
The LIMSI Continuous Speech Dictation System:
Evaluation on the ARPA Wall Street Journal Task

J.L. Gauvain, L.F. Lamel, G. Adda, M. Adda-Decker

LIMSI-CNRS, BP 133
91403 Orsay cedex, FRANCEfgauvain,lamel,adda,maddag@limsi.fr

ABSTRACT

In this paper we report progress made at LIMSI in speaker-
independent large vocabulary speech dictation using the ARPA
Wall Street Journal-based CSR corpus. The recognizer makes use
of continuous density HMM with Gaussian mixture for acoustic
modeling and n-gram statistics estimated on the newspaper texts
for language modeling. The recognizer uses a time-synchronous
graph-search strategy which is shown to still be viable with vo-
cabularies of up to 20K words when used with bigram back-off
language models. A second forward pass, which makes use of a
word graph generated with the bigram, incorporates a trigram lan-
guage model. Acoustic modeling uses cepstrum-based features,
context-dependent phone models (intra and interword), phone du-
ration models, and sex-dependent models. The recognizer has been
evaluated in the Nov92 and Nov93 ARPA tests for vocabularies of
up to 20,000 words.

INTRODUCTION

Our speech recognition research focuses on develop-
ing recognizers that are task-, speaker- and vocabulary-
independent so as to be easily adapted to a variety of applica-
tions. In this paper we report on our efforts in large vocabu-
lary, speaker-independent continuous speech recognition us-
ing the ARPA Wall Street Journal-based CSR corpus[11].
The WSJ corpus contains large amounts of read speech ma-
terial from a large number of speakers and has associated
text material which can be used as a source for statistical lan-
guage modeling. The recognizer makes use of continuous
density HMM with Gaussian mixture for acoustic model-
ing and n-gram statistics estimated on text material for lan-
guage modeling. Acoustic modeling uses cepstrum-based
features, context-dependent phone models, duration mod-
els, and sex-dependent models. Statistical n-gram language
models are estimated on a large corpus of newspaper text
from the WSJ. The recognizer has also been evaluated on
comparable tasks for the BREF corpus and results were re-
ported at EUROSPEECH-93[3]. In the following sections
we describe the recognizer and present an evaluation of the
current system on the last two sets of evaluation test material:
Nov92[12] and Nov93.

RECOGNIZER OVERVIEW
The recognizer uses a time-synchronous graph-search

strategy which is shown to still be viable with vocabularies of
up to 20K words, when used with bigram back-off language
models (LMs). This one level implementation includes intra-
and inter-word context-dependent (CD) phone models, intra-
and inter-word phonological rules, phone duration models,
and gender-dependent models[6]. The HMM-based word
recognizer graph is built by putting together word models
according to the grammar in one large HMM. Each word
model is obtained by concatenation of phone models accord-
ing to the word’s phone transcription in the lexicon.

The recognizer makes use of continuous density HMM
(CDHMM) with Gaussian mixture for acoustic modeling.
The main advantage continuous density modeling offers over
discrete or semi-continuous (or tied-mixture) observation
density is that the number of parameters used to modelize
an HMM observation distribution can easily be adapted to
the amount of available training data associated to this state.
In the experimental section we demonstrate the improvement
in performance obtained on the same test data by simply us-
ing additional training material. As a consequence, high
precision modeling can be achieved for highly frequented
states without the explicit need of smoothing techniques for
the densities of less frequented states. Discrete and semi-
continuous modeling use a fixed number of parameters to
represent a given observation density and therefore cannot
achieve high precision without the use of smoothing tech-
niques. This problem can be alleviated by tying some states
of the Markov models in order to have more training data to
estimate each state distribution. However, since this kind of
tying requires careful design and some a priori assumptions,
these techniques are primarily of interest when the training
data is limited and cannot easily be increased.

Front end: A 48-component feature vector is computed ev-
ery 10 ms. This feature vector consists of 16 Bark-
frequency scale cepstrum coefficients computed on the
8kHz bandwidth with their first and second order deriva-
tives. For each frame (30 ms window), a 15 channel Bark
power spectrum is obtained by applying triangular win-
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dows to the DFT output. The cepstrum coefficients are
then computed using a cosinus transform [2].

