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ABSTRACT

A series of experiments for speaker-independent, continuous
speech phone recognition have been carried out using the recently
recorded BREF corpus. Our experiments are the first to use this
database, and are meant to provide a baseline performance evalu-
ation for vocabulary independent phone recognition. The system
was trained using hand-verified data from 43 speakers. Using 35
context-independent phone models, a baseline phone accuracy of
60% (no phone grammar) has been obtained on an independent
test set of 7635 phone segments from 19 speakers. Including phone
bigram probabilities as phonotactic constraints results in a per-
formance of 63.5%. A phone accuracy of 68.6% (73.3 % correct)
was obtained with 428 context dependent models.

INTRODUCTION

We report on a series of experiments for speaker-
independent, continuous speech phone recognition of French,
using the recently recorded BREF corpus[3, 4]. BREF
was designed to provide speech data for the development
of dictation machines, the evaluation of continuous speech
recognition systems (both speaker-dependent and speaker-
independent), and to provide a large corpus of continuous
speech to study phonological variations. Our experiments
are the first to use this database, and are meant to provide
a baseline performance evaluation for vocabulary indepen-
dent phone recognition, as well as the basis for development
of a procedure for automatic segmentation and labeling of
the corpus.

In the first section we give a brief description of BREF,
along with the procedure for semi-automatic (verified) la-
beling and automatic segmentation of the speech data. The
ability to accurately predict the phone labels from the text
is assessed, as is the accuracy of the automatic segmenta-
tion. The next section describes the phone recognition ex-
periments performed using speech data from 62 speakers (43
for training, 19 for test) that had been manually verified. An
HMM based recognizer with context-independent (CI) and
context-dependent (CD) model sets were evaluated, both
with and without a duration model. Results are also given
with and without the use of 1-gram and 2-gram statistics to
provide phonotactic constraints.

THE BREF CORPUS

BREF is a large read-speech corpus, containing over 100
hours of speech material, from 120 speakers. The text ma-
terials were selected verbatim from the French newspaper

Le Monde, so as to provide a large vocabulary (over 20,000
words) and a wide range of phonetic environments[3]. Con-
taining 1115 distinct diphones and over 17,500 triphones,
BREF can be used to train vocabulary-independent pho-
netic models. Separate text materials, with similar distri-
butional properties were selected for training, development
test, and evaluation purposes. FEach of 80 speakers read
approximately 10,000 words (about 650 sentences) of text,
and an additional 40 speakers each read about half that
amount. The recordings were made in stereo in a sound-
isolated room, and were monitored to assure the contents.
Thus far, 80 training, 20 test, and 20 evaluation speakers
have been recorded. In these experiments we use only a
subset of the training and development test data, reserving
the evaluation data for future use.

Labeling of BREF

In order to be used effectively for phonetic recognition,
time-aligned phonetic transcriptions of the utterances in
BREF are needed. Since hand-transcriptions of such a large
amount of data is a formidable task, and inherently sub-
jective, we are investigating an automated procedure for la-
beling and segmentation. Initially, however, the labeling is
manually verified prior to segmentation.

We are investigating a procedure to provide time-aligned
broad phonetic transcriptions by generating the phone se-
quence with a text-to-phoneme system, and aligning these
phones with Viterbi segmentation. The 35 phones (includ-
ing silence) used by the text-to-phoneme system are given
in Table 1. Since the automatic phone sequence generation
can not always accurately predict what the speaker said,
the transcriptions must be verified. The most common mis-
pronunciations occur with foreign words and names, and
acronyms. Other mispredictions are in the reading of dates:
for example the year “1972” may be spoken as “mille neuf
cent soixante douze” or as “dix neuf cent soixante douze.”

The training and test sentences used in these experiments
have been processed automatically and manually verified.
The manual verification only corrected “blatant errors” and
did not attempt to make fine-phonetic distinctions. Com-
paring the predicted and verified phone strings, 97.5% of
the 38,397 phone labels? were assessed to be correct, with an
accuracy of 96.6%. However, during verification about 67%
of the automatically generated phone strings were modified.

1Silence segments were disregarded.



| Phone | Ezample | Phone | Ezample |

Vowels Consonants
1 lit S sot
e blé zZ zebre
E sel S chat
y suc Y/ jour
X leur f fou
X petit v vin
@ feu m mote
a patte, pate n note
c sol N digne
o saule 1 la_
u fou r rond
Nasal Vowels P pont
I brin, brun b Eon
A chant t ton
O bon d don
Semivowels k cou
h lui g gond
w oui English _phones
j yole G thing
. silence D me_
T Smith
H hot

Table 1: The 35 phone symbol set.

