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ABSTRACT
In this paper we report on the LIMSI recognizer evaluated in

the ARPA 1995 North American Business (NAB) News bench-
mark test. In contrast to previous evaluations, the new Hub 3
test aims at improving basic SI, CSR performance on unlimited-
vocabulary read speech recorded under more varied acoustical condi-
tions (background environmental noise and unknown microphones).
The LIMSI recognizer is an HMM-based system with Gaussian mix-
ture. Decoding is carried out in multiple forward acoustic passes,
where more refined acoustic and languagemodels are used in succes-
sive passes and information is transmitted via word graphs. In order
to deal with the varied acoustic conditions, channel compensation
is performed iteratively, refining the noise estimates before the first
three decoding passes. The final decoding pass is carried out with
speaker-adapted models obtained via unsupervised adaptation using
the MLLR method. On the Sennheiser microphone (average SNR
29dB) a word error of 9.1% was obtained, which can be compared
to 17.5% on the secondary microphone data (average SNR 15dB)
using the same recognition system.

INTRODUCTION

In this paper we report on the LIMSI speech recognizer
used in the ARPA November 1995 evaluation on the North
American Business (NAB) News task. LIMSI has partici-
pated in annual ARPA sponsored continuous speech recogni-
tion evaluations aimed at improving basic speech recognition
technology since November 1992.

The goal of the 1995 Hub 3 task was to “improve basic
speaker-independent performance on unlimited-vocabulary
read speech under acoustical conditions that are somewhat
more varied and degraded than speech used in previous ARPA
evaluations”. Besides the problems posed by the unlimited
vocabulary dictation task on reasonably clean speech data
(such as the WSJ0/WSJ1 corpus), one of the major chal-
lenges of the Nov95 evaluation was to achieve acceptable
performance on other (ie. non close-talking) microphone
data with no prior knowledge of either the microphone type
or the background noise characteristics.

In order to encourage diversity in approaches, the test spec-
ifications provided no restrictions on the acoustic or language
model training data used except that such data must predate

August 1, 1995 (prior to the period from which the test data
was taken), and the use of “stereo” sources of training data
(with speech simultaneously recorded using both the stan-
dard close-talking microphone and other microphones) could
be used only for training environmental compensation al-
gorithms. In contrast to previous evaluations, where for the
primary system each sentence was treated independently (i.e.,
the results must be independent of the order in which the test
sentences were processed), this year article boundaries and
utterance order were known to the systems enabling the use
of unsupervised transcription-mode adaptation.

The acoustic training data used by LIMSI includes a total
of 46,146 sentences, comprised of 37,518 sentences from the
WSJ0/1 SI-284 corpus, 130 sentences/speaker from 57 long-
term and journalist speakers in WSJ0/1, and 1218 sentences
from 14 of the 17 additional WSJ0 speakers not included
in SI-84. Only the data from the close-talking Sennheiser
HMD-410 microphone was used for training.

For language modeling data, we used the newspaper texts
and read speech transcriptions predating July 30, 1995 (inclu-
sive). This data includes the August’94 release of the CSR
standard LM training texts distributed by LDC (years 88-
94), the 1994 NAB development data (excluding the devtest
data), the WSJ0/WSJ1 read speech transcriptions (85,343
sentences), and the 1994 and 1995 financial domain mate-
rial (Hub 3 LM material). The texts from the last day (31st
of July, 1995) were excluded in order to be able to extract
from it a development test set for optimization of the LM and
vocabulary list.

RECOGNIZER OVERVIEW
The LIMSI speech recognizer makes use of continuous

density HMMs with Gaussian mixture for acoustic model-
ing and n-gram statistics estimated on newspaper texts for
language modeling. Acoustic modeling uses 48 cepstral pa-
rameters derived from a Mel frequency spectrum estimated
on the 0-8kHz band every 10ms. Cepstral mean removal is
performed for each sentence. The lexicon is represented us-
ing a set of 46 phones including silence. Each phone model is
a tied-state left-to-right, CDHMM with Gaussian mixture ob-
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servation densities (typically 32 components). The triphone
contexts to be modeled are automatically selected based on
their frequencies in the training data, with backoff to right-
context, left-context, and context-independent phone mod-
els. Separate male and female models obtained with MAP
estimation[5] are used to more accurately model the speech
data. Gender identification is performed by running a phone
recognizer on all the data from the given test speaker and
selecting the gender associated with the model set giving the
highest likelihood on the entire set[9]. The word recognizer
is then run using the set of models corresponding to the iden-
tified gender. Word recognition is performed in two steps,
each with two passes.� Step 1: A word graph is generated using a bigram LM.