Acoustic models: The acoustic models are sets of CD phone
models, which include both intra-word and cross-word con-
texts, but are position independent. Each phone model is a
left-to-right CDHMM with Gaussian mixture observation
densities. The covariance matrices of all the Gaussians are
diagonal. Duration is modeled with a gamma distribution
per phone model. The HMM and duration parameters are
estimated separately and combined in the recognition pro-
cess for the Viterbi search. Maximum a posteriori (MAP)
estimators are used for the HMM parameters[4] and mo-
ment estimators for the gamma distributions. Separate
male and female models are used to more accurately model
the speech data. The contexts to be modeled are selected
based on their frequency of occurrence in the training data
and are position independent.

Lexicon: The lexicon is represented phonemically using a
set of 46 phonemes. The lexicon has alternate pronuncia-
tions for some of the words, and allows some of the phones
to be optional. A pronunciation graph is generated for
each word from the baseform transcription to which word
internal phonological rules are optionally applied during
training and recognition to account for some of the phono-
logical variations observed in fluent speech.

Language Model: Bigram and trigram-backoff[5] language
models are estimated on the WSJ training text material
which contains about 37 million words. The backoff mech-
anism for the bigram has been efficiently implemented us-
ing a tree. The LM size can be arbitrarily reduced by
relying more on the backoff, a property used in the first
decoding pass. The trigram langage model is used in the
second pass of the decoding process.

Decoding: The recognizer uses a time-synchronous graph-
search strategy which includes intra- and inter-word CD
phone models, intra- and inter-word phonological rules,
phone duration models, and a bigram language model. Sex
identification is performed for each sentence using phone-
based ergodic HMMs[8]. The recognizer is then run using
the set of models corresponding to the identified sex. Sen-
tence recognition is performed in two forward passes. First,
a word graph is generated using a bigram language model.
Second, the sentence is decoded using the acoustic models
and the word graph with the trigram language model. Both
passes use a time-synchronous Viterbi decoder.

Phonological Rules: Phonological rules are used to allow
for some of the phonological variations observed in fluent
speech. The principle behind the phonological rules is to
modify the phone network to take into account such vari-
ations. These rules are optionally applied during training
and recognition. Using optional phonological rules dur-
ing training results in better acoustic models, as they are

less “polluted” by wrong transcriptions. Their use dur-
ing recognition reduces the number of mismatches. The
mechanism for the phonological rules allows the potential
for generalization and extension. A pronunciation graph is
generated for each word from the baseform transcription
to which word internal phonological rules are applied. In
forming the word network, word boundary phonological
rules are applied at the phone level to take into account
interword phonological variations such as palatalization,
voicing assimilation, or glide insertion.

Much of the system development has been carried out by
performing phone recognition instead of word recognition in
order to reduce the computational requirements and speed up
the development process. We have shown that improvements
in phone accuracy are directly indicative of improvements
in word accuracy when the same phone models are used for
recognition[7]. Phone recognition provides the added benefit
that the recognized phone string can be used to understand
errors in word recognition, and problems with the lexical
representation.

SEARCH STRATEGY

One of the most important problems in implementing a
large vocabulary speech recognizer is the design of an effi-
cient search algorithm to deal with the huge search space,
especially when using long span language models such as
trigrams. The most commonly used approach for small and
medium vocabulary sizes is the one pass frame synchronous
beam search [10] which uses a dynamic programming pro-
cedure. This basic strategy has been recently extended by
adding other features such as “fast match”[14, 15], N-best
rescoring [13], and progressive search[9]. The two pass ap-
proach used in our system is based on the idea of progressive
search[9] where the information between levels is transmit-
ted via word graphs.

The first pass uses a bigram-backoff language model with
a tree organization of the lexicon for the backoff component.
This one pass frame synchronous beam search generates a
list of word hypotheses resulting in a word lattice. Two
problems need to be considered at this level. The first is
whether or not the dynamic programming procedure used in
the first pass, which guarantees the optimality of the search
for the bigram, generates an “optimal” lattice to be used with a
trigram language model. For any given word the lattice will
contain many hypotheses with different ending points but
only a few with different starting points. This problem was
in fact less severe than expected since the time information
is not critical to generate an “optimal” word graph from
the lattice, i.e. the multiple word endings provide enough
flexibility to compensate for single word beginnings.

The second consideration is that the lattice generated in
this way cannot be too large or there is no interest in a two
pass approach. To solve this second problem, two pruning
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thresholds are used during the first pass, a beam search prun-
ing threshold which is kept to a level insuring almost no
search errors (from the bigram point of view) and a word
lattice pruning threshold used to control the lattice size.

