear scaling function. We
found the classical maximum-likelihood estimation procedure to
be unsatisfying, as iterative estimates on the training data did not
converge properly, even though a significant word error reduction
on conversational speech was obtained. This problem can be at-
tributed to the fact the VTLN Jacobian is simply ignored during the
ML estimation, although the normalization of the feature variances
should largely compensate for this effect. Properly compensating
the VTLN Jacobian would require building models for each pos-
sible warping value and would double the computation time to es-
timate the warping factors, we therefore investigated changing the
procedure to avoid the Jacobian compensation.

The VTLN warping factors are still estimated for each conver-

sation side by aligning the audio segments with their word level
transcription for a range of warping factors (between 0.8 and 1.25),
but we use single-Gaussian gender-dependent models to determine
the ML warping factor. By using gender dependent models (as pro-
posed in [2]) the warping factor histogram becomes unimodal and
is significantly more compact. This effect and the use single Gaus-
sian models (as proposed in [17]) significant reduces the need for
Jacobian compensation and makes the estimation procedure very
stable.

Even though the models used to estimate the warping factors (for
the training and test data) are trained separately on the female and
male data, the gender-dependent models used by the recognizer are
trained on all the data using a standard MAP estimation procedure
from SI seed models trained on all the data. Experimental results
are given in Table 1 for gender-dependent models trained without
VTLN, models trained with SI warping and models with F/M warp-
ing before and after MLLR adaptation (i.e. 2 pass decode). It can
be seen that without acoustic model adaptation (Table 1 top) VTLN
reduces the word error rate about 2%, this gain is reduced to 1.5%
after MLLR adaptation (Table 1 bottom). A additional gain of 0.4%
is obtained by using the gender-dependent warping.

VTLN MLLR SWB1 SWB2 CELL all
n n 28.0 36.1 42.2 35.6
SI n 26.7 33.5 40.4 33.7
n y 26.1 32.0 38.1 32.2
SI y 24.4 30.2 36.9 30.7

F/M y 24.2 30.1 36.2 30.3

Table 1: Word error rate on the 3 subsets of Eval01 using VTLN
and MAP trained gender-dependent model without (top) and with
(bottom) MLLR adaptation. (SI: gender-dependent VTLN warp-
ing, F/M: gender-dependent VTLN warping)

Dealing with cellular data
As mentioned in above, a set of models were trained to bet-

ter match the cellular data. For each conversation side, the set
of acoustic models used by the decoder is chosen by computing
the likelihood ratio (by forced alignment with the first decoding
pass hypotheses) for the standard SWB models and the SWB cellu-
lar models and comparing the likelihood ratio to a fixed threshold.
The likelihood ratio is computed ignoring all frames with an en-
ergy lower than 20dB under the peak energy for each speaker turn.
The decision threshold is set to have a negligible rate of false detec-
tions of cellular data. As shown in Table 21, the combination of the
switch and the SWB cellular models reduces the word error on the
cellular test data, without hurting performance on the non-cellular
subsets.

cell-sw SWB1 SWB2 CELL all
n 21.5 26.3 31.3 26.5
y 21.3 26.3 30.2 26.0

Table 2: Word error rate on the 3 subsets of Eval01 with and with-
out the cellular switch.

1It should noted that results from different tables cannot be directly com-
pared as they were obtained with sligtlty different system configurations (all
close to optimal).
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4. LANGUAGE MODELING
One of the main challenges in language modeling for conver-

sational speech is the sparseness of the language model training
resources. For the BN task it is relatively easy to find a variety
of related texts that can be processed and used as training mate-
rials. For conversational speech, the only available source is the
transcripts of the audio data. In this work, two approaches are in-
vestigated to deal with this problem. The first approach is to select
“conversational style” texts from other sources, such as BN data,
to provide additional training data. The second approach is LM
smoothing using a neural network.

Language model construction is as follows: Separate backoffn-
gram LMs were estimated on the following audio training corpora
transcriptions: 2.7M words of the SWB1 LDC transcriptions, 2.9M
words of SWB1 ISIP transcriptions, 230k words of SWB cellular
training transcriptions, and 215k words of CallHome corpus tran-
scriptions. An additional backoff LM was built using 240M words
of commercially produced BN transcripts.

