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ABSTRACT
In this paper we present our development work carried out in

preparation for the March’96 speaker recognition test on the Switch-
board corpus organized by NIST. The speaker verification system
evaluated was a Gaussian mixture model. We provide experimental
results on the development test and evaluation test data, and some
experiments carried out since the evaluation comparing the GMM
with a phone-based approach. Better performance is obtained by
training on data from multiple sessions, and with different handsets.
High error rates are obtained even using a phone-based approach
both with and without the use of orthographic transcriptions of the
training data. We also describe a human perceptual test carried
out on a subset of the development data, which demonstrates the
difficulty human listeners had with this task.

INTRODUCTION

This paper describes a speaker verification system evalu-
ated in the March’96 speaker recognition test organized by
NIST [6], our development work carried out in preparation
for the test, and further experiments we have carried out
since the evaluation. This was our first participation in a
speaker recognition evaluation, and allowed us to compare
our approach to the approaches used by the 8 other sites on
a common corpus. Published results on speaker recognition
typically either make use of proprietary corpora specifically
designed for the task, or widely-used corpora, such as TIMIT,
that were not designed for such purposes and have the de-
fault that all the data for a speaker was recorded in a single
session. The Switchboard corpus, while not ideal for speaker
recognition, contains data for speakers recorded in multipe
sessions (different calls) and from different locations (differ-
ent handsets).

The usual approach taken at LIMSI to speaker recognition
makes use of a phone-based speaker model [4], where the
talker is viewed as a source of phones, modeled by a fully
connected Markov chain. Each phone is modeled by a 3-state
left-to-right HMM. Verification can be carried out in text-
dependent or text-independent mode. For text-dependent
verification, the phone sequence obtained by concatenation
of the lexical items is used to constrain the search space. For
text-independent verification, the lexical and syntactic struc-

tures can be approximated by local phonotactic constraints.
This approach provides a better model of the talker than can
be done with simpler techniques such as long term spectra,
VQ codebooks, or a simple Gaussian mixture.

We have previously applied this phone-based approach to
speaker identification[4] and speaker verification [3]. The
identification of a speaker from the signal x is performed
by computing the phone-based likelihood f(xj�) for each
speaker � in the known speaker set. The speaker identity
corresponding to the model set with the highest likelihood
is then hypothesized. This phone-based approach has been
shown to be successful not only for speaker identification
but also for gender and language identification [4]. Apply-
ing the approach to speaker verification, the likelihood ratiof(xj�)=f(x) is compared to a speaker-independent thresh-
old in order to decide acceptance or rejection [3].

CORPUS AND EXPERIMENTAL CONDITIONS

The March’96 speaker evaluation compared performance
for 3 training conditions and 3 test durations[1]. While
all 3 training conditions contained 2 minutes of speech per
speaker, they contrasted training with a single-session (two
minutes of speech taken from the same call), with single-
handset (one minute of data from each of two calls using
the same telephone), and with two-handsets (one minute of
speech from two different calls using different telephones).
The speaker recognition performance was measured for test
segments of 3s, 10s, and 30s. No transcriptions of the train-
ing data were provided, and only unsupervised training tech-
niques were permitted. Since Switchboard is a corpus of
telephone conversations, the training and test data were ac-
tually formed of concatenated segments corresponding to one
side of the conversation, with silences removed. While this
eliminated the problem of crosstalk, the resulting speech is
choppy and a bit strange without the silences that normally
appear in conversations.

The development set contained training and test data from
88 speakers (43 male/45 female). There were a total of 402
test segments for each duration. The evaluation set contained
training and test data from 19 female speakers and 21 male
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speakers. The test data included samples from same-sex
and cross-sex impostors. For each test segment duration
there were about total of 1300 speech samples from target
speakers. For the 3s and 30s durations there were about 1100
trials from impostors, roughly 50% of each sex. For the 10s
test segments there were about 500 trials from impostors of
the same sex.1

For development trials, the likelihood computation is car-
ried out in parallel for all models time synchronously, and
models for which the partial likelihood at time t is signifi-
cantly lower than the best model are discarded. Only the N
highest likelihoods are used to normalize the speaker score.
For the evaluation test, each test-sample target-model pair is
run independently. For normalization scores for all of the
88 reference speakers in the development set are obtained by
setting the pruning threshold to infinity.