This indicates that verification is a necessary step for accu-
rate labeling. The exception dictionary has been updated
accordingly to correct some of the prediction errors, thereby
reducing the work entailed in verification.

| Prediction | Percent|
Correct 97.5
Substitutions 0.5
Deletions 0.9
Insertions 2.0

Table 2: Phone prediction errors.

Table 2 summarizes the phone predictions. Substitutions
account for 14% of the errors, with the most common sub-
stitutions between /z/ and /s/, and between /e/ and /E/.
60% of the errors are insertions and 26% are deletions by
the text-to-phoneme system. Liaison and the pronuncia-
tion of mute-e account for about 70% of the insertions and
deletions. Liaison is almost always optional and thus hard
to accurately predict. While most speakers are likely to
pronounce mute-e before a pause, it is not always spoken.
Whether or not mute-e is pronounced depends on the con-
text in which it occurs and upon the dialect of the speaker.

A problem that we did not anticipate was that some of
the French speakers actually pronounced the English words
using the correct English phonemes, phonemes that do not
exist in French. These segments were transcribed using the
“English phones” listed in Table 1 which have been added
to the 35 phone set. However, so few occurrences of these
phones were observed that for training purposes they were
mapped to the “closest” French phone.

| Condition | Correct | Subs. | Del. | Ins. | Accuracy

manual 60.4 27.3 12.3 | 3.8 56.7
Viterbi 61.8 27.7 10.5 5.0 56.8

Table 3: Training based on manual vs. Viterbi resegmentation

In addition, a few cases were found where what the
speaker said did not agree with the prompt text, and the
orthographic text needed to be modified. These variations
were typically the insertion or deletion of a single word, and
usually occurred when the text was almost, but not quite, a
very common expression.

Validation of automatic segmentation

The segmentations determined by the Viterbi algorithm
have been compared to the manual segmentations on an in-
dependent set of test data. To do so the offset in number
of frames was counted, using the manual segmentation as
the reference. Silence segments were ignored. The test data
consisted of 115 sentences from 10 speakers, 4 male and 6
female, and contained 6517 segments. 71% of the segment
boundaries were found to be identical. 91% of the automat-
ically found boundary locations were within 1 frame (96%
within 2 frames) of the hand boundary location. The auto-
matic boundaries were located later than the hand location
for 23% of the segments, and they were located earlier for
5% of the segments. This assymmetry may be due to the
minimum duration imposed by the phone models.

A subset of the training data (roughly 12 minutes of
speech, from 20 of the training speakers) was manually seg-
mented to bootstrap the training and segmentation pro-
cedures. In order to evaluate the Viterbi segmentation,
the phone recognition accuracy using the manual segmen-
tation for training was compared to the recognition accu-
racy obtained using Viterbi resegmentation (3 iterations)
on the same subset of training data. For this comparison
35 context-independent phone models with 8 mixture com-
ponents and no duration model, were used. The recognizer
was tested on data from 11 speakers in the development test
speaker set, and the averaged results are given in Table 3.
The performance is estimated by the phone accuracy given
by: 1 - (substitutions + deletions + insertions) [ correct
number of phones. The recognition accuracies are seen to
be comparable, indicating that, at least for the purposes of
speech recognition, the Viterbi algorithm can be used to seg-
ment the BREF corpus once the segment labels have been
verified. Including a duration model increases the phone
accuracy to 58.0% with the Viterbi segmentation.

RECOGNITION EXPERIMENTS

Phone Recognizer

Our baseline phone recognizer uses a set of 35 phone mod-
els. Each model is a 3-state left-to-right hidden Markov
model (HMM) with Gaussian mixture observation densi-
ties. The 16 kHz speech was downsampled by 2 and a 26-
dimensional feature vector was computed every 10 ms. The
feature vector is composed of 13 cepstrum coefficients and
13 differential cepstrum coefficients. Duration is modeled
with a gamma distribution per phone model.



