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ABSTRACT

This paper describes recent advances at LIMSI in Mandarin Chinese
speech-to-text transcription. A number of novel approaches were in-
troduced in the different system components. The acoustic models
are trained on over 1600 hours of audio data from a range of sources,
and include pitch and MLP features. N-gram and neural network lan-
guage models are trained on very large corpora, over 3 billion words
of texts; and LM adaptation was explored at different adaptation lev-
els: per show, per snippet, or per speaker cluster. Character-based
consensus decoding was found to outperform word-based consensus
decoding for Mandarin. The improved system reduces the relative
character error rate (CER) by about 10% on previous GALE devel-
opment and evaluation data sets, obtaining a CER of 9.2% on the P4
broadcast news and broadcast conversation evaluation data.

Keywords: Mandarin, speech-to-text transcription, speech
recognition, character error rate

1. INTRODUCTION

This paper describes recent advances in Mandarin speech-to-text
(STT) transcription at LIMSI, for which all system components have
been improved. Compared with the most state-of-art systems for the
same purpose [3, 14, 21, 17], a number of the novel and difference
approaches are introduced and described. Developments in prepara-
tion for the Phase 4 of the Global Autonomous Language Exploita-
tion (GALE) program addressing transcription of varied broadcast
news (BN) and conversation (BC) data are highlighted.

On the acoustic modeling side, there has been growing interest
of the use of discriminative features produced by a multi layer per-
ceptron (MLP) in speech-to-text transcription systems [5, 6]. The
MLP features developed in our system are based on a recently pro-
posed Bottle-Neck architecture [9] with long-term speech represen-
tation at the input. Pitch features (F0) are also investigated since it
is generally assumed that pitch features are important to capture the
tone differences characteristic of the language. Several pitch extrac-
tion methods were compared in order to determine which method
gives the best STT performance for our system.

Concerning language modeling, the standard n-gram LMs used
for both decoding and lattice rescoring are obtained by interpolating
up to 48 unpruned component LMs. Language model adaptation has
been explored at multiple levels, based on each show, each snippet
or each cluster. Additional Neural network LMs (NNLMs) used for
final lattice rescoring are developed to make use of continuous rep-
resentation of words, instead of the discrete space in conventional
N-gram LMs. Some changes have been made to the pronunciation
dictionary in particular to capture modifications due to the Sandhi
tone [23]. Previous work has shown the advantage of an explicit
WER minimization using an N-best list or a confusion network in-
stead of using MAP decoding [16]. Since for Mandarin tasks, the

STT results are typically measured in terms of character error rate
(CER), the use of a character confusion network (similar to [7, 11])
was investigated to replace word-based confusion network decoding.

2. LANGUAGE MODELS

This section describes updating the standard N-gram backoff LMs,
training the connectionist LMs, and experiments with LM adapta-
tion. The first step is to extract 4-grams for each individual source.
Then Kneser-Ney 4-gram LMs are estimated without any cutoff. The
interpolation coefficients for the component LMs are tuned on the
13-hour dev09 set and the final LM generated. Four Neural Net-
work LMs (NNLM) were also trained on a subset of the data, and
interpolated with the 4-gram LM.

2.1. Backoff Language Models
Since words in written Chinese are not separated by white spaces,
one either has to make use of character-based LMs or perform word
segmentation as a pre-processing step. Since the former was found
to be inferior to the latter [10, 15], the segmentation approach was
adopted. The longest-match algorithm was used with a 56k word
vocabulary (including 6k characters) to segment all of the training
texts, so there are no out-of-vocabulary words in the text after seg-
mentation. We also explored using automatic methods similar to [12]
and available resources such as the OntoNotes corpus to increase the
recognition word list, but thus far results have been inconclusive and
the original vocabulary was kept.

About 590M words of segmented texts were added to the prior
data, resulting in a pool of 48 text sources. This represents a 22%
increase over the quantity of LM training texts previously used with
a total of 3.2 billion segmented words in the full LM training data.