A single interpolated backoff LM was built from these 5 mod-
els using an EM procedure to estimate the interpolations coeffi-
cients. The resulting LM has 12M 2-grams, 21M 3-grams and 13M
4-grams. The perplexity on the Eval01 test data is 83.2 (the decom-
pounded perplexity is 60.4). This interpolated model is our baseline
SWB 4-gram LM.

Word list selection
The recognition vocabulary contains 41670 words, and is com-

prised of all words found at least twice in the SWB data and words
appearing at least 90 times in BN commercial transcripts. The sin-
gletons are not included in the word list as they are mostly foreign
words that are unlikely to be observed again or typographical er-
rors. A major difference from BN is that some interjections such as
“uh-huh” and “mhm” (meaning yes) and “uh-uh” (meaning no) that
were considered to be non-lexical items, need to recognized since
they provide feedback in conversations and help maintain contact.
As for BN, compound words are used for about 300 frequent word
sequences subject to strong reduction. In contrast, acronyms which
are frequent in BN are relatively rare in SWB, and are not treated
as words. The lexical coverage is 99.7% on Eval01.

Data Selection
One way to cope with the limited amount of in-domain LM

training data is to select similar data from domains where much
larger corpora are available. The BN training texts include a fair
amount of spontaneous speech, although the speaking style can be
somewhat different from SWB. Following the work of Iyer and
Ostendorf [8], we selected articles from the BN training corpus
which are similar in style to the SwitchBoard data, and used the
pooled data for MAP adaptation of the baseline LM. Two data se-
lection methods are jointly applied. The first method relies on the
posterior probabilityPr(SWB|a) = Pr(a|SWB)/(Pr(a|SWB) +
Pr(a|BN)) for each BN articlea, which is then used to weight
then-gram counts of the selected data (about 30% of the BN cor-
pus). The second selection method relies on spontaneous speech
indicators constituted of manually selected words and word pairs
specific to spontaneous speech (about 550 words and 2700 word
pairs). The frequencies of these words and word pairs in the SWB
data are used to estimate a small 2-gram LM. With this oral feature
LM, sentences and articles are selected from the BN data ( (about
7%) using the perplexity as similarity measure.

Table 3 gives the word error rates on the Eval01 test set for
two language models, the baseline SWB 4-gram trained as de-

scribed above, and a 4-gram trained with the proposed data selec-
tion method. Unsupervised MLLR adaptation is used in both cases.
The data selection method is seen to reduce the word error rate on
each subset with an average absolute reduction of 0.3%,

LM SWB1 SWB2 CELL all
4g 21.7 26.8 30.6 26.5

4g select 21.5 26.6 30.2 26.2

Table 3: Word error rate on Eval01 with and without data selection
(after MLLR adaptation).

LM Smoothing
The main idea of this connectionist approach is to project the

words onto a continuous space, allowing for smooth interpolations.
We believe this to be particularly important when only a small
amount of LM training material is available. The neural network
learns the projections of the discrete word indices onto the contin-
uous space and and estimates then-gram probabilities (see [15] for
details).

Corpus ISIP LDC CH CELL interpol. w BN
backoff 115.7 113.7 189.2 151.2 83.0
neural 106.4 104.9 181.6 150.9 78.8

Table 4: Perplexities of the backoff and the neural 4-gram LM
estimated on different transcription sets (SWB ISIP, SWB LDC,
CallHome, and SWB Cellular).

Table 4 summarizes the perplexities obtained on the SWB sub-
corpora with the neural LM estimated on the different sets of acous-
tic data transcriptions. For comparative purpose, a backoff 4-gram
LM was also built on the same data sets using a modified version of
Kneser-Ney smoothing using the SRI LM toolkit [16]. The neural
LM achieves perplexity improvements of up to 8% relative on all
corpora. The perplexity of these LMs interpolated with the backoff
4-gram LM described above is shown in the last column. Although
this LM achieves only a small reduction in perplexity on Eval01,
78.8 (58.0 decompounded), the absolute word error is reduced from
from 25.3% to 24.9% for the last decoding pass.

