
Experiments on Speaker-Independent PhoneRecognition Using BREFLori F. Lamel and Jean-Luc GauvainLIMSI-CNRS, BP 13391403 Orsay cedex, FRANCEABSTRACTA series of experiments for speaker-independent, continuousspeech phone recognition have been carried out using the recentlyrecorded BREF corpus. Our experiments are the �rst to use thisdatabase, and are meant to provide a baseline performance evalu-ation for vocabulary independent phone recognition. The systemwas trained using hand-veri�ed data from 43 speakers. Using 35context-independent phone models, a baseline phone accuracy of60% (no phone grammar) has been obtained on an independenttest set of 7635 phone segments from 19 speakers. Includingphonebigram probabilities as phonotactic constraints results in a per-formance of 63.5%. A phone accuracy of 68.6% (73.3 % correct)was obtained with 428 context dependent models.INTRODUCTIONWe report on a series of experiments for speaker-independent, continuous speech phone recognition of French,using the recently recorded BREF corpus[3, 4]. BREFwas designed to provide speech data for the developmentof dictation machines, the evaluation of continuous speechrecognition systems (both speaker-dependent and speaker-independent), and to provide a large corpus of continuousspeech to study phonological variations. Our experimentsare the �rst to use this database, and are meant to providea baseline performance evaluation for vocabulary indepen-dent phone recognition, as well as the basis for developmentof a procedure for automatic segmentation and labeling ofthe corpus.In the �rst section we give a brief description of BREF,along with the procedure for semi-automatic (veri�ed) la-beling and automatic segmentation of the speech data. Theability to accurately predict the phone labels from the textis assessed, as is the accuracy of the automatic segmenta-tion. The next section describes the phone recognition ex-periments performed using speech data from 62 speakers (43for training, 19 for test) that had been manually veri�ed. AnHMM based recognizer with context-independent (CI) andcontext-dependent (CD) model sets were evaluated, bothwith and without a duration model. Results are also givenwith and without the use of 1-gram and 2-gram statistics toprovide phonotactic constraints.THE BREF CORPUSBREF is a large read-speech corpus, containing over 100hours of speech material, from 120 speakers. The text ma-terials were selected verbatim from the French newspaper

Le Monde, so as to provide a large vocabulary (over 20,000words) and a wide range of phonetic environments[3]. Con-taining 1115 distinct diphones and over 17,500 triphones,BREF can be used to train vocabulary-independent pho-netic models. Separate text materials, with similar distri-butional properties were selected for training, developmenttest, and evaluation purposes. Each of 80 speakers readapproximately 10,000 words (about 650 sentences) of text,and an additional 40 speakers each read about half thatamount. The recordings were made in stereo in a sound-isolated room, and were monitored to assure the contents.Thus far, 80 training, 20 test, and 20 evaluation speakershave been recorded. In these experiments we use only asubset of the training and development test data, reservingthe evaluation data for future use.Labeling of BREFIn order to be used e�ectively for phonetic recognition,time-aligned phonetic transcriptions of the utterances inBREF are needed. Since hand-transcriptions of such a largeamount of data is a formidable task, and inherently sub-jective, we are investigating an automated procedure for la-beling and segmentation. Initially, however, the labeling ismanually veri�ed prior to segmentation.We are investigating a procedure to provide time-alignedbroad phonetic transcriptions by generating the phone se-quence with a text-to-phoneme system, and aligning thesephones with Viterbi segmentation. The 35 phones (includ-ing silence) used by the text-to-phoneme system are givenin Table 1. Since the automatic phone sequence generationcan not always accurately predict what the speaker said,the transcriptions must be veri�ed. The most common mis-pronunciations occur with foreign words and names, andacronyms. Other mispredictions are in the reading of dates:for example the year \1972" may be spoken as \mille neufcent soixante douze" or as \dix neuf cent soixante douze."The training and test sentences used in these experimentshave been processed automatically and manually veri�ed.The manual veri�cation only corrected \blatant errors" anddid not attempt to make �ne-phonetic distinctions. Com-paring the predicted and veri�ed phone strings, 97.5% ofthe 38,397 phone labels1 were assessed to be correct, with anaccuracy of 96.6%. However, during veri�cation about 67%of the automatically generated phone strings were modi�ed.1Silence segments were disregarded.