Language model training is performed with LIMSI STK toolkit.
This toolkit allows efficient handling of huge language language
models without any pruning or cutoff. This is an important feature
as normally different cutoffs are applied to fit an LM trained on large
data in memory. In our case, all information in the training data is
kept, even though there are over 3 billion words. The N-gram hit
rates and perplexity of the different development data sets with the
P4 4-gram LM are shown in Table 1. The transcriptions of the 13-
hour dev09 data set were used to tune the interpolation weights for
the component LMs. The perplexity of the dev09 and dev09s data
sets are reduced by about 10% with updated LM relative to the previ-
ous one. The component LMs with the largest interpolation weights
are listed in Table 2, with the top 8 sources accounting for over 70%
of the weight (4 of them estimated on transcripts).

2.2. Neural Network Language Models
In contrast to conventional N-gram LMs in which words are repre-
sented in a discrete space, Neural network LMs (NNLMs) make use



Table 1. N-gram hit-rates and perplexity on different GALE data
sets with the updated 56K 4-gram LM.

Dev set 1g(%) 2g(%) 3g(%) 4g(%) ppx
dev09s 1.6 26.0 37.7 34.7 207.8
dev08 1.3 25.2 37.9 35.6 192.5
dev07 1.3 25.5 37.9 35.4 184.7
eval07 1.5 25.8 38.2 34.5 206.6
dev07/08+eval07 1.4 25.5 38.0 35.1 194.5

Table 2. Top P4 component LMs ordered by interpolation weight.

CompLM type weight CompLM type weight
bcm transcr 0.176 bcm P4 transcr 0.070
bnm transcr 0.108 ibm sina news 0.067
ng webdata 0.086 giga cns news 0.065
giga xin news 0.081 bcm dev09train transcr 0.050

of continuous-space representation of words, which enables a bet-
ter estimation of unseen N-grams. The neural network deals with
two tasks: projection of words with history to continuous space and
calculation of LM probabilities for the given history. Both these
tasks can be performed with a NN that contains two hidden lay-
ers [19]. NNLMs have been shown to improve over the N-gram
baseline for different languages and tasks [20]. Recent evaluations
have shown that NNLMs bring improvements even when the N-gram
LM is trained on very large amounts of data without any cutoff and
pruning, and with a well-tuned STT system.

Neural network LMs are used to rescore lattices generated with
conventional N-gram LMs. In the current system four different neu-
ral networks were generated with different number of nodes in the
hidden layer. These individual NNLMs were subsequently interpo-
lated into one general NNLM for more robust probability estima-
tion. The networks vary in the size of the hidden layer (500, 450,
500, 430), and the projection size of P-dimensional continuous space
(300, 250, 200, 220). Three previous words form an input to the NN,
and the 8K most frequent words are used as a shortlist to estimate the
probabilities at the output layer as described in [19, 20].

Since it is not feasible to train a NNLM on all the available data,
the data used to train the NNLMs were selected according to the
interpolation weights assigned to the component N-gram models for
the different data sources. The subset of data includes all BC and
BN sources and the four text sources with the highest interpolation
weights. The latter text sources are quite large, and were therefore
downsampled as shown in Table 3). The application of the NNLM
leads to a perplexity reduction of about 15% on different test sets
(for example, the dev09 perplexity is reduced from 211 to 186), and
consistent reductions in CER of 0.4-0.5% are observed.

2.3. Language Model Adaptation
Following work on LM adaptation reported in [1] and [13], we ex-
perimented adapting the mixture weights of the component language

Table 3. Neural Network LM sampling parameters. The total num-
ber of words/subset are given, along with the sampling factor, and
the number of words after sampling.

Corpus #words sample factor #sampled words
bcm/bnm 19.4M 0.9 17.4M
ng 315.5M 0.006 1.89M
giga xin 367.0M 0.005 1.83M
ibm sina 279.9M 0.004 1.11M
giga cns 76.7M 0.01 0.76M

Table 4. Perplexities and CERs with different LM adaption levels
(dev08). Adaptation level PPX CER (%)