#distinct | entropy (b/ph) | model

Unit/model units (b/ph) 1(b/ph)
phones/1-gram 35 4.72 0.40
diphones/2-gram 1,160 3.92 1.21
triphones/3-gram 25,999 3.40 1.72

Table 4: N-gram statistics computed on the 5 million word text
and the information stored in Markov source models.

| Condition | Corr. | Subs. | Del. | Ins. | Acc.
0-gram 62.4 25.4 12.3 3.2 59.2
0-gram-+duration 63.5 25.3 11.3 3.5 60.0
l-gram 64.7 23.7 11.6 3.2 61.5
1-gram+duration 65.3 24.1 10.6 3.5 61.8
2-gram 65.9 22.8 11.3 3.3 62.7
2-gram—+duration 67.2 22.6 10.2 3.7 63.5

Table 5: Phone recognition results for 35 CI models.

As proposed by Rabiner et al.[9], the HMM and duration
parameters are estimated separately and combined in the
recognition process for the Viterbi search. We used max-
imum likelihood estimators for the HMM parameters and
moment estimators for the gamma distributions.

Data

The training data consists of about 50 minutes of speech
from 43 training speakers (21 male, 22 female). There are
33,289 phone segments containing 5961 different triphones.
Thirty-seven of the sentences are “all-phone” sentences in
which the text was selected so as to contain all 35 phones[3].
These sentences are quite long, having on the order of 190
phones/sentence. The remaining sentences are taken from
paragraph texts and have about 65 phones/sentence. The
test data is comprised of 109 sentences spoken by 21 new
speakers (10 male, 11 female). There are a total of 7635
phone segments (70 segments per sentence) and 3270 distinct
triphones.

Phonotactic constraints

Phone, diphone and triphone statistics, computed on the
5 million word original text, are used to provide phonotac-
tic constraints. Table 4 gives the information stored in the
Markov sources (1-gram to 3-gram) estimated from the oc-
currence frequencies on the original text in bits/phone[3].
For now only the 1-gram and 2-gram constraints have been
incorporated in the model.

Results

Table 5 gives recognition results using 35 CI phone mod-
els with 16 mixture components. Silence segments were not
included in the computation of the phone accuracy because
we did not want to artificially inflate the scores, since si-
lence is frequent and has a high recognition rate. Results
are given for different phone language models, both with
and without a duration model. The improvement obtained
by including the duration model is relatively small, on the
order of 0.3% to 0.8 %, probably in part due to the wide
variation in phone durations across contexts and speakers.
Each additional order in the language model adds about 2%

| Condition | Corr. | Subs. | Del. | Ins. | Acc. |
0-gram 69.5 21.7 8.8 4.3 65.2
0-gram-+duration 70.8 21.4 7.8 4.7 66.1
l-gram 70.4 20.7 8.8 4.4 66.0
1-gram+duration 72.0 20.5 7.5 4.7 67.2
2-gram 72.1 20.1 7.8 4.6 67.5
2-gram—+duration 73.3 20.0 6.7 4.7 68.6

Table 6: Phone recognition results for 428 CD models.

to the phone accuracy. The best phone accuracy is 63.5%
with the 2-gram language model and duration.

Table 6 gives recognition results using a set of 428 CD
phone models[10] with 16 mixture components. The mod-
eled contexts were automatically selected based on their fre-
quencies in the training data. This model set is essentially
composed of right-context phone models, with only one-
fourth of the models being triphone models. We are able
to model less than 2% of the triphones found in the training
data. In choosing to model right contexts over left contexts,
we have selected to model anticipatory coarticulation more
than perservatory coarticulation.

Including the duration models improves performance a lit-
tle more than was observed for the CI models. The duration
models are probably better estimates of the underlying dis-
tribution since the data has less variability due to context.
The duration models give about a 1% improvement in ac-
curacy when used with a 1-gram or 2-gram language model.
The phonotactic constraints, however, have a larger effect
with the CI models, presumably because the CD models al-
ready incorporate some to the phonotactic information.

The use of CD models reduces the errors by 14% (com-
paring the best CI and CD models), which is less than the
27% error reduction reported by Lee and Hon[5]. There are
several factors that may account for this difference. Most
importantly, Lee and Hon[5] compare 1450 right-CD models
to 39 CI models, whereas we only model 428 contexts. In
addition, the baseline recognition accuracy reported by Lee
and Hon is 53.3% with a bigram language model, compared
to our baseline phone accuracy of 63.5%.

| Confusion pair| # Subs. | % Subs. |

e — E 64 4.2
E—e 58 3.8
a— B 31 4.2
E —a 27 1.8
n— m 27 1.8
y —1i 27 1.8

Table 7: The most common substitutions with 428 models.

