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ABSTRACT
This paper presents some of the recent research on speaker-independent

continuous phone recognition for both French and English. The phone
accuracy is assessed on the BREF corpus for French, and on the Wall
Street Journal and TIMIT corpora for English. Cross-language differences
concerning language properties are presented. It was found that French is
easier to recognize at the phone level (the phone error for BREF is 23.6% vs.
30.1% for WSJ), but harder to recognize at the lexical level due to the larger
number of homophones. Experiments with signal analysis indicate that a
4kHz signal bandwidth is sufficient for French, whereas 8kHz is needed for
English. Phone recognition is a powerful technique for language, sex, and
speaker identification. With 2s of speech, the languagecan be identified with
better than 99% accuracy. Sex-identification for BREF and WSJ is error-
free. Speaker identification accuracies of 98.2% on TIMIT (462 speakers)
and 99.1% on BREF (57 speakers), were obtained with one utterance per
speaker, and 100% with 2 utterances.

INTRODUCTION
Our long term goals include the developmentof speech recogniz-

ers that are speaker and vocabulary independent, and can be used in
multiple languages for large vocabulary tasks including dictation.
It is well-known that the problems of speech-to-text conversion
can be different from language to language. In this paper some
language-dependent issues are addressed for French and English.
These include the number of phonemes in the language, the power of
phonotactic constraints provided by phone n-grams, and the lexical
ambiguity. Other well-known differences including the role of into-
nation, lexical stress, allophonic variations are not discussed here.
Further details about problems specific to speech-to-text conversion
in French can be found in [5].

Attention is focused on phone recognition in these two languages
in order to assess the relative difficulties of each without the influ-
ence of lexical and syntactic constraints. In attempting to have a
fair cross-lingual comparison, similar experimental conditions are
used i.e., roughly the same amount of speech data, recorded un-
der similar conditions (8kHz bandwidth, close-talking microphone,
read-speech) is used to train the models. The French data come
from the BREF corpus[6, 10] and the English data come from the
DARPA Wall Street Journal corpus[14]. For comparative purposes,
the recognizer is also evaluated on the DARPA TIMIT corpus[3].
The same recognizer is used, and is evaluated using sets of context-
dependentphone models, where each model is a left-to-right HMM
with Gaussian mixture observation densities. The phone accuracies
reported here do not reflect the best performance for each task, but
rather attempt to make cross-task comparisons with similar con-
ditions. Acoustic processing is addressed, including bandwidth
and acoustic feature choice. The power of phone recognition for
non-linguistic speech feature identification is demonstrated.

SPEECH CORPORA
These efforts use large corpora of read speech material from a

large number of speakers, with the aim of building base acoustic
models which can be augmented and adapted to specific speakers
or tasks. By using read-speech, the text materials can be selected so
as to control for different events such as the phonetic contexts. The
material in BREF was selected to maximize the number of different
phonemic contexts, whereas the WSJ texts were selected so as to
contain only words in the most frequent 64,000 words in the original
text material. A subset of the material in TIMIT was selected to
cover rare, yet potentially “interesting” phonemic environments.
This approach also allows many aspects of language modeling to
be addressed under more “semi-controlled conditions,” than those
found in spontaneous dictation. Additionally, it is much easier to
collect read-text material than spontaneous dictations.

The BREF Corpus: BREF is a large read-speech corpus, con-
taining over 100 hours of speech material, from 120 speakers
(55m/65f)[10]. The text materials were selected verbatim from the
French newspaper Le Monde, so as to provide a large vocabulary
(over 20,000 words) and a wide range of phonetic environments[6].
Containing 1115 distinct diphones and over 17,500 triphones,BREF
can be used to train VI phonetic models. The text material was read
without verbalized punctuation.

In these experiments approximately 4.3 h of speech data are
used for training. This represents 2770 sentences from 57 speakers
(28m/29f). The test data consists of 93 sentences from 8 speakers
(4m/4f). The test text material is distinct from the training texts.
Phone transcriptions of these utterances were automatically gener-
ated and manually verified[4].