None 195.4 9.5
show-based 168.1 9.4
snippet-based 146.1 9.4
cluster-based NA 9.3

models in the STT system. For a given test set, the system’s 1-best
hypothesis obtained using the unadapted LM is used as target data
to estimate new LM component weights and the word lattices are
rescored using the new weights. Results obtained on the dev08 data
set are given in Table 4 using a system without a neural network LM.
The perplexities shown in the table are computed using the reference
transcripts. Three adaptation levels have been explored: with a set
of weights for each show, each snippet, or each speaker cluster. The
snippets are obtained manually whereas the speaker clusters are pro-
duced automatically using our audio partitioner. Since the manual
transcripts cannot be easily mapped to the automatic speaker clus-
ters, the corresponding perplexity is not reported but it is expected
to be between the show-based and the snippet-based perplexities. It
can be seen in Table 4 that the best results are obtained using cluster-
based adaptation, which results in a CER of 9.3% to be compared to
9.5% without adaptation.

3. RECOGNITION LEXICON

The recognition vocabulary of our P4 system contains 56k entries,
including (and composed of) 6482 characters. There are a total of
7462 distinct pronunciations associated with the characters for about
1.15 pronunciations/character. (Although there are more characters
in Mandarin Chinese, these are very rare in modern texts and have
not been included in the vocabulary). It is important that all possible
pronunciations are associated with each character, since word pro-
nunciations are formed by concatenation of their component charac-
ters. In order to verify this, pronunciations for all single characters
were extracted from an online source (www.weeeeb.com/w/). Ad-
ditional pronunciations were found for 20 frequent characters, and
added into dictionary for both single-character words and the multi-
character words containing those characters. canonical F0 contour
pattern. Tones in continuous speech undergo modifications due to
the Sandhi tone [23]. These were not fully represented in the dictio-
nary, so pronunciations were added according to two Sandhi rules.
First, the pronunciations of two frequent characters, ’no’ and ’one’,
depend on their context. Second, all characters with tone 3 should
change to the tone 2 when preceding a character with tone 3 [22].
These changes had a negligible (under 0.1%) effect on the CER.

4. ACOUSTIC MODELING

There has been increasing use of discriminative features produced by
a multi-layer perceptron in STT transcription systems [5, 6]. While
the MLP features have never been shown to consistently outperform
cepstral features (PLP), the performance of state-of-the-art STT sys-
tems has been improved when both types of features are used in
conjunction. In this work, the MLP features are based on the Bottle-
Neck architecture [9]. Pitch features (F0) are also investigated since
it is generally assumed that pitch features are important to capture
the tone differences characteristic of the language. Several pitch ex-
traction methods were compared in order to determine which method
gave the best STT performance for our system. This section presents
an overview of recent studies with pitch and MLP features sets. The



Table 5. Comparison of pitch methods and smoothing on 4 data sets.
Features bndev06 bcdev05 bndev07 bcdev07
PLP 11.0 25.1 8.8 26.4
PLP+F0 LIMSI 10.3 24.8 6.0 24.5
PLP+F0 CU 11.7 26.0 7.6 27.8
PLP+F0 linear 09.9 22.9 5.7 24.1

PLP analysis has been used in all LIMSI STT systems since 1996
and is described in [8]. The acoustic models (AM) were trained on
over 1600 hours of manually transcribed broadcast news and broad-
cast conversation data distributed by LDC, using both standard PLP
and concatenated MLP+PLP+F0 features. For the PLP models, a
maximum-likelihood linear transform (MLLT) is also used. The
model sets cover about 49k phone contexts, with 11.5k tied states
and 32 Gaussians per state. Silence is modeled by a single state
with 2048 Gaussians. Speaker-independent models are trained on
all available data (1422 hours, 684h female/734h male of speech
data after eliminating silence), and serve as priors for Maximum a
Posteriori (MAP) estimation of gender-specific models.

4.1. Pitch features
Different pitch detection methods and smoothing techniques were
explored. An in-house autocorrelation based method with linear in-
terpolation for unvoiced segments was compared to the ESPS pitch
extraction with both linear and CU mode interpolation methods. A
3-dimensional pitch feature vector (pitch, ∆ and ∆∆ pitch) is added
to the original PLP feature, resulting in a 42-dimension feature vec-
tor (PLP+F0). Character error rates (CER) are shown in Table 5 for
the different methods for a single decoding pass and a 4-gram lan-
guage model. The best results for all test sets were obtained using
the ESPS pitch extraction with linear interpolation. Another smooth-
ing, “Piecewise Cubic Hermite Interpolating Polynomial” was also
considered, however the performance degraded by about 0.5%.