SYSTEM DEVELOPMENT AND
EXPERIMENTAL RESULTS

System development was carried out using the develop-
ment training data and the 10s test segments. Although the
evaluation was for speaker verification (i.e., a yes/no de-
cision), development was carried out using the closed-set
speaker identification rate as a performance measure, as we
have observed this to be a close indicator of verification per-
formance.

In Table 1 we give the closed-set speaker identification
rates on the 10s devtest data for different training configu-
rations, for a Gaussian mixture model (GMM) and two sets
of phone models (with 46 and 12 phones). For the GMM
we compared the use of different training data (single ses-
sion s1a, single handset s1a+s2, two handset s1a+hs2),
different models (32 to 256 Gaussians, 1 or 2 mixtures),
and different analyses (MFCC and PLP). The acoustic fea-
ture set contains 12 MFCCs and their first and second order
derivatives, and the log energy and it’s first and second or-
der derivatives, computed every 10ms on a 30ms window.
Cepstral mean removal is performed on each training and
test sample. The highest speaker-identification (SID) rate is
obtained with the two-handset training condition and a sin-
gle Gaussian mixture with 128 Gaussians. No difference in
performance was observed with PLP and MFCC.

For the phone-based approach, the s1a+hs2 training con-
dition was used with an MFCC analysis. Maximum a poste-
riori (MAP) estimation is used to generate speaker-specific
models from a set of speaker-independent (SI) seed mod-
els trained on the Macrophone corpus. These seed models
provide estimates of the parameters of the prior densities
and also serve as an initial estimate for the segmental MAP
algorithm[2]. This approach allows a large number of pa-
rameters to be estimated from a small amount of speaker-

1No data from impostors (non-target speakers) was provided for system
development, therefore results on the dev data are reported using simulated
impostors.

Training condition SID rate
GMM s1a (32g) 64.2%
GMM s1a (64g) 66.9%
GMM s1a (2x32g) 62.4%
GMM s1a+s1b (64g) 72.2%
GMM s1a+s2 (64g) 79.1%
GMM s1a+hs2 (64g) 83.1%
GMM s1a+hs2 (2x64g) 71.6%
GMM s1a+hs2 (128g) 84.3%*
GMM s1a+hs2 (128g, PLP) 84.3%
GMM s1a+hs2 (256g) 83.3%
46 phones, bg, unsupervised 86.6%
12 phones, bg, unsupervised 86.8%
46 phones, bg, transcriptions 87.1%
12 phones, bg, transcriptions 88.1%

Table 1: Training conditions and SID rates on March96 10s devtest
data. �corresponds to the evaluation system

specific adaptation data. For unsupervised adaptation, the
training data is first labeled using the SI models. Since the
training data is relatively limited, performance using a re-
duced set of 12 phone models was compared to that with
the original 46 phone models. In this case the labeled seg-
ments were mapped to the 12 phone set. In Table 1 the SID
rates are slightly higher for the phone-based approach than
for the GMM. If the Switchboard orthographic transcriptions
are used (ie. supervised model adaptation), there is an ad-
ditional small improvement in SID rate. These results are
surprising as in the past we found the phone-based approach
to outperform more simple models such as Gaussian mix-
ture on the BREF corpus [5] and the VECLIM telephone
speech corpus (100 targets, 1000 impostors) [3], specifi-
cally designed to carry out speaker recognition experiments.
We attribute the inability of the phone-based approach to
outperform the GMM to the need for more accurate phone
models (better transcriptions) and/or a mismatch in training
corpora. These transcriptions have in the past been obtained
either from the orthographic transcription (not allowed in the
test conditions) or have been automatically generated using
speaker-independent phone models. The phone accuracies
obtained on the other corpora are relatively high (BREF:
87%, TIMIT: 75%), while for Switchboard the phone accu-
racy is only about 35% (50% when rescored with 12 phones).