Phone Example Phone ExampleVowels Consonantsi lit s sote bl�e z z�ebreE sel S chaty suc Z jourX leur f foux petit v vin@ feu m motea patte, pâte n notec sol N digneo saule l lau fou r rondNasal Vowels p pontI brin, brun b bonA chant t tonO bon d donSemivowels k couh lui g gondw oui English phonesj yole G thing� silence D theT SmithH hotTable 1: The 35 phone symbol set.This indicates that veri�cation is a necessary step for accu-rate labeling. The exception dictionary has been updatedaccordingly to correct some of the prediction errors, therebyreducing the work entailed in veri�cation.Prediction PercentCorrect 97.5Substitutions 0.5Deletions 0.9Insertions 2.0Table 2: Phone prediction errors.Table 2 summarizes the phone predictions. Substitutionsaccount for 14% of the errors, with the most common sub-stitutions between /z/ and /s/, and between /e/ and /E/.60% of the errors are insertions and 26% are deletions bythe text-to-phoneme system. Liaison and the pronuncia-tion of mute-e account for about 70% of the insertions anddeletions. Liaison is almost always optional and thus hardto accurately predict. While most speakers are likely topronounce mute-e before a pause, it is not always spoken.Whether or not mute-e is pronounced depends on the con-text in which it occurs and upon the dialect of the speaker.A problem that we did not anticipate was that some ofthe French speakers actually pronounced the English wordsusing the correct English phonemes, phonemes that do notexist in French. These segments were transcribed using the\English phones" listed in Table 1 which have been addedto the 35 phone set. However, so few occurrences of thesephones were observed that for training purposes they weremapped to the \closest" French phone.

Condition Correct Subs. Del. Ins. Accuracymanual 60.4 27.3 12.3 3.8 56.7Viterbi 61.8 27.7 10.5 5.0 56.8Table 3: Training based on manual vs. Viterbi resegmentationIn addition, a few cases were found where what thespeaker said did not agree with the prompt text, and theorthographic text needed to be modi�ed. These variationswere typically the insertion or deletion of a single word, andusually occurred when the text was almost, but not quite, avery common expression.Validation of automatic segmentationThe segmentations determined by the Viterbi algorithmhave been compared to the manual segmentations on an in-dependent set of test data. To do so the o�set in numberof frames was counted, using the manual segmentation asthe reference. Silence segments were ignored. The test dataconsisted of 115 sentences from 10 speakers, 4 male and 6female, and contained 6517 segments. 71% of the segmentboundaries were found to be identical. 91% of the automat-ically found boundary locations were within 1 frame (96%within 2 frames) of the hand boundary location. The auto-matic boundaries were located later than the hand locationfor 23% of the segments, and they were located earlier for5% of the segments. This assymmetry may be due to theminimum duration imposed by the phone models.A subset of the training data (roughly 12 minutes ofspeech, from 20 of the training speakers) was manually seg-mented to bootstrap the training and segmentation pro-cedures. In order to evaluate the Viterbi segmentation,the phone recognition accuracy using the manual segmen-tation for training was compared to the recognition accu-racy obtained using Viterbi resegmentation (3 iterations)on the same subset of training data. For this comparison35 context-independent phone models with 8 mixture com-ponents and no duration model, were used. The recognizerwas tested on data from 11 speakers in the development testspeaker set, and the averaged results are given in Table 3.The performance is estimated by the phone accuracy givenby: 1 - (substitutions + deletions + insertions) / correctnumber of phones. The recognition accuracies are seen tobe comparable, indicating that, at least for the purposes ofspeech recognition, the Viterbi algorithm can be used to seg-ment the BREF corpus once the segment labels have beenveri�ed. Including a duration model increases the phoneaccuracy to 58.0% with the Viterbi segmentation.RECOGNITION EXPERIMENTSPhone RecognizerOur baseline phone recognizer uses a set of 35 phone mod-els. Each model is a 3-state left-to-right hidden Markovmodel (HMM) with Gaussian mixture observation densi-ties. The 16 kHz speech was downsampled by 2 and a 26-dimensional feature vector was computed every 10 ms. Thefeature vector is composed of 13 cepstrum coe�cients and13 di�erential cepstrum coe�cients. Duration is modeledwith a gamma distribution per phone model.