4.2. MLP features
MLP features have been successfully used in the LIMSI STT sys-
tems since 2007. Combined with classical PLP features (and pitch
features), these probabilistic features significantly reduce the word
error rate for Mandarin and other languages. The MLP features
are generated in two steps. The first step is raw feature extraction
which constitutes the input layer to the MLP. In this work, the wLP-
TRAP (Time-warped linear predictive TRAP [4]) and the TRAP-
DCT (TD) [18] features are used. The wLP features are costly to
calculate since they use very large FFT transformations. The wLP
features contain 25 LPC coefficients in 19 frequency bands→ 19×
25 = 475 raw features. The TRAP-DCT features, a promising alter-
native to the wLP features, were shown to have similar performance
but are cheaper to compute than the wLP-TRAP [18]. The TD fea-
tures are obtained from a 19-band Bark scale spectrogram, using a 30
ms window and a 10 ms offset. A discrete cosine transform (DCT)
is applied to each band, also resulting in 475 raw features. The raw
features are the input to a 4-layer MLP with the bottle-neck archi-
tecture [5, 6, 9]. The size of the third layer (the bottleneck) is equal
to the desired number of features (39). In a second step, the raw fea-
tures are processed by the MLP and the features are not taken from
the output layer of the MLP but from the hidden bottleneck layer and
decorrelated by a PCA transformation. The STT system thus uses a
81-parameter feature vector formed by concatenating the MLP, PLP
and pitch features (MLP+PLP+F0).

The MLP network was trained using the simplified training
scheme proposed in [24] on about 928 hours of BN+BC data from

Table 6. Frame accuracies with TD and wLP raw features
Features train data #hidden nodes %trn acc %CV acc

TD 928hrs 3.5k 53.7 53.3
wLP 3.5k 56.0 55.4

Table 7. CER on dev07 data with automatic partitioning and 4-gram
LM for various feature combination schemes.

Features PLP+F0 MLPT D+ PLP MLPwLP +PLP MLPwLP +PLP+F0

CER (%) 12.3 12.3 12.0 11.4

a variety of sources. The training data are randomized and split in
three non-overlapping subsets, used in 6 training epochs with fixed
learning rates. The first 3 epochs use only 13% of data, the next 2
use 26%, the last epoch uses 52% of the data, with the remainder
used for cross-validation to monitor performance. The MLP has 256
targets, corresponding to the individual states for each phone and
one state for the additional pseudo phones (silence, breath, filler).
The frame accuracies for the MLPTD and the MLPwLP are shown
in Table 6. It can also be seen that the frame classification is higher
for the wLP features than the TD ones.

Table 7 reports CERs on the dev07 data set using a 2-pass de-
coding scheme with unsupervised acoustic model using the CMLLR
and MLLR techniques and a 4-gram word LM. The PLP+F0 models
and the MLPTD+PLP without pitch both give a CER of 12.3%. The
combination of MLPwLP and PLP performs slightly better, with an
absolute error reduction of 0.6% when pitch is included in the feature
vector (MLPwLP +PLP+F0).

4.3. Initial-Final Models

It has been recently reported that initial-final systems outperform
phone-based models on a large training corpus [2]. An initial-final
phone set was defined, combining prevocalic glides with initial con-
sonants as the initial (C or C+G), and the vowel (optionally followed
by a nasal) as the final (V or V+N). Most syllables are made of an
initial unit and a final unit, with only 45 out of 1348 syllables com-
prising of only a final unit. A total of 53 initial units and 83 final
units were selected according to the rules and classification in stan-
dard Mandarin Pinyin (www.pinyin.info/rules/initials finals.html).

