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ABSTRACT
In this paper we report on our recent development work in large

vocabulary,American English continuous speech dictation. We have
experimented with (1) alternative analyses for the acoustic front end,
(2) the use of an enlarged vocabulary so as to reduce the number of
errors due to out-of-vocabulary words, (3) extensions to the lexical
representation, (4) the use of additional acoustic training data, and
(5) modification of the acoustic models for telephone speech. The
recognizer was evaluated on Hubs 1 and 2 of the fall 1994 ARPA
NAB CSR Hub and Spoke Benchmark test. Experimental results
for development and evaluation test data are given, as well as an
analysis of the errors on the development data.

INTRODUCTION
Research in large vocabulary speaker-independent dicta-

tion at LIMSI[3, 4] makes use of large newspaper-based cor-
pora such as the ARPA Wall Street Journal-based CSR corpus
(WSJ)[8]. The recognizer uses phone-based CDHMM for
acoustic modeling and n-gram statistics estimated on news-
paper texts for language modeling. The LIMSI recognizer
has been evaluated in the last 3 ARPA CSR Benchmark tests
and most recently in the November 1994 North American
Business (NAB) News CSR test, Hubs 1 and 2.

The goal of the Hub 1 Unlimited Vocabulary NAB News
Baseline is to improve basic performance on unlimited-
vocabulary, speaker-independent (SI) speech recognition of
read-speech. The test prompts were selected from several
sources of North American Business news (Dow Jones Infor-
mation Services, New York Times, Reuters North American
Business Report, Los Angeles Times, Washington Post). Re-
sults are reported for two systems: H1-C1, where the acous-
tic training data and the 20k trigram-backoff language model
are fixed so as to asess and compare acoustic models; and
H1-P0, where any techniques may be used to improve per-
formance, and any acoustic and language model training data
are permitted predating June 16, 1994. The aim of Hub 2
Telephone NAB News is to demonstrate SI recognition per-
formance on unlimited-vocabulary read-speech over long-
distance telephone lines.yThis work is partially funded by the LRE project 62-058 SQALE.

NOV94 NAB RECOGNIZER

The recognizer makes use of continuous density HMM
with Gaussian mixture for acoustic modeling. Cepstral mean
removal is performed for each sentence. The acoustic mod-
els are sets of context-dependent (CD), position-independent
phone models, which include both intra-word and cross-word
contexts. The contexts are automatically selected based on
their frequencies in the training data and include triphone
models, right- and left-context phone models, and context-
independent phone models. Each phone model is a left-
to-right CDHMM with Gaussian mixture observation den-
sities (typically 32 components). Maximum a posteriori
estimators[5] are used to derive separate male and female
models from speaker-independent HMM parameters, so as to
more accurately model the speech data.

For the baseline test H1-C1, the standard set of 37,518
WSJ0/WSJ1 sentences (SI-284, primary microphone) has
been used for training two sets of 3309 gender-dependent
acoustic models. For the primary system, H1-P0, all the
available WSJ0/WSJ1 training data (85,343 sentences from
359 speakers) were used to train two sets of 3600 gender-
dependent acoustic models. For the telephone hub, H2-P0, a
reduced bandwidth analysis was carried out, and SI models
were built from the primary microphone (Sennheiser) data.
These models were adapted using MAP estimation with 7130
sentences: 403 sentences from the 1993 Spoke 6 develop-
ment test data, 313 sentences from 1994 H2-dev data and
6,414 WSJ sentences from the macrophone corpus[1].

N-gram statistics estimated on newspaper texts are used
for language modeling. Bigram and trigram backoff LMs
were trained on the 230 million word CSR LM-1 training text
material (LDC, Aug94). The backoff mechanism[6] is used
to smooth the estimates of the probabilities of rare n-grams
by relying on a lower order n-gram when there is insufficient
training data, and to provide a means of modeling unobserved
n-grams. For the H1-C1 test, the standard 20K trigram LM
provided by CMU was used. For the H1-P0 condition, a 65k
trigram LM was trained on the standard CSR LM-1 train-
ing texts (years 87-94), the 1994 NAB development data
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(excluding articles including the dev test prompts), and the
WSJ0/WSJ1 read speech transcriptions (85,343 sentences).
For H2-P0, a 40k word trigram LM was used, where the 40k
vocabulary contains the most common 39,639 words in the
H1-P0 65k word list.

Decoding is carried out in two forward acoustic passes[2].
The first pass is a time-synchronous graph-search which in-
cludes intra- and inter-word CD phone models and gender-
dependent models, and a bigram LM. The second decoding
pass makes use of a word graph generated with the bigram
and incorporates a trigram LM. Prior to recognition, the gen-
der of each sentence is identified using phone-based ergodic
HMMs[7], then word recognizer is run using the model set
of the identified gender. Both passes use a time-synchronous
Viterbi decoder.