#distinct entropy (b/ph) modelUnit/model units (b/ph) I(b/ph)phones/1-gram 35 4.72 0.40diphones/2-gram 1,160 3.92 1.21triphones/3-gram 25,999 3.40 1.72Table 4: N-gram statistics computed on the 5 million word textand the information stored in Markov source models.Condition Corr. Subs. Del. Ins. Acc.0-gram 62.4 25.4 12.3 3.2 59.20-gram+duration 63.5 25.3 11.3 3.5 60.01-gram 64.7 23.7 11.6 3.2 61.51-gram+duration 65.3 24.1 10.6 3.5 61.82-gram 65.9 22.8 11.3 3.3 62.72-gram+duration 67.2 22.6 10.2 3.7 63.5Table 5: Phone recognition results for 35 CI models.As proposed by Rabiner et al.[9], the HMM and durationparameters are estimated separately and combined in therecognition process for the Viterbi search. We used max-imum likelihood estimators for the HMM parameters andmoment estimators for the gamma distributions.DataThe training data consists of about 50 minutes of speechfrom 43 training speakers (21 male, 22 female). There are33,289 phone segments containing 5961 di�erent triphones.Thirty-seven of the sentences are \all-phone" sentences inwhich the text was selected so as to contain all 35 phones[3].These sentences are quite long, having on the order of 190phones/sentence. The remaining sentences are taken fromparagraph texts and have about 65 phones/sentence. Thetest data is comprised of 109 sentences spoken by 21 newspeakers (10 male, 11 female). There are a total of 7635phone segments (70 segments per sentence) and 3270 distincttriphones.Phonotactic constraintsPhone, diphone and triphone statistics, computed on the5 million word original text, are used to provide phonotac-tic constraints. Table 4 gives the information stored in theMarkov sources (1-gram to 3-gram) estimated from the oc-currence frequencies on the original text in bits/phone[3].For now only the 1-gram and 2-gram constraints have beenincorporated in the model.ResultsTable 5 gives recognition results using 35 CI phone mod-els with 16 mixture components. Silence segments were notincluded in the computation of the phone accuracy becausewe did not want to arti�cially in
ate the scores, since si-lence is frequent and has a high recognition rate. Resultsare given for di�erent phone language models, both withand without a duration model. The improvement obtainedby including the duration model is relatively small, on theorder of 0.3% to 0.8 %, probably in part due to the widevariation in phone durations across contexts and speakers.Each additional order in the language model adds about 2%

Condition Corr. Subs. Del. Ins. Acc.0-gram 69.5 21.7 8.8 4.3 65.20-gram+duration 70.8 21.4 7.8 4.7 66.11-gram 70.4 20.7 8.8 4.4 66.01-gram+duration 72.0 20.5 7.5 4.7 67.22-gram 72.1 20.1 7.8 4.6 67.52-gram+duration 73.3 20.0 6.7 4.7 68.6Table 6: Phone recognition results for 428 CD models.to the phone accuracy. The best phone accuracy is 63.5%with the 2-gram language model and duration.Table 6 gives recognition results using a set of 428 CDphone models[10] with 16 mixture components. The mod-eled contexts were automatically selected based on their fre-quencies in the training data. This model set is essentiallycomposed of right-context phone models, with only one-fourth of the models being triphone models. We are ableto model less than 2% of the triphones found in the trainingdata. In choosing to model right contexts over left contexts,we have selected to model anticipatory coarticulation morethan perservatory coarticulation.Including the duration models improves performance a lit-tle more than was observed for the CI models. The durationmodels are probably better estimates of the underlying dis-tribution since the