Several sets of initial-final AMs have been developed, and tested
using a single decoding pass system, with pronunciation probabili-
ties. Table 8 gives CERs for different experimental configurations.
The first row reports the baseline CER (14%), obtained with gender-
dependent, phone-based AMs. The second row corresponds to
gender-independent, initial-final models covering 57k contexts with
11.5k states, with a CER of 15%. Increasing the number of model
contexts by almost a factor of 3 (to 147k) only gives a tiny reduction
of 0.1% if the number of tied states is kept the same (compare S1
and S2), with a more moderate improvement when the number of
states is increased (S3 vs S4). The CER with the S4 system is 0.2%
better than the phone baseline, and Rover of the two system outputs

Table 8. CER for Initial-Final PLP+F0 systems on dev09s data.

System Description CER Del Ins
Phone Baseline, 49k ctx, 11.5k tied state 14.0 3.6 1.1

S1 57k ctx, 11.5k tied states 15.0 3.3 1.5
S2 147k ctx 14.9 3.3 1.4
S3 + gender 13.9 3.0 1.4
S4 + 35k tied states 13.6 2.8 1.6

ROVER S4 + phone 12.9 3.0 1.5



Table 9. Comparing of word and character consensus decoding.
Dev09s MLP+PLP+F0 PLP+F0 ROVER (c0.4)
Word CN 9.9 10.7 9.9
Char CN 9.8 10.5 9.7

Table 10. CER on 5 Mandarin sets with LIMSI P3.5 and P4 systems.
System dev07 eval07ns dev08 eval08ns dev09s
P3.5 9.7 9.1 9.2 13.7 10.4
P4 9.3 8.4 8.5 12.5 9.4

gives an additional error reduction of 0.8%. The initial-final models
are still under development and have not yet been incorporated in
the evaluation system.

5. WORD VS CHARACTER CONSENSUS DECODING

Previous work has shown the advantage of an explicit WER mini-
mization using an N-best list or a confusion network instead of using
MAP decoding. For consensus decoding [16], a word lattice is con-
verted to a word confusion network and the 1-best word consensus
hypothesis is obtained by taking the word with the highest confi-
dence score in each confusion network slot. For Mandarin the STT
results are measured in term of character error rate instead of WER,
so instead of using word confusion network we investigated the use
of character confusion network (similar to [7, 11]). To generate the
character confusion network, each edge of the word lattice is simply
split into individual characters, then character consensus decoding is
performed.

Results for the MLP-based (MLP+PLP+F0), the PLP-based
and the ROVER combination systems are shown in Table 9 for the
dev09s data. We observed that the CER reduced by an absolute
0.1% for the individual systems and about 0.25% with ROVER.

6. EXPERIMENTAL RESULTS

The STT system has one decoding chain with three steps. Each
decoding step generates a word lattice with cross-word, position-
dependent, gender-independent acoustic models, followed by con-
sensus decoding with a 4-gram LM and pronunciation probabili-
ties [8]. Unsupervised acoustic model adaptation is performed for
each segment cluster using the CMLLR and MLLR techniques prior
to the next decoding pass. Different AMs are used in successive
decoding passes. The MLP+PLP+F0 model is used in the first and
third one, while the PLP+F0 based model is used in the second pass.
The interpolated connectionist 4-gram LM is used in the final pass.

Table 10 summarizes the STT results on five BN+BC Mandarin
data sets used in the GALE community, with the LIMSI P3.5 system
and the P4 systems. The P4 systems gives a relative CER reduction
of about 8% for most test sets. Table 11 gives the CER of the LIMSI
Mandarin STT component of the AGILE system on the GALE 2009
evaluation data. The overall CER is about 9%, with a very large
difference in performance on the BN and BC data subsets, the BC
CER being almost 5 times larger than that for BN.

7. SUMMARY

This paper has highlighted recent improvements in the LIMSI Man-
darin STT system which has state-of-the-art performance on var-
ied broadcast news and broadcast conversation data. The system
is trained on large audio and text corpora available in the GALE
program, and was a component system in the AGILE team partici-
pation to the GALE Phase 4 evaluation. Although the CER of well

Table 11. CER on GALE P4 eval data, overall and BN/BC subsets.
BN+BC BN BC

eval09 9.2 3.4 15.3

prepared BN speech is quite low (3.4%), there is clearly room for
improvement on more varied BC data.
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