The DARPA WSJ Corpus: The DARPA Wall Street Journal-
based Continuous-Speech Corpus (WSJ)[14] has been designed to
provide general-purpose speech data (primarily, read speech data)
with large vocabularies. Text materials were selected to provide
training and test data for 5K and 20K word, closed and open vocab-
ularies, and with both verbalized and non-verbalized punctuation.
The recorded speech material supports both speaker-dependentand
speaker-independent training and evaluation.

In these experiments the standard SI-84 training material, con-
taining 7240 sentences from 84 speakers (42m, 42f) is used to build
the phone models. The non-verbalized-punctuation and verbalized-
punctuation DARPA Feb92 pilot evaluation test material are used
for test. This data consists of 200 sentences from 10 speakers
(6m/4f) for each condition. Since there are no associated phone
transcriptions for this data, the “correct” phone transcription was
determined by performing segmentation allowing multiple pronun-
ciations for words, and optional phonological rules to be applied at



word boundaries.
The DARPA TIMIT Corpus: The DARPA TIMIT Acoustic-

Phonetic Continuous Speech Corpus[3] is a corpus of read speech
designed to provide speech data for the acquisition of acoustic-
phonetic knowledge and for the development and evaluation of
automatic speech recognition systems. TIMIT contains a total of
6300 sentences, 10 sentences spoken by each of 630 speakers from
8 major dialect regions of the U.S.

The TIMIT CDROM[3] contains a training/test subdivision of
the data that ensures that there is no overlap in the text materials.
The subdivision provides 10 sentences from each of 462 speakers
for training. In these experiments, the core test set containing 8
sentences from each of 24 speakers (2m/1f from each dialect region)
is used for testing. All of the utterances in TIMIT have associated
time-aligned phonetic transcriptions.

LANGUAGE CHARACTERISTICS
Phone sets: A set of 35 phones are used to represent the French

data. These contain 14 vowels (including 3 nasal vowels), 20
consonants (6 plosives, 6 fricatives, 3 nasals, and 5 semivowels),
and silence. The phone table can be found in [4]. For English, a
set of 46 phones are used for WSJ and the standard set of 61 phone
symbols are used for TIMIT[3]. Different symbol sets are used
because TIMIT is transcribed at a broad phonetic level, but for WSJ
the phone sequence is obtained by concatenating the phonemes for
the lexical entries in the associated text string. In TIMIT, plosives
are represented by a sequence of a closure followed by a release,
whereas for WSJ they are represented by a single symbol. Other
allophones, such as the voiced-h, the fronted-u, the flaps, and glottal
stop, found in TIMIT are not used in WSJ. TIMIT also distinguishes
3 types of silence, whereas only one is used in WSJ. English is thus
represented using 21 vowels (including 3 diphthongs and 3 schwas),
24 consonants (6 plosives, 8 fricatives, 2 affricates, 3 nasals, 5
semivowels), and silence, plus several finer distinctions for TIMIT.

Phone perplexity: One way to compare the complexity of phone
recognition across languages is to look at the phone perplexities.
These are given in Table 1 for the training and test corpora for
BREF, WSJ, and TIMIT, along with the number of phones and
diphones occuring in the training material. Comparing BREF and
WSJ, it can be seen that although French has fewer phones, the
training perplexities are about the same, and WSJ has a higher test
perplexity for the non-verbalized punctuation (nvp) and a lower
perplexity for the verbalized punctuation (vp).

For TIMIT the perplexities are given using the 61 phone set and
also a reduced 39 phone phone set[12]. It should be noted that
the phone perplexity computed on the training material of TIMIT
is estimated on a much smaller text set, than those estimated for
BREF and WSJ. While the TIMIT training material contains 4620
utterances, there are fewer than 2000 different text prompts, which
probably explains the larger difference in training/test perplexity
than is observed for BREF and WSJ.

Lexical ambiguity: Even though French has fewer phonemes
than English, the lexical ambiguity as measured by homophone
rate is much higher for French. The homophone rate is defined to
be the number of words which are homophones (having the same
pronunciation as another word), divided by the total number of
words. Table 2 gives the homophone rates for BREF and WSJ,
counted on the lexicon and on the training texts. The latter pro-
vides a frequency weighted estimate of the homophone rate. In the

Corpus BREF WSJ nvp/vp TIMIT-61 TIMIT-39
# phones 35 46 61 39
# diphones 1160 1571 2461 1139
training px. 16.2 16.8 15.7 12.8
test px. 16.1 17.5/15.1 18.9 14.6

Table 1: Phone perplexities computed on the training data.