To improve the performance of the system we have been
exploring several directions to reduce the loss of linguistic
information by the front end, to increase the system robustness
and to achieve higher precision modeling. In the next sections
we focus on several aspects of our development work mostly
carried out using a 5k system.

ACOUSTIC FRONT END OPTIMIZATION
The front end configuration used in our Nov92 and Nov93

systems was optimized using the Resource Management de-
velopment data. For each frame (30 ms window), a 15 channel
Bark power spectrum over the 8kHz bandwidth was obtained
by applying triangular windows to the DFT output. From this
16 Bark-frequency scale cepstrum coefficients and their first
and second order derivatives were computed.

We have since varied this analysis looking at different
methods to obtain the cepstrum-based feature vector (LPCC
vs MFCC), as well as the size of the feature vector. Anal-
ysis windows of 30ms, 24ms, 20ms, 15ms were tried, with
different spectral weightings such as the commonly used Mel
and Bark frequency scales, and other intermediary interpola-
tions. The number of filters was varied from 15 to 64, and the
number of cepstral coefficients from 13 to 17.

Four sets of test data were used to assess the different analy-
ses: the Nov92-5k, Nov93-S6, Nov93-H2 evaluation test data
and the 1993 development test data SIdt-5k. In total, these
contain 1275 sentences with 21,705 words from 28 speakers.
All the experiments used a single set of 903 SI models trained
on the standard SI-84 training set with the LIMSI Nov93 lex-
icons (training and 5k) which are publicly available, and the
official 5k-nvp closed vocabulary LM model provided by Lin-
coln Labs. Even though this is nominally a closed vocabulary
test, there is an out-of-vocabulary rate of 0.2%.

The best configuration was found to be with a 30 ms frame
and 26 cosine filters on a Mel scale over the 8kHz bandwidth,
from which 15 cepstrum coefficients and a normalized energy
are derived. The error rates for the new analysis (Nov94) and
the old analysis (Nov92/93) are given for the individual test
sets in Table 1. The overall error reduction is small (8%), but

% Word Error
Test Data # sentences Nov92/93 Nov94
Nov93-S6 217 10.8 10.0
SIdt-5k 513 11.3 10.6
Nov92-5k 330 7.0 6.3
Nov93-h2 215 10.0 8.9
All 1275 9.9 9.1

Table 1: Experimental results on development data before and after
optimization of the acoustic front end using the standard 5k-nvp
closed vocabulary bigram LM.

significant, and a consistent gain is obtained across the test
sets, so this setup was used for the Nov94 evaluation.

TEXT PROCESSING/LEXICAL COVERAGE
The lexical coverage of the 5k and 20k most frequent words

in the WSJ texts are 90.6% and 97.5% respectively. With a
20k word vocabulary and unrestricted test data, we observe
about 1.6 errors for each out-of-vocabulary (OOV) word. An
obvious approach to reducing the errors due to OOV words
is to increase the size of the lexicon.

Prior to selecting a larger recognition vocabulary, the CSR
LM-1 training texts were cleaned to remove the most fre-
quent errors inherent in the texts or arising from processing
with the distributed text processing tools. The cleaning con-
sisted primarily of correcting obvious mispellings (such as
MILLLION, OFFICALS, LITTLEKNOWN), systematic bugs intro-
duced by the text processing tools, and expanding abbrevia-
tions and acronyms in a consistent manner. The texts were
also transformed to be closer to the observed American read-
ing style using a set of rules and the corresponding probabil-
ities derived from the alignment of the WSJ0/WSJ1 prompt
texts with the transcriptions of the acoustic data. Some ex-
ample rules and their probabilities are:

HUNDRED<number>!HUNDRED AND<number> (0.5)
ONE EIGHTH! AN EIGHTH (0.50)
CORPORATION! CORP. (0.29)
INCORPORATED! INC. (0.22)
ONE HUNDRED! A HUNDRED (0.19)
MILLION DOLLARS! MILLION (0.15)
BILLION DOLLARS! BILLION (0.15)

The cleaning of the training texts reduced perplexity on de-
velopment data by 5 points and resulted in a better coverage
of the 65k lexicon. This lexicon was selected by measur-
ing the perplexity and OOV rates on the development data
(Dev93-H1, Nov93-H1 and Dev94-H1) for the most frequent
65k words in different subsets of the training texts. Our aim
was to minimize the overall OOV rate, while assuring a good
balance across data sets for OOV and perplexity. The 65k
lexicon thus obtained consists of the 65,451 most common
words of a subset of this training data (years 92-94) as this
was found to provide better lexical coverage than was ob-
tained with all the data (years 87-94). In Table 2 the lexical
coverage of several lexicons are given for the 1994 H1 and H2
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Lexicon
Test set Baseline 20k 20k 40k 65k
Dev94-H1 2.7 2.2 0.8 0.4
Eval94-H1 2.5 2.0 0.8 0.4
Eval94-H2 3.1 2.6 1.3 0.7

Table 2: OOV rate (%) on the H1 and H2 test sentences for 20k,
40k, and 64k lexicons.

data. As stated in the Nov94 recognizer description, the texts
of the development data were removed from the LM training
data so as to give better estimates of the lexical coverage on
unseen data. The OOV rate on the Dev94 test data is 0.39%
which is a pretty good indicator of the 0.42% observed on the
1994 H1 test data.

