DISCRIMINANT INITIALIZATION FOR FACTOR ANALYZED HMM TRAINING

Fabrice Lefevre* and Jean-Luc Gauvain

Spoken Language Processing Group
LIMSI-CNRS, France
{lefevre,gauvain} @limsi.fr

ABSTRACT

Factor analysis has been recently used to model the covariance
of the feature vector in speech recognition systems. Maximum
likelihood estimation of the parameters of factor analyzed HMMs
(FAHMMs) is usually done via the EM algorithm, meaning that
initial estimates of the model parameters is a key issue. In this pa-
per we report on experiments showing some evidence that the use
of a discriminative criterion to initialize the FAHMM maximum
likelihood parameter estimation can be effective. The proposed ap-
proach relies on the estimation of a discriminant linear transfor-
mation to provide initial values for the factor loading matrices, as
well as appropriate initializations for the other model parameters.
Speech recognition experiments were carried out on the Wall Street
Journal LVCSR task with a 65k vocabulary. Contrastive results
are reported with various model sizes using discriminant and non
discriminant initialization.

1. INTRODUCTION

Over the last few years there has been renewed inter-
est in improving covariance modeling in HMM-based au-
tomatic speech recognition (ASR) systems [1, 3, 10, 8]. Al-
though desirable, the use of full covariance Gaussians in-
creases dramatically the number of parameters and compli-
cates parameter estimation. Hence, Gaussians with diagonal
covariances matrices are commonly used in HMMs. Factor
analysis provides an intermediate modeling strategy which
allows full covariances with fewer parameters to be derived.
A generative model of speech based on a statistical signal
filtering scheme is used. In this model, the assumption is
made that the observations result from a linear transforma-
tion of a lower dimension hidden random vector. Factor an-
alyzed models have been recently generalized in the context
of HMM states [8]. The Factor Analyzed HMM (FAHMM)
is a linear Gaussian model based on a piecewise constant
state evolution process. The state vectors are generated by
a standard diagonal covariance Gaussian mixture HMMs.
As shown in [8], FAHMM provides a general framework
encompassing many standard covariance modeling schemes
such as shared factor analysis (SFA) [10], independent factor
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analysis (IFA) [1] or semi-tied covariance (STC) models [3].
With FAHMMs various levels of tying can be applied re-
sulting in various degrees of complexity for the statistical
components.

An optimal use of FAHMMs relies on many parameter
settings. As for conventional HMMs, the size of the obser-
vation vectors and the number of Gaussians per state need
to be chosen. In addition, for FAHMMs the size of the state
space and the number of Gaussians associated to it also have
to be decided. The model parameters are usually obtained
using an EM procedure. Good initial values of these pa-
rameters are crucial to ensure a proper convergence. The
approach evaluated in this work addresses this point through
the introduction of a discriminant criterion in the selection
of the state space dimensions. We propose to derive the state
space dimensions from an Heteroscedastic Linear Discrimi-
nant (HLDA) transformation [5].

Speech recognition experiments were carried out on the
Wall Street Journal large vocabulary continuous speech
recognition task. A comparison is made between diagonal
covariance HMMs, full covariance HMMs, and FAHMMs
with non discriminant and discriminant initialization.

2. FACTOR ANALYZED HMMS

FAHMM is a dynamic state space generalization of a
multiple component factor analysis system. The generative
model used in FAHMM for each time step ¢ and a given state
j is described by the following equations (using the same no-
tations as [8])

Oy = Cj.%'t + vy (1)
o o~ Y DN (), 2)) 2
k
v~ Y PN (sl B 3)
l

where is o; an n-dimensional observation vector, x; is a p-
dimensional state vector and v; is an n-dimensional obser-
vation noise vector. All the covariance matrices being diag-
onal, the covariance structure is captured by the matrix C}
known as the factor loading matrix. The distribution of an
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observation vector o, for a given state 7, and for a given state
space component k£ and an observation noise component [, is
obtained by integrating over the state vector x;. The result-
ing distribution is Gaussian with the following mean vector
and covariance matrix

pike = Cj %) + ,u;?) “

Yjm = @Z;?C}—FE;(Q. 6)

The conditional observation density of an FAHMM state can
be viewed as a M (®) M (*) component full covariance matrix
GMM with mean vectors and covariance matrices given by
equation (4) and (5), and the marginal likelihood of an obser-
vation given only the state j is obtained by summing over all
the two sets of Gaussians. This calculation requires inverting
M© M) full n x n covariance matrices.