10,311-word BREF training lexicon, 35% of the words are homo-
phones, compared to 6% in 8996-word WSJ training lexicon. In
the WSJ training texts, 1 out of 5 words is ambiguous, even given
a perfect phonemic transcription. For BREF, over half the words
in the training text are ambiguous. The right part of the table gives
the number of orthographic words associated with a pronunciation
having a given size homophone class. For the WSJ lexicon, the
largest homophone class has 4 entries: B., Bea, bee, and be. In
the BREF lexicon there are 3 pronunciations having 7 orthographic
words, as in 100, cent, cents, san, sang, sans, sent.

Homophone rate #prons/#words in set
Corpus Lexicon Text 1 2 3 � 4
BREF 35% 57% 6686 1329 215 73
WSJ 6% 18% 8453 237 22 1

Table 2: Single word homophones in BREF and WSJ.

EXPERIMENTS IN PHONE RECOGNITION
Evaluating phonetic recognition is important for several reasons.

Primarily, the demands of VI, SI, CSR require an approach based
on phone-like units. The better these phone models (or acoustic
models) are, the better the performance of the entire system will
be. Only considering word recognition performance, particularly
when word-based grammars are used, can mask problems that stem
from the acoustic level. Phone recognition is also useful in deter-
mining pronunciation errors in the lexicon and identifying alternate
pronunciations that need to be included.

The phone recognizer uses a set of phone models, where each
phone model is a 3-state left-to-right continuous density hidden
Markov model (CDHMM) with Gaussian mixture observation den-
sities. The covariance matrices of all the Gaussians components are
diagonal. Duration is modeled with a gamma distribution per phone
model. As proposed by Rabiner et al.[15], the HMM and duration
parameters are estimated separately and combined in the recogni-
tion process for the Viterbi search. Maximum likelihood estimators
are used for the HMM parameters[8] and moment estimators for the
gamma distributions.

The phone recognition results given here use sets of context-
dependent (CD) models which were automatically selected based
on their frequencies in the training data. There are 428 models for
BREF, 488 for WSJ, and 459 for TIMIT. While we have obtained
higher performances using more models, there is a substantial in-
crease in computation.

The overall Markov chain is obtained by connecting the phone
HMMs through null states representing all the possible diphones.
These null states, which do not emit any observation, are used to
merge all the transitions corresponding to the same diphone, thus
reducing the number of connections to a more manageable value
(i.e., the fourth order (n4) becomes a cubic form). With 428 CD
models for BREF, the resulting HMM includes 1294 non-null states
and has about 1,070,00 parameters.



Experiments were run varying the signal analysis used to com-
pute the cepstrum coefficients (LPC or Fourier analysis), and for
two bandwidths (4kHz and 8kHz). In all cases, a 30 ms window
was used with a 10 ms frame rate. For the 4kHz bandwidth, the
16kHz speech was downsampled by 2, and a 26-dimensional fea-
ture vector composed of LPC-derived cepstrum coefficients and the
first-order time derivative is used. It was found that no significant
difference was observed by using LPC or DFT based cepstra with a
4kHz bandwidth[9]. For the 8kHz Fourier analysis,a 32-component
feature vector consisting of 16 Bark-frequency scale cepstrum co-
efficients and their first order differences, is computed on the 8kHz
bandwidth. For each frame, a 15 channel Bark power spectrum is
obtained by applying triangular windows to the DFT. The cepstrum
coefficients are then computed using a cosinus transform[2]. For
8kHz bandwidth, this analysis was found to outperform an LPC-
based analysis even with frequency warping.

Model set BREF WSJ (nvp/vp) TIMIT (61/39)
4k LPCC 23.8 33.9/29.1 39.3/32.8
8k MFCC 23.6 30.1/26.9 37.2/30.9

Table 3: Phone error with CD models with phone bigram.