RECOGNITION LEXICON

We also extended the training and recognition lexicons to
include additional frequent pronunciations found in the train-
ing data as well as alternate pronunciations which have been
seen to occur systematically. An example is the suffix “iza-
tion” which can be pronounced with a diphthong (/Y/) or a
schwa (/x/). As always, we attempt to insure and improve
the consistency of the pronunciations for similar words and
different word forms. For example, in the new lexicon all
words ending in “mann” are transcribed with the phone se-
quence /m@n/. In previous versions this was transcribed as
either /m@n/ or /mxn/ or both. We have observed that fast
speakers tend to poorly articulate (and sometimes skip com-
pletely) unstressed syllable, particularly in long words with
sequences of unstressed syllables. Although such long words
are typically well recognized, often a nearby function word is
deleted. In an attempt to reduce these kinds of errors, alter-
nate pronunciations for long words such as AUTHORIZATION,
POSITIONING, and REALISTICALLY were added to the lexicon
allowing schwa-deletion or syllabic consonants in unstressed
syllables. While these changes were not systematically eval-
uated, results with the new lexicon reduced the overall word
error reported in Table 1 to 9.0%, with a small improvement
on each individual test set. On the Dev94-H1 test data the im-
proved lexicon reduced the word error from 13.0% to 12.8%.

USE OF ADDITIONAL ACOUSTIC DATA

Last year we reported a word error reduction of about 30%
in using the combined WSJ0/WSJ1 SI-284 training (37k sen-
tences) as compared to SI-84 training (7k sentences) with a
bigram LM[2]. On this year’s H1-C1 dev data (trigram LM)
we observed only a 15% error reduction with SI-284 training.
This year we used all 85k sentences of WSJ0/WSJ1 read-
speech training data, but observed only a small improvement
of about 2% compared to SI-284 training. The reason for this
is surely due to the lack of homogeneity of the new data with
the old, as all the additional data is essentially from a small
number of long-term speakers. This is consistent with our
previous observations that for our system better performance

Conditions Senn., 8k Senn., Tel Tel.
SI-84 7.5 8.0 14.8
SI-84 + ad - 8.5 12.1
SI-284 6.3 6.3 13.1
SI-284 + ad - 7.2 10.4

Table 3: Experimental results on 1993 Spoke 6 evaluation test data
using the standard 5k lexicon and trigram LM.

is obtained with the short-term speaker data (SI-84) than with
comparable amounts of long term data (SI-12). In our 5k
system, training comparable model sets with the long-term
speakers data gives a word error 15-20% higher than that
obtained with short-term speaker training.

EXPERIMENTS WITH TELEPHONE DATA

We have experimented with the Nov93 Spoke 6 test data
which provides parallel speech data for wideband and tele-
phone quality speech. The multichannel data allows more
accurate comparisons to be made by controlling some of the
factors that affect recognition accuracy. The system was eval-
uated using the 5k vocabulary and standard trigram LM. For
the telephone speech the acoustic feature vector contains 13
MFCCs and their first and 2nd order derivatives computed on
the 3.6kHz bandwidth every 10ms.

Experimental results are given in Table 3 for SI-84 and
SI-284 training with and without telephone adaptation data,
for 3 channel conditions: Sennheiser 8kHz, Sennheiser re-
duced bandwidth, and telephone. On the Sennheiser 8kHz
data, word errors of 7.5% and 6.3% were obtained with SI-84
and SI-284 models, respectively. Using a reduced bandwidth
analysis increased the word error to 8.0% for SI-84 training,
but no error increase was observed for SI-284 training. For
the telephone speech data, the channel mismatch has been
partially compensated for by adapting the clean speech mod-
els with a relatively small amount of telephone data (only
403 sentences from Dev93-S6 for SI-84, and 7,130 sentences
(see recognizer description) for SI-284). With the adapted
SI-84 models, the word error on telephone data was reduced
by 18%, and the word error on Sennheiser data increased by
6%. For the adapted SI-284, the word error on the telephone
data was reduced by about 21%, with an increase of 14%
on the Sennheiser data. Thus, the additional training data
used to adapt the SI-284 models leads to a better match to the
telephone channel.

