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ABSTRACT

In this paper we apply the technique of phone-based acoustic
likelihoodsto the problem of languageidentification. Thebasicidea
isto processthe unknown speech signal by language-specificphone
model sets in parallel, and to hypothesize the language associated
with the model set having the highest likelihood. Using laboratory
quality speech the language can be identified as French or English
with better than 99% accuracy with only aslittle as2sof speech. On
spontaneous telephone speech from the OGI corpus, the language
can be identified as French or English with 82% accuracy with 10s
of speech. The 10languageidentification rate using the OGI corpus
i559.7% with 10s of signal.

INTRODUCTION

Automatic language identification has a wide range of ap-
plicationsin providing voice access to avariety of computer
and telephone-based services. For example, at information
centers in public places, such as train stations and airports,
the language may change from one user to the next. Un-
der these conditions, it would be advantageous to be able to
recogni ze the spoken query without prior knowledge of the
language being spoken. Automatic language identification
avoids having to ask the user to select the language before
beginning to interrogate the system. Language identification
has many other potential uses including: emergency situ-
ations (people in stressed conditions will tend to spesk in
their native tongue, even if they have some knowledge of
thelocal language); travel services; communications rel ated
applications(translation services, information services, etc.);
as well asthe well-known national security applications.

While automatic language identification has been a re-
search topicfor over 20 years, therearerelatively few studies
published in thisareg[11, 15, 2, 3, 9, 28, 21]. Of late there
has been arevived interest in language identification, in part
due to the availability of a multi-language corpus[19] pro-
viding the means for comparative eval uations of techniques.
Some proposed techniques for language identification com-
bine feature vectors (filter bank, LPC, cepstum, formants)
with prosodic features using polynomial classifier 2], vec-
tor quantization[3, 9, 28], or neural nets[20]. Broad phonetic
label swere used with finite state model S[15] and with neural
nets20]. More recently, Gaussian mixture and HMM have
been proposed for language identification[21, 31], aswell as

stochastic segment-based model§[10].

This paper presents our recent work in language identifi-
cation using phone-based acoustic likelihoods[5, 13]. The
basic idea is to process in parallel the unknown incoming
speech by different sets of phone models (each set isalarge
ergodic HMM) for each of the languages under considera-
tion, and to choose the language associated with the model
set providing the highest normalized likelihood.? Language
identification can also be done using word recognition, but
it is more efficient to use phone recognition, which has the
added advantage of being task independent.

This approach has been evaluated for French/English
language identification using laboratory quality speech,
and for 10 languages using the OGI Multilingua tele-
pone corpus[19]. Phone-based acoustic likelihoods have
also been shown to be effective for sex and speaker-
identification[5, 13]. In [18] it was found that the fine
phonetic classes dightly outperformed broad phonetic cat-
egories, and both these outperformed acoustic features for
Japanese-English language i dentification.

PHONE-BASED ACOUSTIC LIKELIHOODS

In thissection we describe the use of phone-based acoustic
likelihoodsfor the general case of identifying non-linguistic
speech features such as language, gender, speaker, ... The
basicideaistotrainaset of large phone-based ergodic hidden
Markov models (HMMs) for each non-linguistic feature to
be identified. Feature identification on the incoming signa
X is then performed by computing the acoustic likelihoods
f(x[|A;) foral themodels A; of agiven set. Thefesturevalue
corresponding to themodd with the highest likelihood isthen
hypothesized. This decoding procedure has been efficiently
implemented by processing all themodelsin parallel using a
time-synchronous beam search strategy.

This approach has the following characteristics:

e It can perform text-independent feature recognition.
(Text-dependent feature recognition can also be per-
formed.)

Infact, thisisnotanew idea: Houseand Neuberg (1977)[11] proposeda
similar approach for language identification using models of broad phonetic
classes, where we use phone models. Their experimental results, however,
were synthetic, based on phonetic transcriptions derived from texts.
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e It is more precise than methods based on long-term
statistics such as long term spectra, VQ codebooks, or
probabilistic acoustic mapg[27, 30].

¢ |t can easily take advantage of phonotactic constraints.

o Itcanesasily beintegratedin recognizerswhich arebased
on phone models.

In our implementation, each large ergodic HMM s built
from smdll |eft-to-right phonetic HMMs. The Viterbi algo-
rithm is used to compute the joint likelihood f(x, s|\;) of
the incoming signa and the most likely state sequence in-
stead of f(x|A;). Thisimplementationisthereforeadlightly
modified phone recognizer with language-, sex-, or speaker-
dependent model sets used in parallel, and where the output
phone string is ignored? and only the acoustic likelihood for
each model is taken into account.

