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ABSTRACT

Most language recognition systems consist of a cascade of
three stages: (1) tokenizers that produce parallel phone streams,
(2) phonotactic models that score the match between each
phone stream and the phonotactic constraints in the target lan-
guage, and (3) a final stage that combines the scores from the
parallel streams appropriately [1]. This paper reports a series
of contrastive experiments to assess the impact of replacing
the second and third stages with large-margin discriminative
classifiers. In addition, it investigates how sounds that are not
represented in the tokenizers of the first stage can be approx-
imated with composite units that utilize cross-stream depen-
dencies obtained via multi-string alignments. This leads to
a discriminative framework that can potentially incorporate a
richer set of features such as prosodic and lexical cues. Ex-
periments are reported on the NIST LRE 1996 and 2003 task
and the results show that the new techniques give substantial
gains over a competitive PPRLM baseline.

1. INTRODUCTION

The most popular approach to language recognition tokenizes
speech into parallel phone sequences using 3 or 4 phone rec-
ognizers, each with separate phone sets. Subsequently, phono-
tactic constraints are evaluated on each stream using a phone-
based language model. This framework, known as parallel
phone recognition and language modeling (PPRLM), is based
on a generative model and is illustrated in Figure 1 [1]. Dur-
ing test, input speech X is recognized as belonging to a hy-
pothesized language, L∗, according to

L∗ = arg max
L

∑

H

P (X|H,L,Λ)P (H|L),

where H is the phone sequence of a stream, L is a set of lan-
guages which are assumed to be equiprobable, and Λ is a set
of phone acoustic models. Assuming that P (X|H,L,Λ) =
P (X|H, Λ), and approximating the summation with the max-
imum value, the best hypothesis can be obtained from: L∗ ≈
arg maxL P (H∗|L), where H∗ is the phone sequence asso-
ciated with the maximum value. In the PPRLM framework,
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the hypothesis is picked by combining the posteriors across a
set of parallel phone streams. In general, the phone sequence
associated with each stream could also be a lattice [2]. Note
that, the PPRLM framework is based on a generative model
and may not be optimal for a recognition task.
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Fig. 1. Parallel Phone Recognition and Language Modeling
(PPRLM) framework.

Recently, large-margin discriminative classifiers have proven
very useful in a variety of speech-related classification tasks
(e.g. emotion detection in [3]). Speaker recognition sys-
tems, which have many similarities with language recogni-
tion, have started adopting large-margin classifiers (e.g. [4]).
In language recognition, it has already been shown that neural
network classifiers perform better than summing the posterior
from the parallel streams [2, 5]. This motivates us to inves-
tigate the use of discriminative classifiers for the second and
third stages of a language recognition system. This can be
done in various ways, some of which are investigated in Sec-
tion 3. Often, the tokenizers used in the first stage of a lan-
guage recognition system represent only the phone sets of 3
or 4 languages. To represent foreign sounds, this paper devel-
ops a mechanism to build composite units using phones from
parallel streams, aligned using a multi-string alignment algo-
rithm. This leads naturally to a general framework for tack-
ling a range of related problems, as explained in Section 4.
But first, the baseline system is described.

2. BASELINE SYSTEM

All the experiments reported in this paper were performed on
the 1996 and 2003 NIST language recognition task, where
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systems are required to score each test utterance against twelve
target languages: Arabic, (American) English, Farsi, (Cana-
dian) French, German, Hindi, Japanese, Korean, Mandarin,
Spanish, Tamil, and Vietnamese. In this work, 30 sec and 10
sec test segments were chosen, leaving 3 sec segments for fu-
ture verification. The number of utterances in test sets are:
1147 (30s) and 1172 (10s) for Dev96, 1492 (30s) and 1502
(10s) for Eval96, and 1040 (30s) and 1040 (10s) for Eval03.
Performance is measured using equal error rate (EER), which
is the average of false alarms and misses when the detection
threshold is set such that the two have the least difference.
Closed set accuracy is also reported, which penalizes the sys-
tem whenever reference language is not in the target set.

Our baseline consists of a PPRLM system, which is de-
scribed in detail in [2]. Briefly, the first stage tokenizer pro-
duces three parallel streams of phones in Arabic, in English
and in Spanish. The phone sets consist of 42 Arabic phones,
27 Spanish phones and 48 English phones, and they are mod-
eled using left-to-right continuous density HMMs. The same
three tokenizers were used throughout all the experiments and
the techniques developed in this paper can easily be applied
to systems with different number/type of tokenizers.

Trigram phonotactic models for each language were esti-
mated by decoding the CallFriend corpus with the three phone
recognizers. Note that to allow fair comparison across all con-
ditions, training data was not augmented with additional data
from development set. The likelihood of a test utterance is
then calculated under each of the 12 language models giving
an output of 36 probabilities, 12 for each of the 3 recogniz-
ers. The decision score for the baseline system was obtained
by computing average posterior probabilities across the three
streams. This gave an EER as shown in the first column of
Table 1, and is comparable to other PPRLM baseline systems
reported in the literature.