A detailed presentation of the EM reestimation formulae
and general training setup for the FAHMM models can be
found in [8]. In our system, these reestimation formulae
are used with the exception that during the EM training a
constant segmentation is used (Viterbi training). To further
decrease the computational demand during model training,
the two level algorithm has been adopted (a fast inner loop
speeds up convergence).

Initialization of the model parameters is an important is-
sue when using the EM algorithm as it can improve the pos-
sibility of reaching a good solution. For FAHMMs, a sensi-
ble starting point is to convert a standard HMM (with single
Gaussian components) to an equivalent FAHMM by using
the static cepstrum features as the state space dimensions
(see [8]). This initialization assumes that the state space vec-
tor is highly correlated with the static cepstrum which may
not be correct. For this reason, we propose to use an HLDA
projection for model initialization.

3. DISCRIMINANT INITIALIZATION

Recent work in acoustic modeling [5, 3, 9] has led to the
widespread adoption of HLDA techniques in state-of-the-art
ASR systems. The objective of discriminant feature trans-
formation is to find a projected feature space of low dimen-
sionality while keeping most of the discriminant informa-
tion. HLDA is an ML method for estimating a linear projec-
tion of n-dimensional feature vectors onto a p-dimensional
sub-space. As for LDA, the resulting sub-space is supposed
to show increased separation between the considered classes,
with each class modeled by a Gaussian distribution. HLDA
generalizes LDA by removing the restriction of a common
within class covariance matrix, resulting in better feature
projections when the classes are heteroscedastic.

Practically, the linear transform A is partitioned into two
matrices: A, transforming the original feature space to the
reduced projected subspace of dimension p and A,_, to
the rejected subspace. The assumption is that the means

and variances of the rejected n-p dimensions are represented
by the corresponding dimensions of the transformed global
mean and variances in the transformed feature space. Op-
timization of this HLDA objective function can be done by
means of numerical methods (such as conjugate gradient)
or using an ML optimization procedure performed row by
row [3]. In the second approach (used in our experiments),
each row of the transform matrix is updated sequentially, us-
ing the cofactor vector of the row and the current projected
model parameters. When HLDA is applied to HMMs for
speech recognition, good results are generally observed by
using the HMM tied states as the HLDA classes, each rep-
resented by a full covariance Gaussian [9]. Several initial-
izations are possible for the projection matrix, if an identity
matrix is the simplest, we observed slightly better results us-
ing the Fisher ratio or an LDA solution (the latter is used in
the experiments reported in this work).

Common use of the HLDA technique consists in reducing
optimally a large feature space to a more discriminant one
and then to build the speech models in the new space. In this
work, the HLDA transformation is used to define a discrimi-
nant state space for the FAHMM. To do so, the state space is
defined by the useful dimensions of the HLDA projection.

By combining the HLDA sub-space definition x; = Apo;
with the FAHMM model given in equation (1), we see that
a pseudo-inverse of A, (a rectangular p x n matrix) can be
good solution to initialize the factor loading matrices. For
this work we used the Moore-Penrose matrix inverse [2],
C; = A;.

Once the factor loading matrix is defined, the state space
and observation noise Gaussian mixtures have to be initial-
ized. They are obtained directly from the HLDA transformed
space. This can be done either by training the models on the
HLDA transformed feature vectors or by transforming the
observation space parameters.