5. PRONUNCIATION LEXICON
The pronunciation lexicon has a total of 49648 phone transcrip-

tions for the 41670 words. The pronunciations are based on the
same 48 phone set used for BN (3 of them are used for silence,
filler words, and breath noises). A pronunciation graph is asso-
ciated with each word so as to allow for alternate pronunciations,
including optional phones. The basic pronunciations are taken from
the LIMSI American English lexicon, in which frequent inflected
forms have been verified to provide more systematic pronuncia-
tions. The pronunciation probabilities are estimated from the ob-
served frequencies in the training data resulting from forced align-
ment, with a smoothing for unobserved pronunciations. We had
tried using probabilities for the different pronunciation variants in
the BN task, but did not observe any gain. For SWB, the absolute
improvement is 0.9% without acoustic model adaptation and 0.4%
with acoustic model adaptation.

6. DECODING
The decoding procedure has been substantially modified from

that of the BN system. The main changes concern the VTLN warp
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VTLN MLLR cell-sw LM CN+PP SWB1 SWB2 CELL all
Pass 1 n n n 3g n 28.0 36.1 42.2 35.6
Pass 2 y n n 3g select n 25.2 31.8 36.6 31.4

y n n 4g select n 24.6 31.4 36.2 30.9
y n n 4g select y 23.3 29.8 33.9 29.1

Pass 3 y 2 n 4g select y 21.3 26.4 30.7 26.3
Pass 4 y 5 y 4g select + NN y 20.3 25.3 28.9 24.9

Table 5: Word error rates on Eval01 data for each decoding pass (cell-sw: cellular data switch, CN+PP: confusion network with pronuncia-
tion probabilities).

factor estimation, the acoustic model adaptation procedure and the
use of lattice rescoring with consensus decoding and pronunciation
probabilities. Decoding is carried out in 4 passes. In the first pass
the speaker gender is identified for each conversation side using
Gaussian mixture models, and a fast 3-gram decode is performed
to generate approximate transcriptions. These transcriptions are
only used to compute the VTLN warp factors for each conversation
side and to identify the type of communication channel (cellular or
non-cellular). All of the following passes make use of the VTLN-
warped data. Each pass generates a 2-gram word lattice which is
then expanded with a 4-gram LM and converted to a confusion net-
work with posterior probabilities.

The posterior probabilities of the lattice edges are estimated us-
ing the forward-backward algorithm. Each lattice is converted in a
confusion network by iteratively merging lattice vertices and split-
ting lattices edges until a linear graph is obtained. This procedure
gives comparable results to the edge clustering algorithm proposed
in [10], but our algorithm appears to be significantly faster for large
lattices.

The words with the highest posterior in each confusion set are
hypothesized. The resulting transcriptions are used in the next de-
coding pass for unsupervised MLLR adaptation [9] of the acoustic
models. Two regression classes (speech and non speech) are used in
the third pass, whereas 5 phonemic regression classes (non speech,
voiceless consonants, voiced consonants, and two vowel classes)
are used for the 4th pass.

Table 5 shows the word error rates after each decoding pass for
the three subsets of the Eval01 test set. The large error reduction
between pass 1 and pass 2 is due to the combination of VTLN,
the 4-gram LM, the pronunciation probabilities and the confusion
network decoding (the contribution of each component is given in
Table 5 for this pass). The gain for pass 3 comes from unsupervised
acoustic model adaptation. Finally the gain in pass 4 is due to the
additional MLLR adaptation with 5 regression classes, the cellular
switch and the neural network language model.

7. CONCLUSION
In this paper we have described our work in developing a con-

versational speech recognizer starting from a state-of-the-art broad-
cast news transcription system. We found that processing conver-
sational speech requires significant modifications in acoustic mod-
eling, pronunciation and linguistic modeling, as well as in the de-
coding strategy. The initial word error rate of the BN system on
conversational data was around 50%. In order to bring the word er-
ror down we had to modify significantly our baseline BN system in
addition to using the SWB training data to retrain the models. The
following features have been added to our baseline system: vocal
tract length normalization, MLLR with multiple phonemic classes,
specific acoustic models for cellular data, dictionary with pronunci-
ation probabilities, interpolation of language models with data se-

lection and neural network LM, and confusion network decoding.
We also refined our non-speech models. All the improvements lead
us to reduce significantly the word error rate to 25%.
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