Figure 1 shows the commonly used ROC curves and the the
detection cost function (DCF)[1] curves for the development
test data with the GMM.2 The DCF is relatively constant
over a range of decision thresholds, thus the exact value is
not crucial to be near the minimum.

Table 2 gives the speaker identification rates and DCF
values obtained on the devtest data for the GMM and the

2The DCF used for this evaluation is:DCF = 0:1 � PMissjTarget + 0:99 � PFalseAlarmjNonTarget
ICASSP-97, Lamel-Gauvain 2



0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20

Fa
ls

e 
al

ar
m

 r
at

e 
(%

)

Miss rate (%)

ROC curves on dev data

3s

10s30s

0.6%-->

<--1.5%

7.5%-->

3s segments
10s segments
30s segments

10% miss rate

0

0.01

0.02

0.03

0.04

0.05

0.1 1

D
C

F

Decision threshold

DCF vs decision threshold

0.022

0.016

10s segments
30s segments

Figure 1: ROC curves and DCF for GMM on devtest data. 88 target speakers, 402 target trials, 34,974 non-target trials (simulated
impostors).

Test SID rate(%) / DCF
Configuration 3s 10s 30s
GMM 69.2 / .041 84.3 / .022 89.1 / .016
12p,unsup 71.4 / .038 86.8 / .022 92.8 / .008
46p,unsup 73.1 / .036 86.6 / .021 91.8 / .009
12p,trans 72.1 / .038 88.1 / .021 91.8 / .008
46p,trans 72.4 / .036 87.1 / .021 92.3 / .009

Table 2: SID rates and minimum DCF on devtest data for GMM
and phone-based models.

Test SID rate(%) / DCF
Configuration 3s 10s 30s
GMM f 50.7 / .063 68.5 / .048 75.4 / .033
GMM m 50.7 / .066 66.8 / .050 73.6 / .036
GMM f+m 50.7 / .065 67.7 / .049 74.5 / .034

Table 3: SID rates and DCF for the GMM on the eval test data.

phone-based models, with and without the use of training
transcriptions. The use of transcriptions in training improves
the speaker identification rate for the 3s and 10s segments
with 12 phone models, yet the performance is slightly worse
for the 30s segments. With 46 phone models, the speaker
identification performance improves only for 10s and 30s
segments. In all cases the DCF remains the same.

At the time of the March’96 evaluation we only had com-
plete development results for the 10s test segments.3 There-
fore, in consideration of the reduced computational require-
ments, and the lack of a clear advantage for the phone-based
approach, we decided to use a GMM for the speaker recog-
nition evaluation. The training configuration was that which
had the highest speaker identification rate on the development
data, that is, a 128 component Gaussian mixture estimated

3For the 30s test data the DCF for the phone-based approach is half that
of the GMM (see Table 2. This suggests that the phone-based approach
needs longer speech segments to outperform the GMM.

on the two-handset training data. The SID rates and DCF are
given for the evaltest data in Table 3. The speaker identifica-
tion rates are substantially lower then those obtained on the
devtest data, and the DCF values are higher.

HUMAN PERFORMANCE

Errors with the GMM are relatively diffuse, which is
in contrast to our experience with the VECLIM corpus[3]
where the errors tended to be focused on a few speak-
ers. To investigate further the data, a perceptual exper-
iment was carried out to assess the ability of humans to
discriminate speakers on the Switchboard data [8]. Test
tokens were selected from twenty speakers (8 male, 12 fe-
male) who were often confused (4 to 15 times) during au-
tomatic verification. Tokens from an additional 24 speak-
ers (12 male, 12 female) with which the reference speak-
ers were confused served as impostor data. Two hundred
sample pairs were constructed from the same-speaker/same-
conversation, same-speaker/different-conversation, same-
speaker/different-handset, and different-speakers. The ref-
erence speaker samples were taken from the development
training data, and the test speaker samples were taken from
both the training data and the test data.