The most recognition errors occurred for the phones: /E/
81%, /a) 7.6%, [e/ 7.2%, [c/ 4.9%, [t/ 4.3%,and [x/ 4.2%,
accounting for almost 40% of the substitution errors. How-
ever, of these phones only /c/ and /E/ have high phone
error rates of about 40%. /E/ and /e/ are highly confusable
as can be seen in Table 7 which shows the most frequent
substitutions made by the recognizer. The two most com-
mon confusions are reciprocal confusions between /e/ and



| Condition || Corr. | Subs. | Del. | Ins. | Acc. |
[CD132 || 69.1 | 22.0 [ 89 | 39 ] 652 |

Table 8: Phone recognition results for phone class based CD
models.

/E/ and between /E/ and /a/. Together these account for
13% of the confusions. The high number of errors for /a/
are probably due to the large amount of variability of /a/
observed in different contexts. Our models include only 12
triphone models and 18 right-context models for /a/, with
which we are not able to capture enough of the variation.
Many speakers do not make a clear distinction between the
phones /E/ and /e/ when they occur word-internally, which
may account for their high confusability.

14% of the insertions are /r/, followed by 11% for /1/.
These two phones also are deletion the most: 13% of the
deletions are /1/ and 11% /r/. Although /1/ and /r/ account
for many of the insertion and deletion errors, the overall er-
ror rate for these phones are relatively low, 11% and 7%,
respectively. We are looking into ways to improve the per-
formance on these phones by modeling more contexts and
by improving the duration model.

In Table 8 results are given for a set of 132 CD models.
The models were selected so as to group phonetically sim-
ilar contexts based on manner of articulation classes. This
is similar to the approach taken by Deng et al.[1]. Taking
into consideration that French is a syllable-based language,
we defined left-context models for vowels and right-context
models for consonants. The phone accuracy of 65.2% lies in
between the recognition accuracies of the CI and CD mod-
els. Although our preliminary attempt to expand the 428
CD model set using a measure of phonetic similiarity has
not been successful, we intend to investigate this approach
further.

DISCUSSION AND SUMMARY

These preliminary experiments have set a baseline perfor-
mance for phone recognition using BREF. Our preliminary
results are somewhat comparable to those obtained for En-
glish using the TIMIT corpus. Lee and Hon[5] report 66%
accuracy (74% correct) using CD models for and Digalakis
et al.[2] report 64% (70% correct) accuracy using CI models
and a 39-phone symbol set. Levinson et al.[6] report 52%
phone recognition with 12% insertions, and do not specify
the number of deletions. Phone recognition rates reported
for French by Merialdo[8] for speaker-dependent (4 speakers)
recognition of isolated syllables were 80.6% accuracy (84.4%
correct). We are encouraged by our results and expect to ob-
tain improved phone recognition performace by using more
of the training data.

We are developing a procedure for automatic segmenta-
tion and labeling of the BREF corpus. Our preliminary
investigations indicate that the main problems lie in predict-
ing the phone string, and that while the segmentation is not
exact, the vast majority of segment boundaries are located
within the same frame as a hand-segmentation. However, we
expect that more accurate segmentations will be obtained by

using CD models for segmentation. We also plan to use a
smaller step for a finer segmentation.

We plan to improve text-to-phone prediction by including
difficult items, such as foreign words and acronyums, in the
exception dictionary. This will not, however, eliminate the
need for verification, as it will not handle alternate pronun-
ciations. One option is to have the text-to-phoneme system
to propose alternate pronunciations for dates and acronyms,
and to allow liaison and mute-e to be optional. In addition,
providing a means of flagging poor matches would greatly
to ease process of verification.

We have used a relatively simple HMM to do our base-
line performance evaluation and verification of the data. In
the future we plan to use better acoustic phone models with
variable numbers of states or to allow skips. The improve-
ment observed using the sets of CD models indicates, at least
with these preliminary experiments, that the improvement
appears to be related to the number of CD models can train.
We are encouraged by our results and expect to obtain im-
proved phone recognition performance by using more of the
training data as we have used only a small portion of the
BREF corpus. We also plan to experiment with other CD
phones sets based on phonetic similarity.
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