Due to memory constraints, this step is actually carried
out in two passes, the first with a gender-specific set of
3500 position-dependent triphonemodels and a small bi-
gram LM (cutoff 10) and the second with gender-specific
sets of 5300 position-independent context-dependent
phone models and a larger bigram LM (cutoff 1).� Step 2: The sentence is decoded using the same set of
5300 gender-specific position-independent phone mod-
els and the word graph generated by the 2nd bigram pass,
with the trigram language model. This step is also car-
ried out in 2 passes. The first pass uses a more compact
trigram LM (cutoffs 1 and 2), and the second pass uses a
larger trigram LM (cutoffs 0 and 1) with speaker-adapted
models obtained via unsupervised adaptation using the
MLLR method[10]).

Compared to the LIMSI recognizer described previously[6,
7, 8], this year’s system has the following new attributes:� State-tying is used to reduce the size of the acoustic

models in order to facilitate model adaptation (for noise
compensation and speaker adaptation) and to increase
the triphone coverage of a larger set of clean speech
models;� Noise compensation is performed for additive and con-
volutional noises (to facilitate this, the log energy has
been replaced by the first cepstral coefficient);� Gender selection is based on all the data from a given
speaker, rather than on a sentence-by-sentence basis;� Position-dependent triphones are used in the first decod-
ing pass so as to optimize the coverage of the cross word
triphones versus the number of models (given memory
limitations);� Unsupervised speaker adaptation using the MLLR
method is used to create speaker-specific acoustic mod-
els for the final decoding pass.

MODEL ADAPTATION

Since no prior knowledge of either the microphone type,
the background noise characteristics or the speaker identity is
available to the system, model adaptation has to be peformed
by using only the data in the test, i.e. in unsupervised mode.

Environmental adaptation is based on the following model
of the observed signal y given the input signal x: y = (x +n) � h, where n is the additive noise and h the convolutional
noise. Compensation is performed iteratively, where refined
estimates of n and h are obtained before each of the first
three passes of the decoding process (gender identification
and the two bigram passes). Estimation makes use of the
3s background sample provided for each speaker session,
the silence segments from the test material (not used in the
first phone recognition pass) and a Gaussian model of the
test speech (the 15 test sentences). The compensated models
are obtained by adapting models trained exclusively on the
Sennheiser data. We use a data driven approach which is
related to model combination schemes[3, 11, 4].

Parallel model combination (PMC) approximates a noisy
speech model by combining a clean speech model with a noise
model. For practical reasons, it is generally assumed that the
noise density is Gaussian and that the noisy speech model
has the same structure and number of parameters as the clean
speech model – typically a continuous density HMM with
Gaussian mixture. Various techniques have been proposed to
estimate the noisy speech models, including the log-normal
approximation approach, the numerical integration approach,
and the data driven approach[4]. The log-normal approxi-
mation is crude especially for the derivative parameters, and
all three approaches require making some approximations to
estimate non-trivial derivative parameters.

For this work we have chosen to use a data-driven approach,
where in order to avoid making all the approximations of
model combination, we directly use the original clean speech
training samples instead of generating clean speech samples
from the clean speech models. In order to be efficient, the
approach requires (like data-driven PMC) the precomputa-
tion and clipping of the Gaussian posterior probabilities for
a given training frame. These values are assumed to remain
unchanged after adding the noise frames to the clean speech
frames. In comparison to other proposed approaches, this
scheme is computationally inexpensive, but requires reading
all of the clean speech training data from disk. However, with
proper organisation and compression of the training data, we
have observed that model adaptation using this scheme can
in fact be performed faster than by using PMC with the log-
normal approximation approach. This is true even with rel-
atively large amounts of training data (on the order of 20h
of speech) since with the log-normal approximation approach
more parameters are typically used when more training data
is available.