The phone errors rates are given in Table 3.1 The 8kHz MFCC
analysis consistently improves performance for English (on the or-
der of 2%), but there is almost no improvement for French. The
8kHz phone error rate for BREF is 23.6%, compared to 30.1% for
WSJ nvp. As expected, the error for vp is lower, 26.9%. The
phone error on TIMIT is 37.2% with the 61 phone set, and 30.9%
when mapped to a 39 phone set[12]. Better results were obtained
with the same model set by including 2nd order derivatives, 34.9%
(61 phones) and 28.9% (39 phones). To our knowledge, the best
reported results on the core test are by Robinson[16]: 31.3% (61
phones) and 26.1% (39 phones).

It is interesting to note that higher phone accuracies are obtained
for BREF, even though the phone perplexity is about the same as
WSJ. It may be simply that the phonetic structure of French is eas-
ier to recognize than that of English. French has fewer consonant
clusters than English, and has a more regular consonant-vowelalter-
nation. French vowels are acoustically relatively stable compared
to American English ones whose spectral characteristics vary more
within the segment.

This may be related to the differences in lexical ambiguity. Per-
haps the large number of homophones in French require clearer
acoustics, since phonetic recognition errors will largely increase
the number of word candidates. Since in English there are fewer
homophones, there may be more freedom in the phonetic realiza-
tion.

Error analysis: Table 4 summarizes the most common substi-
tution errors for BREF and WSJ nvp. Substitutions account for
15.2% of the errors on BREF and 16.6% of the errors on WSJ. In
French the most common confusions are among the vowels, with
symmetric /e,E/ and /E,a/ confusions being the most frequent. The
confusability between /e,E/ arises because in some word positions,
this distinction is not necessaryfor unambiguous interpretation. For
English the most common substitutions are between the vowels /I,x/

1For BREF and WSJ phone errors are reported after removing silences,
whereas for TIMIT silences are included as transcribed. Scoring without
the sentence initial/final silence increases the phone error by about 1.5%.

and in voicing for /s,z/ and /t,d/. The vowel confusions are probably
in part due to their somewhat arbitrary specification in the lexicon,
as well as to insufficent duration models, which may also contribute
to the consonant voicing errors. The errors are also likely to be
related to stress and syllable position, which are not included in the
contexts.

BREF WSJ nvp
e! E 5.9% I! x 3.1%
E! a 3.7% z! s 2.8%
E! e 3.3% x! I 2.7%
I! a 3.1% d! t 2.3%
a! E 2.0% t! d 1.8%

Table 4: The most common substitution errors.

Deletions account for 4.2% and insertions for 3.5% of the errors
on BREF. The phones /r,l/ account for over 20% of the insertions
and deletions, which is logical as they have the shortest average
duration. For WSJ, there are 6.5% deletions and 4.9% insertions,
with /t,x,d,n/ having the most deletions and /t,d,x/ accounting for
36% of the insertions. These phones can also be very short.

LANGUAGE IDENTIFICATION
An application for phonetic recognition is language identifica-

tion. The basic idea is to process in parallel the unknown incoming
speech by different sets of phone models for each of the languages
under consideration, and to choose the language associated with the
model set providing the highest normalized likelihood. Experiments
were reported using sets of SI CI phone models for French and for
English[9], with a 4kHz LPCC analysis. Using this approach and
processing the entire utterance always gave 100% correct language
identification for taken from 8 speakers (4m/4f) of each language.

This technique has been further investigated using more test
data. For English, the 120 SX sentences in the TIMIT coretest
are used, and for French, a set of 130 BREF sentences from 21
speakers (10m,11f) are used. SI, CI models are used with out a
phone bigram so as to minimize incorporation of task information.
All of the sentences were adjusted to have only 100 ms of silence
at the beginning/end. The numbers of errors for each language are
given as a function of duration in Table 5. With as little as 400
ms of signal, there is less than 3% error in language identification,
and with 1.2s, language identification is error free. To test the
task dependence of this technique, language identification on 100
sentences from WSJ nvp was evaluated using the same models and
system parameters. In this case they are more misclassifications,
however with 2s of speech the accuracy is 97% (with 4s they are
no errors). These results show that task independent language
identification is feasible using this approach.