ARPA NOV94 EXPERIMENTAL RESULTS

A description of the 1994 Hubs 1 and 2 was given in the
introduction. The Nov94-H1 devtest data contains 316 sen-
tences from 20 speakers, each with prompt texts selected from
North American Business news. Recognition results for the
Nov94 tests are given in Table 4. For comparison, results are
also given for the Dev94-H1 data containing 310 sentences
from 20 speakers. The H1-C1 results are seen to be compara-
ble for the 2 data sets. The use of a larger vocabulary is seen
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Test data H1-C1, 20k H1-P0, 65k/40k H2-P0, 40k
Dev94 12.8 – 9.8 –
Eval94 12.7 9.8 10.3 25.1

Table 4: Results on 1994 test data (unadjudicated).

to substantially reduce the word error, mainly by reducing the
OOV rate.

To better understand the errors due to OOV words, a de-
tailed analysis of the 198 OOV words in the Dev94-H1-C1
test was carried out. On average, 1.6 word errors are gener-
ated for each OOV word. 45% of the OOV errors are single
word substitutions and 45% have 2 errors. The remaining
10% generate 3 or more errors. The use of a 40k vocabulary
reduces the OOV rate from 2.7% to 0.8%, so potentially 70%
of the 20k OOV words can be recognized. In the 40k run,
45% the 20k OOV words were correctly recognized. Some
examples of typical errors on OOV words are:

STRINGER! STRANGER

MARCH’S! MARCHES

DIVORCES! DIVORCE IS

BUSIER! BUSY YOUR

NORIYUKI! NOR YOU KEEP

In the first two examples an unknown word is replaced
by a homophone or a phonemically close word. The next
two words DIVORCES and BUSIER generate two errors the root
word and a function word to replace the suffix. In addition
there are errors due to compound words such as OVERBLOWN

being recognized as the sequence OVER BLOWN, which should
perhaps not really be considered as errors.

Large differences in word error are observed across speak-
ers. Concerning the Dev94-H1 test set the best speaker (4q9)
had an error rate of 3.4%, whereas the worst speaker (4qg)
had a word error of 42.7%. The same was observed for
the Nov94-H1 test data where the word error ranged from
1.3% for the best speaker (4t3) to 24.5% for the worst (4td).
In analyzing the errors for the worst speakers, we observed
many errors involving groups of frequent short words such as
“WHERE DO YOU GET” which was pronounced as “where’dya
get” and recognized as “WEREN’T GET” or “WERE TICKET”.

The Hub 2 test data consists of 20 speakers reading about
15 sentences each for a total of 312 sentences. The prompt
texts were taken from the same source as the H1 test, but the
exact texts and speakers are not the same. The word error for
the H2-P0 test with a 40k vocabulary is 25.1%. The error rate
is over twice that of the H1-P0 40k system. This difference
is larger than that observed in our development work with the
matched Spoke 6 data (see Table 3) and may be attributed
to differences in the channel, as well as to the speaking style
which seems to be less formal. The Hub 2 data was recorded
over long distance telephone lines in unknown environments,
and whereas the Spoke 6 data were recorded at SRI over
external lines.

SUMMARY
In the paper we have presented our 1994 ARPA NAB CSR

system and highlighted some of the more important aspects of
our development work. Experimental results were presented
for different test sets and conditions. The system is a multipass
system, where more accurate models are used in successive
passes. Thus the first pass which is used to generate the initial
word lattice must use accurate enough acoustic models so as to
not introduce lattice errrors which are evidently unrecoverable
with further processing. In practice the graph error is small
(� 2%), but poor speakers tend to have higher graph errors,
and the average graph error on the telephone data is 8%.
For a speaker-independent, open-vocabulary read-speech test,
a word error of 9.8% was obtained with a 65k vocabulary
system. Using a vocabulary of 40k words, a word error of
about 10% was obtained. With the same 40k vocabulary the
word error on telephone speech is 25.1%

The previously mentioned large difference in performance
across speakers is certainly an outstanding challenge for
speech recognition. There are 2 main reasons for high error
rates: (1) OOV words, and (2) non-standard pronounciations,
especially for poorly articulated words and high speaking
rates. The first problem can be handled through increased
lexicon sizes which have been demonstrated to improve per-
formance, despite the probable introduction of homophones.
The observed gain in word error rates is roughly 1.2 times the
reduction in OOV rate. Concerning the second problem, we
have observed that better acoustic and language models do not
significantly improve these errors. Modeling at the phono-
logical level, perhaps with particular pronunciations that are
invoked for frequent word sequences or for fast speakers,
and speaker adaptation techniques may be needed to improve
performance.
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