A description of the exact procedure used to generate the
word graph from the word lattice is beyond the scope of this
paper. The following steps give the key elements behind the
procedure.1 First, a word graph is generated from the lattice
by merging three consecutive frames (i.e. the minimum
duration for a word in our system). Then, “similar” graph
nodes are merged with the goal of reducing the overall graph
size and generalizing the word lattice. This step is reiterated
until no further reductions are possible. Finally, based on
the trigram backoff language model a trigram word graph
is then generated by duplicating the nodes having multiple
language model contexts. Bigram backoff nodes are created
when possible to limit the graph expansion.

To fix these ideas, let us consider some numbers for the
WSJ 5k closed vocabulary. The first pass generates a word
lattice containing on average 10,000 word hypothesis per
sentence, with the pruning threshold set to have a negligable
number of search errors. The generated word graph before
trigram expansion contains on average 1400 arcs. After
trigram expansion, based on a trigram backoff LM there
are on average 3900 word instanciations including silences
which are treated the same way as words.

It should be noted that this decoding strategy based on
two forward passes can in fact be implemented in a single
forward pass using one or two processors. We are using a
two pass solution because it is conceptually simpler, and also
due to memory constraints.

THE LIMSI WSJ SYSTEM
The DARPA WSJ corpus[11] was designed to provide

general-purpose speech data with large vocabularies. Text
materials were selected to provide training and test data for
5K and 20K word, closed and open vocabularies, and with
both verbalized (VP) and non-verbalized (NVP) punctuation.
For testing purposes, the 20k closed vocabulary includes all
the words in the test data whereas the 20k open vocabulary
contains only the 20k most common words in the WSJ texts.
The 20k open test is also referred to as a 64k test since
all of the words in these sentences occur in the 63,495 most
frequent words in the normalized WSJ text material[11]. Two
sets of standard training material have been used for these
experiments: The standard WSJ0 SI-84 training data which
include 7240 sentences from 84 speakers, and the standard set
of 37518 WSJ0/WSJ1 SI-284 sentences from 284 speakers.
Only the primary microphone data were used for training.

While we have built n-gram-backoff LMs directly from
the 37M-word standardized WSJ training text material, in
these experiments all results are reported using the 5k or

1In our implementation, a word lattice differs from a word graph only
because it includes word endpoint information.

5k - Conditions Corr. Subs. Del. Ins. Err.
Nov92, si84a, bg� 91.8 6.9 1.3 1.5 9.7
Nov92, si84b, bg 94.4 5.0 0.6 0.9 6.6
Nov92, si284, bg 96.0 3.6 0.3 0.9 4.8
Nov92, si284, tg 97.7 2.1 0.2 0.8 3.1
Nov93, si84b, bg 91.9 6.2 1.9 1.3 9.4
Nov93, si284, bg 94.1 4.8 1.2 0.9 6.8
Nov93, si284, tg 95.5 3.5 1.1 0.8 5.3

Table 1: 5k results - Word recognition results on the WSJ corpus
with bigram/trigram (bg/tg) grammars estimated on WSJ text data.�official ARPA NOV92 evaluation results.

20k, bigram and trigram backoff LMs provided by Lincoln
Labs[11] as required by ARPA so as to be compatible with
the other sites participating in the tests.

The lexicon is represented using a set of 46 phones. The
training and test lexicons were created at LIMSI and in-
clude some input from the TIMIT, Pocket and Moby lexi-
cons. Missing forms were generated by rule when possible,
or added by hand. Some pronounciations for proper names
were kindly provided by Murray Spiegel at Bellcore from the
Orator system. A pronunciation graph is associated with each
word so as to allow for alternate pronunciations, including
optional phones. Word boundary phonological rules are ap-
plied in building the phone graph used by the recognizer. For
the present, only well known phonological rules have been
incorporated in the system. These rules include word-internal
rules for glide insertion, stop deletion, and homorganic stop
insertion. The interword rules include palatalization, stop
reduction, and voicing assimilation.

Experimental Results
The WSJ corpus provides a wealth of material that can

be used for system development. In our experiments, we
have worked primarily with the WSJ0-Dev (410 sentences,
10 speakers), and the WSJ1-Dev from spokes s5 and s6 (394
sentences, 10 speakers). Development was done with the
5k closed vocabulary system in order to reduce the compu-
tational requirements. The Nov92 5k and 20k nvp test sets
were used to assess progress during this development phase.