With the state vector distribution defined as in Equa-
tion (2), the state distribution parameters in the first method
(training) is obtained by EM training in the HLDA-projected
observation sub-space which gives for every state j

p = Appn (©)
S = diag(4,W;kA]) )

where pi;;, and W, are the mean vector and grand covari-
ance matrix of the original data associated to state ¢ of the
k’th Gaussian. In the second method (projection), the mean
vectors still follow Equation (6) but the covariances become

2 = diag(4,%5,A7) (8)

where 1153 and ¥, are obtained by EM training on the ob-
servation space.

Given the statistics on the original observation space, the
initial values for the observation noise parameters are ob-
tained by subtracting the “loaded” state space parameters
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(i.e. projected back to the observation space) from the obser-
vation prior parameters. A diagonal covariance prior is suf-
ficient as no error compensation is made for the off-diagonal
covariance coefficients. The observation and noise mixtures
must have the same number of Gaussians (M (0)) and the
state space distribution must be single Gaussian (M (*) = 1).
Otherwise, the association between the observation and state
space Gaussians would be undefined and complex to estab-
lish.
With the observation noise vector distribution defined as
in Equation (3), the training initialization method leads to
W = - Oty )
2 = % - diag(Cx0T) (10)

and the projected initialization modify the covariances such
as

2 = %5 - diag(Cdiag(4,5,,A7)CT) (1)

In this context, special care must be taken to correctly floor
the observation noise variances.

4. CORPUS AND SYSTEM DESCRIPTIONS

Experiments were carried out on a large vocabulary con-
tinuous speech recognition task using the Wall Street Journal
(WSJ) corpus [7] and following the ARPA 1995 test condi-
tions. The acoustic training data consist of about 100 hours
of studio quality, read speech from 355 speakers (WSJO and
WSIJ1 corpora). The acoustic analysis derives cepstral pa-
rameters from a Mel frequency spectrum estimated on the
0-8kHz band every 10ms. Cepstral mean removal is applied
to the cepstral coefficients. The 39-component acoustic fea-
ture vector consists of 12 cepstrum coefficients and the log
energy, along with their first and second derivatives.

The speech recognizer uses continuous density HMMs
with Gaussian mixture for acoustic modeling and n-gram
statistics estimated on large text corpora for language mod-
eling. Each context-dependent phone model is a tied-state
left-to-right CD-HMM with Gaussian mixture observation
densities where the tied states are obtained by means of a
decision tree. The EM training is performed with a fixed
segmentation (Viterbi training). Gender-dependent acous-
tic models are estimated using MAP adaptation of speaker-
independent seed models [4]. The system has 4k context,
position and gender-dependent phone models with 9k inde-
pendent HMM states. The recognition vocabulary contains
65k words with 77k phone transcriptions. The 3-gram and
4-gram back-off language models result from the interpola-
tion of models trained on different data sets (acoustic data
transcriptions and newspapers texts). A pronunciation graph
is associated with each word so as to allow for alternate pro-
nunciations.

M©) 1 8 16 32
n 78 624 1248 2496
WER 138 88 85 80
M©) 1 2 4 8
Full n 819 1638 3276 6552
WER 109 95 92 103

Diagonal

Table 1: Word error rates (%) and number of parameters (1)) per

state for the diagonal and full covariance HMM systems. M© s
the number of Gaussians per state.

Word recognition is performed in three steps: 1) initial
hypothesis generation, 2) word graph generation, 3) final
hypothesis generation. The initial hypotheses are used for
acoustic model adaptation using the MLLR technique [6] on
both model means and variances prior to word graph gener-
ation (MLLR is only applied to the model means when full
matrix covariances are used). A 3-gram language model is
used in the first two decoding steps. The final hypotheses
are generated with a 4-gram language model and acoustic
models adapted with the hypotheses of step 2.