The phone recognizer uses context-independent (CI)
phone models, where each phone model is a 3-state | eft-to-
right continuous density hidden Markov model (CDHMM)
with Gaussi an mixtureobservation densities. The covariance
metricesof al Gaussian componentsarediagonal. Maximum
likelihood estimators are used to derive language specific
models whereas maximum a posteriori (MAP) estimators
are used to generate sex- and speaker-specific models as has
already been proposed in[7, 8].

In our original formulation, phonetic labels were required
for training the model§[5]. However, there is in theory no
absolute need for phonetic labeling of the speech training
data to estimate the HMM parameters. In this case, if a
blind (or noninformative) initialization for theHMM training
re-estimation agorithm is used, the elementary |eft-to-right
models are no longer related to the notion of phone. Such a
non-informativeinitialization can lead to poor model sfor two
reasons. First, the commonly used EM re-estimation proce-
durecan only find alocal maximum of thedatalikelihoodand
therefore "good" initializationis critical. Second, maximum
likelihood training of large models with limited amount of
training data (as in our case) cannot provide robust models
if prior information information is not incorporated in the
training process. We have experimented with two ways of
dealing with these problems. Thefirstisto use MAP estima-
tion with seed model s derived from transcribed speech data.
We applied this approach to speaker identification in order
to build the speaker-specific models from small amount of
untranscribed speaker-specific data. The second approach is
simply based on ML estimation where modelstrained on la-
beled data are used to generate an approximate transcription
of the training data. We applied this second approach to lan-
guage identification allowing us to estimate "phone" models
from language specific data using acommon phone & phabet
for @l of the languages. While there are many ways to in-

2The likelihood computation can in fact be simplified since there is
no need to maintain the backtracking information necessary to know the
recognized phone sequence.
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Figurel: Overall French/Englishlanguageidentification asafunc-
tion of duration with and without phonotactic constraints provided
by a phonebigram. (The duration includes 100ms of silence.)

troduce prior knowledgein the training process, it should be
clear that the use of a great deal of prior information in the
training procedure | eads to more discriminative models.
The use of ergodic HMM has been reported for
speaker identification[24, 29, 16, 21] and for language
identification[31] using small ergodic HMMs with a max-
imum of 5 to 8 states. Gaussian mixture models, which
are special cases of ergodic HMM, have been used for
speaker identification[ 25, 30]. Theuseof phone-based HMM
has been reported for text-dependent[26, 17] and for text-
independent, fixed-vocabulary[26] speaker identification.

FRENCH/ENGLISH LID EXPERIMENTS

Language-dependent models are trained using the BREF
corpusfor French and the WSJO corpusfor English, contain-
ing read newspaper texts and similar size vocabularieq 14,
23]. A set of 35 ClI phone mode s were used for French and
aset of 46 Cl phone models for English. Each phone model
has 32 gaussians per mixture, and no duration mode is used.
In order to minimize influences due to the use of different
microphones and recording conditions a 4 kHz bandwidth
was used. The training data for French include 2770 sen-
tences from 57 speskers. For English the standard WSJ0
SI-84 training data (7240 sentences from 84 speakers) was
used.

| Corpus [ #sent. || 04s | 0.8s | 1.2s | 1.6s [ 2.0s | 2.4s ]
WSJ 100 5.0 3.0 1.0 2.0 1.0 1.0
TIMIT 192 94 | 57 2.6 21 | 05 | O
BREF 130 85 151 08| 0 08 | 08
BDSONS | 121 74 | 25 25 17 { 08 | O
Overall 543 7.9 35 18 15| 07 | 04

Table1: Languageidentification error ratesasafunction of duration
and language (with phonotactic constraints).

Language identification accuracies are given in Table 1
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with phonotacti c constraintsprovided by phonebigrams. Re-
sultsare givenfor 4 test corpora, WSJ[23] and TIMIT[4] for
English, and BREF[6] and BDSONS[1] for French, as a
function of the duration of the speech signal which includes
approximately 100msof silence. Theinitial and final silences
were automatically removed based on HMM segmentation,
S0 as to be able to compare language identification as afunc-
tion of duration without biases due to long initia silences.
WhileWSJsentencesaremoreeasily identified asEnglishfor
short durations, errors persist longer than for TIMIT. In con-
trast for French with 400ms of signal, BDSONS dataisbetter
identified than BREF, perhaps because the sentences are pho-
netically balanced. For longer durations, BREF is dlightly
better identified than BDSONS. The LID performanceisseen
not to degrade in the cross-corpus condition.

Figure 1 shows the overal language identification results
as a function of speech signal duration both with and with-
out the use of phonotactic constraints. Using phonotactic
congtraints is seen to improve language identification, par-
ticularly for short signals. The error rate with 2s of speech is
less than 1% and with 1s of speech is about 2%. With 3s of
speech, language identification is almost error free.