The LIMSI WSJ system was evaluated in the Nov92
DARPA evaluation test for the 5k-closed vocabulary using
the standard bigram language models[11] with the WSJ0 si-
84 training data. The official reported results are given in the
first line of Table 1 using 493 CD models (si84a), without the
second derivative of the cepstral coefficients. Increasing the
number of CD models and the number of features (si84b),
reduced the error rate by about 30% over the system used
for the Nov92 evaluation. The same model set gave a word
error of 9.4% on the Nov93 test data. Using the combined
WSJ0/WSJ1 si-284 training data reduces the error by about
27% for both tests. When a trigram LM is used in the second
pass, the word error is reduced by 35% on the Nov92 test and
by 22% on the Nov93 test.

Results are given in the Table 2 for the Nov92 nvp 64k test
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20k - Conditions Corr. Subs. Del. Ins. Err.
Nov92, si84c, bg 88.3 10.1 1.5 2.0 13.6
Nov92+, si84c, bg 86.8 11.7 1.5 2.7 15.9
Nov92+, si284, bg 91.6 7.6 0.8 2.6 11.0
Nov92+, si284, tg 93.2 6.2 0.6 2.3 9.1
Nov93+, si284, bg 87.1 11.0 1.9 2.3 15.2
Nov93+, si284, tg 90.1 8.5 1.4 1.9 11.8

Table 2: 20k/64k results - Word recognition results with 20,000
word lexicon on the WSJ corpus. Bigram/trigram (bg/tg) grammars
estimated on WSJ text data. +: 20,000 word lexicon with open test.

data using both open and closed 20k vocabularies. With si-
84 training (si84c)2 the word error rate is doubled when the
vocabulary increases from 5k to 20k words and the test per-
plexity goes from 111 to 244. The higher error rate with the
20k open lexicon can be attributed to the out-of-vocabulary
(OOV) words, which account for almost 2% of the words in
the test sentences. Processing the same 20k open test data
with a system trained on the si-284 training data, reduces
the word error by 30%. The word error on the Nov93 20k
test is 15.2% with the same system. The use of a trigram
reduces the error rate by 18% on the Nov92 test and 22% on
the Nov93 test.

The 20k trigram sentence error rates for Nov92 and Nov93
are 60% and 62% respectively. Since this is an open vocab-
ulary test, the lower bound for the sentence error is given
by the percent of sentences with OOV words, which is 26%
for Nov92 and 21% for Nov93. In addition there are errors
introduced by the use of word graphs generated by the first
pass. The graph error rate (ie. the correct solution was not
in the graph) was 5% and 10% respectively for Nov92 and
Nov93. In fact, in most of these cases the errors should not
be considered search errors as the recognized string has a
higher likelihood than the correct string.

A final test was run using a 64k lexicon in order to elim-
inate the errors due to unknown words. (In principle, all of
the read WSJ prompts are found in the 64k most frequent
words, however, since the WSJ1 data were recorded with
non-normalized prompts, additional OOV words can occur.)
Running a full 64k system was not possible with the com-
puting facilities available, so we added a third decoding pass
to extend the vocabulary size. Starting with the phone string
corresponding to the hypothesis of the trigram 20k system, an
A� algorithm is used to generate a word graph using phone
confusion statistics and the 64k lexicon. This word graph
is then used by the recognizer with a 64k trigram grammar
trained on the standard WSJ training texts (37M words). Us-
ing this approach we recover only about 30% of the errors
due to OOV words on the Nov93 64k test, reducing the word
error to 11.2% from 11.8%.

2The si84c model set is slightly smaller than si84b model set.

SUMMARY
In this paper, we have described the LIMSI Nov93 continu-

ous speech dictation system. The system uses CDHMM with
Gaussian mixture for acoustic modeling and n-gram statis-
tics estimated on the newspaper texts for language modeling.
The recognizer uses a time-synchronous graph-search strat-
egy which is shown to still be viable with vocabularies of
up to 20K words when used with bigram back-off language
models. This one level implementation includes intra- and
inter-word CD phone models, intra- and inter-word phono-
logical rules, phone duration models, and gender-dependent
models. For trigram language models, decoding is performed
in two forward passes. The first pass generates a word graph
using a bigram language model, this graph is then used in
a second acoustic pass with the trigram language model.
The recognizer has been evaluated in the Nov92 and Nov93
ARPA tests with vocabularies of up to 20,000 words.
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