5. EXPERIMENTAL RESULTS

To set a baseline, an HMM configuration with diagonal
covariance matrices was tested. All reported results are with
gender dependent models and unsupervised speaker adapta-
tion. Table 1 gives the word error rates and number of free
parameters per state (1) for 4 values of M(°) (the number
Gaussian components per state). The WER decreases mono-
tonically with the number of parameters, going down to 8%
with 32 Gaussians per state.

A constrastive experiment was carried out with full co-
variance HMMs. The results obtained with 1 to 8 Gaussian
components per state are given in the second part of the Ta-
ble 1. The lowest WER is 9.2% with 4 Gaussians per state,
i.e. about 1% above the best result with diagonal covariance
matrices. This result is consistent with other reported results
for conversational speech [11], and it justifies the search for
an intermediate modeling scheme.

Table 2 contains the word error rates for various FAHMM
setups along with the number of parameters per state. The
dimensionality of the state space is set to 13 with a 39-
dimensional observation space. For the regular initialization
case, a set of HMMs with diagonal covariance matrix Gaus-
sian mixtures is used to initialize the FAHMMs as proposed
in [8]. One factor loading matrix is used per state and is thus
shared by all its Gaussians. The two first rows correspond
to the regular initialization with 6 state space components
and from 1 to 6 observation space components. The lowest
WER of 8.8% is obtained for M(®) = 6. Although the num-
ber of free parameters per state stays low (1105) compared
to the diagonal covariance models, the decoding time is sig-
nificantly higher. This is why we cannot easily go beyond
the 66 configuration.
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M@ M@ 2 3 4 5 6
Regular intialization
6 n 715 793 871 949 1027 1105

WER 9.2 8.9 8.8 8.9 9.1 8.8
HLDA init. (projection)
WER 9.0 8.5 8.5 8.4 8.6 8.3
HLDA init. (training)
WER 9.2 8.9 8.6 8.8 8.5 8.3
n 637 715 793 871 949 1027
WER 9.5 9.4 9.0 8.7 8.7 8.3
1 n 585 663 741 819 897 975
WER 11.0 10.0 9.9 9.2 9.4 9.2

Table 2: Word error rates (%) and number of parameters per state
(n) for three FAHMM configurations (all with n = 39 and p = 13:
standard, HLDA projected, HLDA trained initializations. M ) and
M© are respectively the numbers of state space and observation
space components.

The results for the discriminant initialization of FAHMMs
are given in the next two entries, for both the projection and
training schemes. When the number of noise components
is increased, the performance improves faster with the pro-
Jection method although both schemes lead to comparable
performance for M,y = 6 (8.3%). With the discriminant
initializations, the WER is reduced by 0.5% for the best con-
figurations (M (*)=6, M (°)=6) compared to the regular ini-
tialization. With about 1k free parameters the WER is also
lower than the WER obtained with the standard diagonal co-
variance models.

The lower part of the table gives additional results for the
training initialization method using fewer state space com-
ponents (3 and 1). With M () = 3 the results are better
than with M(*) = 6 when compared at the corresponding
number of parameters. However, the performance decreases
with M(®) = 1. These results tend to show that the balance
between M (*) and M () is a sensitive key to reach good per-
formance with FAHMMs.

6. CONCLUSIONS

Factor analyzed HMMs have been applied to an LVCSR
task using about 100 hour training data from the LDC WSJ
corpus. This system use a 65k 4-gram language model and
unsupervised acoustic model adaptation. An method has
been proposed to improve the state space initialization in
FAHMM training by using a discriminant criterion (HLDA).
In a set of experiments, we observed that FAHMMSs with
the proposed training method give slightly lower results than
standard diagonal covariance HMMs (8.3% vs 8.0% WER)
but improved results compared to full covariance HMMs
(8.3% vs 9.2%) and regular FAHMM s (8.3% vs 8.8%). If the
number of free parameters per state is fixed to a around 1k,
FAHMMs with the proposed training also performed better
than diagonal covariance models.
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