Eight listeners participated in the AX listening task, in-
dicating “same speaker” or “different speaker” on a 3-scale
confidence rating (+,0,–). Results are given in Table 4. Hu-
man subjects had the most difficulty identifying data samples
from the same speaker using different handsets, followed by
samples from different conversations. These factors also are
known to cause problems for automatic systems. In con-
trast to the system evaluation where a false acceptance was
considered 10 times worse than a false rejection, listeners
were not given instructions with respect to the two types of
errors. All but listener 2 had more false rejections than false
acceptations, and listeners 5 and 7 were clearly preferred to
reject if uncertain.
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Test Subjects
Conditions 1 2 3 4 5 6 7 8 Average

Diff hands (20) 50 40 45 60 80 50 75 65 58
Diff conv (20) 25 10 25 35 35 20 40 30 28
Same conv (20) 5 0 0 20 20 5 10 0 8
No info (5) 40 40 40 40 40 20 60 60 43
Diff spkr (135) 21 27 14 10 2 16 2 13 13
False rejections 28 18 25 38 45 27 43 34 32
False acceptances 21 27 14 10 2 16 2 13 13
Total error rate 24 24 18 20 16 19 16 20 19

Table 4: Human capability of classifying voices as “same” or “different” as a function of speech condition, given in percentage error. Test
subjects 1-5 are non-native English speakers, test subjects 6-8 are native English speakers. The number of test trials for each condition is
given in parentheses.

As shown in Table 5 humans had an error rate of about 40%
when they were unsure compared to under 10% when they
were confident. Listeners 5 and 7 never made an error when
they claimed to be sure. 30 of the 56 tied-pairs corresponding
to confusions with the GMM system were confused by hu-
mans, and over half of the confusions made by humans were
also made by the system. Automatic system performance on
the test tokens in common with the perceptual experiment is
on the order of 10%, which is better than the total error rate
for humans on the 200 token pairs.

Conf. rating Error rate Conf. rating Error rate
same + 8 different + 10
same 0 30 different 0 15
same – 46 different – 37

Table 5: Confidence ratings of the 8 test subjects for “same” and
“different” judgements (+ very sure, 0 sure, – not sure).

CONCLUSIONS
In this paper we have described our development work in

preparation for the March’96 Speaker Recognition evalua-
tion organized by NIST. We found that on the Switchboard
data, a phone-based approach to speaker identification did
not perform substantially better than a more simple Gaus-
sian mixture model. While this is in contrast to our previ-
ous observations on both high quality and telephone based
corpora[4, 3], the same effect was observed by other partici-
pants in the evaluation. Using the GMM approach, the best
verification results were obtained when a single mixture of
128 Gaussians was trained with data from different conver-
sations and different telephone handsets. We attributed the
inability of the phone-based approach in unsupervised mode
to outperform the GMM to the need for more accurate phone
models. We thus investigated the performance using the or-
thographic transcriptions of the 2 min training data. While
for some conditions slight improvements were obtained, the
gain was less than anticipated. This is likely to be due to
a variety of factors including the unnaturalness of the con-
catenated training segments and the resulting concatenated
transcriptions, the full word form of the transcriptions that

often do not reflect the reduced forms found in conversa-
tional speech, the use of SI seed models trained on a portion
of read sentences from the Macrophone corpus.

A perceptual test was carried out to assess speaker verifi-
cation human performance. The test subjects had difficulty
in classifying a pair of tokens from the same speaker when
the tokens came from different conversations (28% false re-
jection) or different handsets (58% false rejection). Subjects
tended to reject more easily than to accept, and native En-
glish speakers performed better than non-native. The task
was difficult for humans, and even when the subjects ex-
pressed confidence in their response they still had an error
rate of almost 10%.
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