3. DISCRIMINATIVE CLASSIFIERS

This section investigates a series of discriminative classifiers
for language recognition. In all the experiments, bigram fea-
tures were selected to demonstrate proof-of-concept while main-
taining competitiveness with other state-of-the-art systems.
This allowed rapid experimentation although further gains are
expected with the use of trigram features. Among discrimina-
tive classifiers, support vector machines were chosen for their
proven superior performance in a variety of tasks. The classi-
fiers were trained and tested using libsvm, a publicly available
implementation [6]. Support vector machines are inherently
binary classifiers. However, a set of such classifiers can be
configured to classify multiple classes. In our experiments, a
set of N(N-1)/2 binary classifiers were used to produce one-
vs-one decisions. The class with maximum vote was picked
as the best hypothesis. To compute the NIST evaluation met-
ric, the classifier needs to produce scores for each target lan-
guage, where higher score is interpreted as more likely tar-

LM + PP LM + SVM
Eval96-30s 4.9 3.9
Eval03-30s 6.8 5.2
Eval96-10s 9.7 9.6
Eval03-10s 12.6 12.2

Table 1. EER comparison of the two schemes for combining
language model scores: averaging the posteriors (LM + PP, or
PPRLM) and combining scores with SVM (LM + SVM).

get. In the context of support vector machines, the scores
were computed as probabilities from pair-wise constraints on
the marginals, as in [7]. Note, that the use of support vector
machines in this work differs substantially from the previous
work reported in [8], where it was used to score long-span
acoustic characteristics and no phonotactic constraints were
used.

3.1. Discriminative Score Combination

To pick the best hypothesis, previous systems have used naive
combination of the phonotactic scores such as averaging the
posterior probabilities across parallel streams. Recent work
has shown that a data-driven classifier such as a neural net-
work can pick better hypotheses [2]. Instead, this paper in-
vestigates the impact of using support vector machines. The
dev96 data set was used to train the classifier, and linear ker-
nels were found to perform better than radial or polynomial
kernels. These SVMs are easy to train and a grid search was
carried out to obtain the optimal value of C, the cost of er-
rors; and γ, the variable associated with kernels. The results
reported in Table 1 compare the same set of language model
scores combined in two different ways: averaging the pos-
teriors probabilities (LM + PP), and the SVM-based score
combination (LM + SVM). The SVM-based system, shown
in the second column of table, outperforms the baseline sys-
tem significantly and achieves a gain similar to that reported
with neural networks, although in both baseline and neural
network cases high order N-grams (trigrams) were used [2].
The gains on 30 sec segments were higher than those on 10
sec segments, again following the trend in [2].

3.2. Discriminative Evaluation of Phonotactic Constraints

Next, the phonotactic constraints were evaluated using a dis-
criminative framework, instead of a generative framework.
This system directly uses bigram features from the training
and test phone sequences as input to an SVM for each rec-
ognizer. While additional or different features could be used
in a discriminative SVM framework, we maintain strict ad-
herence to bigram for consistency and comparison. All bi-
gram features observed in training data are used as features
for the SVM. For Arabic, English, and Spanish this amounted
to 1848, 2400, and 783 features respectively.
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LM SVM-a SVM-b SVM-CU
Eval96-30s 3.9 3.6 3.7 3.4

(87.9) (90.4) (89.3) (90.5)
Eval03-30s 5.2 4.6 4.5 4.5

(83.4) (87.9) (86.9) (87.5)
Eval96-10s 9.6 9.8 9.5 9.2

(72.4) (74.2) (74.0) (75.8)
Eval03-10s 12.2 12.0 11.5 11.2

(67.2) (69.3) (68.6) (68.2)

Table 2. Comparison between generative phonotactic model
(LM) and discriminative evaluation of constraints. The quan-
tities in the bracket show closed set accuracies (%).

Radial basis kernels produced the best accuracy for 30 sec
test segments and linear kernels for the 10 sec segments on
dev96. For each duration, C and γ were tuned separately.
Matching the training data segments to the test condition was
also found to be important. Two different outputs from the
phonotactic SVM were investigated: (a) using the estimates
of posterior probabilities for the 12 languages (SVM-a), and
(b) using the margin of the test segment from the decision
boundary for N(N-1)/2 classifiers along with the number of
votes for the 12 languages (SVM-b). The scores from the
three SVMs were combined using a fourth SVM, in the same
manner as the baseline. The results are reported in the sec-
ond (SVM-a) and third columns (SVM-b) of Table 2 in terms
of both the EER and accuracy, however all the SVMs were
trained to improve accuracy.