In addition to allowing the use of any kind of derivative
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parameters, the data-driven approach also allows the use of
sentence-based cepstral mean removal, which is commonly
used to make the acoustic features robust to convolutional
noise. However, this can only be done properly if the addi-
tive noisen can be estimated from the observed noise h�n, or
equivalently, if the convolutional noise h can be estimated for
the noisy speech sample. The noise n can be estimated itera-
tively starting with the silence frames n0 of the adaptation data
(noisy test data). These silence frames are used to compute
the noisy speech cepstrum mean (using log-normal approxi-
mation PMC or data-driven PMC), which is substracted from
the cepstrum mean of adaptation data to obtain a first estimate
of h̃. The filter h̃�1 is then applied to the adaptation data to
obtain a better estimate of n. We observed that in practice
no more than 5 iterations are needed to properly estimate n
and h. (It should be noted that cepstral mean removal is not
performed when estimating h.)

Unsupervised speaker adaptation performed in the last
decoding pass is based on the ML linear regression
technique[10]. A single full regression matrix (49 � 48)
is used to transform the Gaussian means of the models for
the hypothesized gender. The use of a single regression ma-
trix makes speaker adaptation effective even with the high
recognition error rates on the low SNR data.

LANGUAGE MODELS AND LEXICON
We used 65k bigram and trigram language models trained

on 284M words of newspaper texts and the read speech tran-
scriptions (85,343 sentences) predating July 30, 1995 (inclu-
sive). Texts containing about 17k words have been extracted
from the July 31st texts to serve as development data (denoted
dev95) according to the test text selection criteria determined
by NIST (min and max lengths, manual verification for ty-
pos and readability). The LM training texts were cleaned to
remove errors inherent to the texts or arising from process-
ing with the distributed text processing tools. As done last
year, the texts were transformed to be closer to the observed
American reading style[7, 8]. The set of rules and the corre-
sponding probabilities were derived from the examination of
the WSJ1/WSJ0 acoustic data (prompts and transcriptions).
For example, while the default text processing tools convert
1=8 into one eighth, people say an eighth just as frequently,
so a rules maps 50% of the former into the latter. This year,
we also processed the most frequent acronyms in the train-
ing texts in order to treat them as whole words instead of as
sequences of independent letters. This processing resulted in
4% reduction of the test perplexity on the development texts.

The 65k word list was selected to minimize the OOV rate
on the development texts, which resulted in selecting the most
frequent words occuring in the WSJ texts from 92-94 (45M),
the dev94 texts (1.9M) the WSJ0/1 transcriptions (1.4M),
and the 1994 Hub3 texts (44M). Weighting the dev94 texts
and the transcriptions by 2 gave the lowest OOV rate on the
development data and minimized the number of new words

Test set dev95 eval95
%oov 0.6 0.8
2-g px 222.2 239.3
3-g px 126.0 137.2

Table 1: OOV rate and perplexities for the dev95 and eval95 test
texts.

Grammar Noise Speaker % Word Error
condition compens. adapt. P0 data C0 data

2-g y n 23.7 13.2
3-g y n 20.5 10.4
3-g n n - 10.4
3-g y y 17.5 9.1
3-g sw y 17.5 8.6

Table 2: Word error rates on the ARPA Nov95 test data for different
acoustic and language models: P0 and C0 denote respectively the
Sennheiser data and the secondaries microphone data.

to be added to the lexicon. The lexical coverage on the dev95
test data is 99.4%. Perplexities and OOV rate are given in
Table 1 for the dev95 texts and for the transcriptions of the
ARPA Nov95 evaluation data (eval95). The trigram LM with
backoff cutoffs of 0 and 1, contains 15.7M bigrams and 21.1M
trigrams.

The 65k vocabulary contains 65,500 words and 72,637
phone transcriptions. A pronunciation graph is associated
with each word so as to allow for alternate pronunciations.
Frequent inflected forms have been verified to provide more
systematic pronunciations.

EVALUATION RESULTS

In our development work we made use of the data from 10
speakers of the development set collected by NIST and made
available to test participants. This multi-microphone corpus
contains simultaneous recordings on 8 microphone channels
for a variety of background noise levels ranging from 47 to
61dBA[1]. However, since the prompt texts corresponding
to this data date from June 1994, the new language models
cannot be properly applied to this data.