data has less variability due to context.The duration models give about a 1% improvement in ac-curacy when used with a 1-gram or 2-gram language model.The phonotactic constraints, however, have a larger e�ectwith the CI models, presumably because the CD models al-ready incorporate some to the phonotactic information.The use of CD models reduces the errors by 14% (com-paring the best CI and CD models), which is less than the27% error reduction reported by Lee and Hon[5]. There areseveral factors that may account for this di�erence. Mostimportantly, Lee and Hon[5] compare 1450 right-CD modelsto 39 CI models, whereas we only model 428 contexts. Inaddition, the baseline recognition accuracy reported by Leeand Hon is 53.3% with a bigram language model, comparedto our baseline phone accuracy of 63.5%.Confusion pair # Subs. % Subs.e ! E 64 4.2E ! e 58 3.8a ! E 31 4.2E ! a 27 1.8n ! m 27 1.8y ! i 27 1.8Table 7: The most common substitutions with 428 models.The most recognition errors occurred for the phones: /E/8.1%, /a/ 7.6%, /e/ 7.2%, /c/ 4.9%, /t/ 4.3%,and /x/ 4.2%,accounting for almost 40% of the substitution errors. How-ever, of these phones only /c/ and /E/ have high phoneerror rates of about 40%. /E/ and /e/ are highly confusableas can be seen in Table 7 which shows the most frequentsubstitutions made by the recognizer. The two most com-mon confusions are reciprocal confusions between /e/ and



Condition Corr. Subs. Del. Ins. Acc.CD 132 69.1 22.0 8.9 3.9 65.2Table 8: Phone recognition results for phone class based CDmodels./E/ and between /E/ and /a/. Together these account for13% of the confusions. The high number of errors for /a/are probably due to the large amount of variability of /a/observed in di�erent contexts. Our models include only 12triphone models and 18 right-context models for /a/, withwhich we are not able to capture enough of the variation.Many speakers do not make a clear distinction between thephones /E/ and /e/ when they occur word-internally, whichmay account for their high confusability.14% of the insertions are /r/, followed by 11% for /l/.These two phones also are deletion the most: 13% of thedeletions are /l/ and 11% /r/. Although /l/ and /r/ accountfor many of the insertion and deletion errors, the overall er-ror rate for these phones are relatively low, 11% and 7%,respectively. We are looking into ways to improve the per-formance on these phones by modeling more contexts andby improving the duration model.In Table 8 results are given for a set of 132 CD models.The models were selected so as to group phonetically sim-ilar contexts based on manner of articulation classes. Thisis similar to the approach taken by Deng et al.[1]. Takinginto consideration that French is a syllable-based language,we de�ned left-context models for vowels and right-contextmodels for consonants. The phone accuracy of 65.2% lies inbetween the recognition accuracies of the CI and CD mod-els. Although our preliminary attempt to expand the 428CD model set using a measure of phonetic similiarity hasnot been successful, we intend to investigate this approachfurther.DISCUSSION AND SUMMARYThese preliminary experiments have set a baseline perfor-mance for phone recognition using BREF. Our preliminaryresults are somewhat comparable to those obtained for En-glish using the TIMIT corpus. Lee and Hon[5] report 66%accuracy (74% correct) using CD models for and Digalakiset al.[2] report 64% (70% correct) accuracy using CI modelsand a 39-phone symbol set. Levinson et al.