The results show that in both cases (SVM-a & SVM-b),
the discriminative evaluation of phonotactic constraints de-
creases EER and increases closed set recognition accuracy
over the generative model substantially. SVM-b gives bet-
ter gains on shorter 10 sec segments than the SVM-a, and
additional improvements can be potentially obtained by com-
bining the two systems.

4. COMPOSITE UNITS FOR FOREIGN SOUNDS

Since it is difficult to build phone acoustic models for all tar-
get languages, certain sounds may not be adequately repre-
sented by phones in any of the parallel streams. For example,
Hindi has a rich consonant system with about 38 distinct con-
sonant phonemes, many of which can not be represented by
phone set of either English, Spanish or Arabic.

One way to overcome this limitation is to create com-
posite units that represent sounds in terms of phones across
streams. To achieve this, the streams need to be aligned. Al-
though multi-string alignment is a difficult problem, consid-
erable progress has been made in the bioinformatics litera-
ture where it is now routinely used.The Clustal W algorithm
is one such popular algorithm where the similarity between
phones can be encoded as a similarity weight matrix [9]. The
algorithm refines the alignments iteratively, weighting the se-

(e) fˆm-&NbfWm--anˆS-Wn-W-nck-NYGETˆnYJemowxd
(s) fama.n-fam--anda-Rholomoxadagesalahemouet
(a) f@m-qn-f@mcb@r$@qrn-c-nax@d@g%S@lckImcwit

Fig. 2. An example output from the Clustal W multi-string
alignment for an utterance spoken in Arabic, which is tok-
enized with phones in (e) English, (s) Spanish and (a) Arabic
phone sets. Insertions are represented by ’-’.

Plosive Fricative
Bilabial p b
Labiodental f v
Alveolar t d T D s z S Z $
Velar k g
Uvular q G

Table 3. Equivalence classes based on phonetic categories.

quences based on pair-wise alignment scores and adjusting
the gap penalty. Figure 2 illustrates a sample alignment ob-
tained from this multi-string alignment algorithm.

The similarity matrix contains weights associated with align-
ing two phones – the higher the weight, the more similar they
are. The entries of the matrix were populated using pho-
netic guidelines, as an initial effort. Taking phonetic rela-
tionships from [10] and the International Phonetic Alphabet
(IPA) charts, as follows: a weight of ten (the default identity
value in Clustal W) was assigned to identical phones, eight
to vowels of different durations, six to equivalence classes in
Table 3, four to the class of vowels, two to consonants, and
zero otherwise. In all cases of multiple matches, the higher
weights were retained. Clearly, this is a simple similarity ma-
trix and can be improved further through automatic learning.
Examination of output alignments showed that they were con-
sistent and reasonable. For example, in Figure 2, (a,@), (N,n),
(w,u,w), (T,s,S) and (d,t,t) align as expected.

Once the phones across the three streams are aligned, com-
posite units or features could be built using cross-stream de-
pendencies. Consider bigrams in each stream, say (ai−1, ai),
(ei−1, ei), (si−1, si). One set of composite features may be
obtained from the history of the previous phone in the other
stream, as in (ei−1, ai), (si−1, ai), resulting in additional streams.
For example, consider the end of the segment in Figure 2. In
addition to normal bigram features (x, d), (e, t), (i, t), there
would also be features (e, d), (i, d) which could be added to
the English stream, (x, t), (i, t) added to the Spanish stream,
and (x, t), (e, t) added to the Arabic stream. This first effort
serves only to highlight an example method for feature selec-
tion as the feature set is much larger due to alignment. This
configuration was tested and the resulting EERs are shown
in fourth column (SVM-CU) of Table 2. The results show a
consistent but small improvement across most conditions.

The bigram features extracted from the aligned stream
could also include those from each stream independently as
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Fig. 3. An alternative discriminative framework with one in-
tegrated classifier.

well as other configurations of cross-dependencies. This al-
lows an integrated framework, wherein, instead of building a
cascade of two sets of classifiers, an SVM can be trained to
optimize the complete performance of the system (Figure 3).
The computational complexity is quadratic in the number of
training examples and linear in features. This framework also
allows the use of additional features related to prosodic and
lexical cues, without worrying about estimating their com-
plete distributions, as in [11].

5. CONCLUSIONS

This paper investigates different configurations for using sup-
port vector machines in language recognition. The results on
1996 and 2003 NIST language recognition evaluation task, as
shown in Table 2, demonstrate that the discriminative classi-
fiers outlined in this paper are effective and altogether provide
a substantial gain over a baseline PPRLM system. Enhance-
ments such as higher order N-grams, lattices, system fusion
and folding the development data in training and tuning for
EER instead of accuracy can further improve performance.
The work also presents a mechanism for building composite
units or features that could approximate sounds not present in
the phone set. The features are derived using local neighbor-
hoods defined across alignments obtained from a multi-string
alignment algorithm. The integrated framework allows a vari-
ety of features, including the cepstral-space kernel developed
in [8], to be incorporated into a single support vector machine.
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