OGI 10-LANGUAGE EXPERIMENTS

Language identification over the telephone opens a wide
range of potential applications. Cognizant of this, we have
evaluated our approach on the OGI 10 language tel ephone-
speech corpug[19]. The Oregon Graduate Institute Multi-
language Tel ephone Speech Corpug[ 19] was designed to sup-
port research on automatic language identification, as well
as multi-language speech recognition. The entire corpus
contains data from 100 native speakers of each of 10 lan-
guages (English, Farsi, French, German, Japanese, Korean,
Mandarin, Spanish, Tamil, and Vietnamese). The utterances
have been verified and transcribed at abroad phonetic level.
The training data consists of calls from 50 speakers of each
language. There are atotal of about 4650 sentences, corre-
sponding to about 1 hour of speech for each language. The
test data are taken from the spontaneous stories from the
development test data as specified by NIST[22] and include
about 18 signal files for each language. Since these stories
tend to be quite long, they have been divided into chunks
by NIST, with each chunk estimated to contain at least 10
seconds of speech.

The training data was first labeled using a set of speaker-
independent, context-independent phonemodels. Language-
specificic models were then estimated using MLE with the
these labels. Thus, in contrast to the French/English ex-
periments where the phone transcriptions were used to train
the speaker-independent models, language-specific training
is done without the use of phone transcriptions. 10-way
language identification results are shown in Table 2 as a
function of signal duration. The overall 10-language identi-
fication rate is 59.7% with 10s of signal (including silence).

Duration

| #10schunks | 2s | 6s | 10s |

English 63 54 64 67
Farsi 61 64 61 66
French 72 58 65 67
German 63 44 48 54
Japanese 57 28 32 42
Korean 44 48 48 55
Mandarin 59 46 51 61
Spanish 54 32 52 56
Tamil 49 69 82 82
Vietnamese 53 42 49 47
Overall 575 48.7 | 55.1 | 59.7

Table 2: OGI language identification rates (%) as a function of
test utterance duration (without phonotactic constraints) for “10s
chunks’.

Language Identified

Lang. E[FaJFr[G]J]K[MJ[S]T]V
English || 42| 1| 2 | 10 1(1]4]|2
Farsi 1404|711 7
French 714489 |1 1 2

German || 13 7 |34 1|6 2
Japan. 3 (13| 1(24] 1 3 12
Korean 3 1 6 1124 2 7
Mand. 212|562 /(11| 4
Spanish 3|/ 6|5]|8]|1 30 1
Tamil 1 5 40 | 3
Vietham. || 5 | 7 | 6 2 35|25

Table 3: 10-language confusion matrix for OGI corpus, “10s
chunks’.

There is a wide variation in identification accuracy across
languages, ranging from 42% for Japanese to 82% for Tamil.
The results of the language identification test as summarized
by NIST[22] show similar variations in identification rate
across languages for the different systems.

Table 3 shows the confusions obtained in language iden-
tification for the 10s chunks. Some confusions are seen to
be symmetric between languages, for example, English and
German are most likely to be confused with each other and
French and German are a so frequently confused. Incontrast,
Japanese isseen to beidentified as French or Vietnamese, but
neither of these languages are identified as Japanese.

Two-way French/English language identification was
evaluated on the OGI corpus so as to provide a measure
of the degradation observed due to the use of spontaneous
speech over the telephone. The results are given in Table 4.
Language identification was 82% at 10s (79% on French and

| Duration | #10schunks || 2s | 6s [ 10s ]

English 63 76 | 83 | 84
French 72 76 | 79 | 79
Overall 135 76 | 81 | 82

Table 4: French/English language identification rates (%) on the
OGiI corpus asafunction of test for “10s chunks”.
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84% for English) for the 135 10s-chunks. This can be com-
pared to the results with the [aboratory read speech, where
French/English language identification is better than 99%
with only 2s of speech.

SUMMARY

Inthispaper we haveapplied thetechniqueof phone-based
acoustic likelihoods to the problem of language identifica-
tion. The basic idea isto train a set of large phone-based
ergodic HMMs for each language and to identify the lan-
guage as that associated with themodel set having the high-
est acoustic likelihood. The decoding procedureisefficiently
implemented by processing all thelanguage-specific models
in parallel using a time-synchronous beam search strategy.
This technique has aso been successfully applied to gender
and speaker identification[13] and has other possible appli-
cations such as for dialect identification (including foreign
accents), or identification of speech disfluencies.

If the language can be accurately identified, it simpli-
fies using speech recognition for a variety of applications,
from selecting the language in multilingual spoken language
systems to selecting an appropriate operator, or aiding with
emergency assistance.

Wewould liketo emphasizethat theresultsonthe OGI data
are preliminary results which have been obtained by simply
adapting the signal processing to the conditionsof telephone
speech. Our approach for French/English identification took
advantage of the associated phonetic transcriptions, whereas
for the OGI data, training was performed without the use
of transcriptions. Despite these conditions, our results com-
pare favorably to previoudly published results on the same
corpug 20, 31, 10Q].
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