[6] report 52%phone recognition with 12% insertions, and do not specifythe number of deletions. Phone recognition rates reportedfor French by Merialdo[8] for speaker-dependent (4 speakers)recognition of isolated syllables were 80.6% accuracy (84.4%correct). We are encouraged by our results and expect to ob-tain improved phone recognition performace by using moreof the training data.We are developing a procedure for automatic segmenta-tion and labeling of the BREF corpus. Our preliminaryinvestigations indicate that the main problems lie in predict-ing the phone string, and that while the segmentation is notexact, the vast majority of segment boundaries are locatedwithin the same frame as a hand-segmentation. However, weexpect that more accurate segmentations will be obtained by

using CD models for segmentation. We also plan to use asmaller step for a �ner segmentation.We plan to improve text-to-phone prediction by includingdi�cult items, such as foreign words and acronyums, in theexception dictionary. This will not, however, eliminate theneed for veri�cation, as it will not handle alternate pronun-ciations. One option is to have the text-to-phoneme systemto propose alternate pronunciations for dates and acronyms,and to allow liaison and mute-e to be optional. In addition,providing a means of 
agging poor matches would greatlyto ease process of veri�cation.We have used a relatively simple HMM to do our base-line performance evaluation and veri�cation of the data. Inthe future we plan to use better acoustic phone models withvariable numbers of states or to allow skips. The improve-ment observed using the sets of CD models indicates, at leastwith these preliminary experiments, that the improvementappears to be related to the number of CD models can train.We are encouraged by our results and expect to obtain im-proved phone recognition performance by using more of thetraining data as we have used only a small portion of theBREF corpus. We also plan to experiment with other CDphones sets based on phonetic similarity.REFERENCES[1] L. Deng, V. Gupta, M. Lennig, P. Kenny, P. Mermelstein,\Acoustic RecognitionComponent of an 86,000-word SpeechRecognizer," Proc. IEEE ICASSP-90, pp. 741-744, 1990.[2] V. Digalakis, M. Ostendorf, J.R. Rohkicek, \Fast SearchAlgorithms for Connected Phone Recognition Using theStochastic Segment Model," Proc. DARPA Speech and Nat-ural Language Workshop, Hidden Valley, June 1990.[3] J.-L. Gauvain, L.F. Lamel, M. Esk�enazi, \Design Consider-ations and Text Selection for BREF, a large French read-speech corpus," Proc. ICSLP-90, 1990.[4] L.F. Lamel, J.-L. Gauvain,M. Esk�enazi, \BREF, a Large Vo-cabulary SpokenCorpus for French,"Proc. EUROSPEECH-91, 1991.[5] K.-F. Lee, H.-W. Hon, \Speaker-Independent Phone Recog-nition Using Hidden Markov Models," Proc. IEEE Trans.ASSP, Vol. 37, No. 11, 1989.[6] S.E. Levinson, M.Y. Liberman,A. Ljolje, L.G. Miller,\Speaker Independent Phonetic Transcription of FluentSpeech for Large Vocabulary Speech Recognition," Proc.IEEE ICASSP-89, pp. 441-444, 1989.[7] B. Merialdo, A.-M. Derouault, S. Soudoplato�, \PhonemeClassi�cation using Markov Models," Proc. IEEE ICASSP-86, pp. 2759-2762, 1986.[8] B. Merialdo, \Phonetic Recognition Using Hidden MarkovModels and Maximum Mutual Information Training," Proc.IEEE ICASSP-88, pp. 111-114, 1988.[9] L.R. Rabiner, B.H. Juang, S.E. Levinson, M.M. Sondhi,\Recognition of Isolated Digits Using Hidden Markov Mod-els with Continuous Mixture Densities," AT&T TechnicalJournal, 64(6), pp. 1211-1233, July-Aug. 1985.[10] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Kras-ner, J. Makhoul, \Context-dependent modeling for acoustic-phonetic recognition of continuous speech," Proc. ICASSP-85, 1985.