Duration #sents 0.4s 0.8s 1.2s 1.6s 2.0s
French 130 2 3 1 0 0
English TIMIT 120 4 1 0 0 0
English WSJ 100 15 8 7 4 3

Table 5: Language identification as a function of duration and language.

IDENTIFICATION OF OTHER
NON-LINGUISTIC SPEECH FEATURES

Phone recognition has also been found to be effective for identi-
fying non-linguistic speech features, such as the sex of the speaker



and the identity of the speaker.
Sex Identification: It is well known that the use of sex-

dependent models gives improved performance over one set of
speaker-independent models. However, this approach is costly in
terms of computation for even medium-size tasks. A logical exten-
sion is to use first phonetic recognition to determine the speaker’s
sex, and then perform word recognition using the models of se-
lected sex. This is the approach used in our WSJ system. Phone
recognition using CD male and female models was performed, and
the sex of the speaker was selected as the sex associated with the
models that had the highest likelihood. No errors were observed
in sex-identification for WSJ on the Feb92 or Nov92 5K test data.
Sex identification on the 192 sentences in the TIMIT core test set
resulted in one error on a short sentence from a male speaker. How-
ever, the phone accuracy on this sentence was higher using the
female SI models than with the male SI model set. For BREF,
no errors were observed on the 93 test sentences from the 10 test
speakers, nor on an additional 16 sentences from 9 speakers.

Speaker Identification: For speaker identification, a set of CI
phone models were built for each speaker, by supervised adaptation
of SI models[7]. Since TIMIT contains speech from a large number
of speakers, and has recently been used for speaker identification[1,
13, 17], it was decided to use this corpus for evaluation in English.
The reported results have shown high speaker identification rates
using subsets of 100 to all 462 speakers, indicating that speaker-
identification on this data should be relatively easy. A speaker-
independent set of 30 CI models were built using data from all of
the 462 training speakers. These models were then adapted to each
speaker using 8 sentences (2 SA, 3 SX, and 3 SI). The remaining 2
SX sentences for each speaker were reserved for the identification
test. While the original CI models had a maximum of 32 Gaussian
mixtures, the adapted models were limited to 4 mixture components,
since the amount of adaptation data was relatively limited.

The unknown speech was recognized by all of the speakers mod-
els in parallel. Experiments for English using all 462 speaker models
in parallel resulted in 98.2% correct identification using 1 sentence
for identification and 100% if both sentences were used. With one
sentence, the identification rate for the 136 female speakers was
98.9%, compared to 97.9% for the 326 male speakers.

For French, the base acoustic models were the 35 CI BREF
models, built using the training data from the 57 training speakers.
In order to have a similar situation to English, these models were
adapted to each speaker using only 8 of the training sentences, and
2 sentences for identification test. Using only one sentence per
speaker for identification, there is one error, giving an identification
accuracy of 99.1%. As for TIMIT, when 2 sentences are used all
speakers are correctly identified.

When there was a confusion, the speaker was always identified
by another speaker of the same sex. Thus, a simple reduction
in computation can be gained by first determining the sex of the
speaker by running in parallel SI male and female models. Further
reductions in the computation required during recognition can be
obtained by speaker clustering.

SUMMARY
Our recent work focuses on developing phone-based recognizers

that are task, speaker and vocabulary independent so as to be easily
adapted to various applications. In this paper, phone recognition
performance is compared for English and French on similar cor-

pora. French is easier to recognize at the phone level (the phone
accuracy for BREF is 76.4% vs. 69.9% for WSJ), but harder to rec-
ognize at the lexical level due to the larger number of homophones.
Experiments with signal analysis indicate that a 4kHz signal band-
width is sufficient for French, whereas 8kHz is needed for English.
Phone recognition is shown to be a powerful technique for language
identification. With 2s of speech the language is correctly identified
as English or French with 99% accuracy. Phone recognition also
gives accurate sex and speaker identification. Sex-identification for
BREF and WSJ was error-free, and over 99% accurate for TIMIT.
Speaker identification accuracies of 98.2% on TIMIT (462 speak-
ers) and 99.1% on BREF (57 speakers), were obtained with one
utterance per speaker, and 100% if 2 utterances are used for identi-
fication.
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