The Nov95 test data consist of 15 sentences from each
of 20 speakers (10m/10f), with simultaneous recordings on
two different microphone channels per speaker. The primary
test condition (P0) makes use of the secondary microphone
channel, and the required contrast condition (C0) makes use
of the Sennheiser HMD-410 microphone data. The same
recognition system is to be used for both P0 and C0. The P0
data sample 3 different microphones, with all the sentences
of each speaker derived from the same microphone. The test
prompt texts are extracted from the North American Business
(NAB) news texts during the 1-31 August 1995.

Table 2 gives the word error rates obtained on the evalua-
tion data for the P0 and C0 data, with different acoustic mod-
els (speaker-adapted or not, noise compensation (yes,no,SNR
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spkrs C0 data P0 data P0/C0
SNR %werr SNR %werr werr ratio

7 28.3dB 7.4 16.3dB 11.6 1.57
7 28.8dB 7.6 15.7dB 14.2 1.87
6 29.9dB 13.1 13.2dB 28.7 2.19

Table 3: Average SNR and word error rates on the three subsets
of the ARPA Nov95 test data, each subset represents a primary and
secondary microphone pairing.

switch)) and different language models (2-gram and 3-gram).
The acoustic model sets were trained only on the clean speech
data (the Sennheiser microphone) in the WSJ0/1 corpus.
Comparing the first and second lines in the Table, we ob-
serve a relative error reduction using a trigram LM of 14%
on the P0 data and 21% on the C0 data. In the evaluation sys-
tem, channel compensation was systematically applied, even
for the clean data. The word error on the C0 data without
compensation (third line in Table 2) is unchanged.1 The final
decoding pass makes use of a larger trigram LM and speaker-
adapted models. An error reduction of 15% is obtained on
the P0 data and 13% on the C0 data. The gain is slightly
larger for the noisy data because the MLLR adaptation also
compensates for some residual mismatch not represented in
our channel model.

A contrast condition was also carried out where channel
compensation was only performed when the SNR was lower
than 25dB, allowing us to use larger sets of acoustic mod-
els for clean speech (i.e. SNR higher than 25dB). Each set
of clean-speech gender-specific models includes 7895 tied-
state context-dependent phone models obtained via MAP
estimation[5]. The test data SNR was estimated for each
speaker by computing the ratio of the average short term
RMS powers of the speech samples and noise samples on a
30ms window after preemphasis with a 0.95 coefficient. The
speech/noise decision was based on a bimodal distribution
estimated by fitting a mixture of 2 Gaussians to the log-RMS
power for all frames[2]. With this configuration a word error
of 8.6% was obtained on the C0 data (last row of Table 2).

In Table 3 the relative increase in word error for the P0
data is shown for the 3 subsets of data corresponding to dif-
ferent secondary microphones. The average SNRs (as defined
above) and word errors are given for both sets of data. While
the largest word error increase is observed for the lowest SNR
(set 3), the difference in SNR between sets 1 and 2 is small,
but the increase in word error rate is larger for set2. This
suggests that factors, such as changes in microphone charac-
teristics and positioning are not properly compensated with
our channel model.

1Based on partial runs on the development data, we estimate the word
error on the P0 data without channel compensation to be at least 50%. The
computation time to process the P0 data without noise compensation exceeds
our curiosity to have a more accurate estimate of the word error.

CONCLUSION
In this paper we have described the LIMSI recognizer eval-

uated in the Nov95 ARPA NAB benchmark test, using multi-
microphone data recorded in a variety of background noise
conditions. New features of this year’s system are channel
compensation based on a data-driven approach, state tying to
reduce the size of the acoustic models in order to facilitate
model adaptation, the use of position-dependent triphones
for the first pass so as to optimize the coverage of the cross
word triphones versus the number of models and unsupervised
speaker-adaptation using the MLLR method in a final decod-
ing pass. We also reprocessed the LM training text materials
so as to be able to model the most common acronyms as words,
instead of as sequences of independent letters. The word error
obtained on the multi-microphone P0 data was 17.5%. Envi-
ronmental adaptation based on the y = (x+ n) � h model is
demonstrated to be effective as it reduces the estimated word
error from over 50% without compensation to 17.5% with
compensation. Using the same system on the Sennheiser C0
data a word error of 9.1% was obtained. When channel com-
pensation was applied only for low SNR (less than 25dB), we
are able to use a larger sets of acoustic models for the high
SNR data, and obtain a word error of 8.6% on the C0 data.
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