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ABSTRACT

Enriching a pronunciation dictionary with phonological vari-
ation is a challenging task, not yet solved despite several
decades of research, in particular for speech-to-text transcrip-
tion of real world data where it is important to cover different
pronunciation variants. This paper proposes two alternative
methods, inspired by machine translation, to derive pronunci-
ation variants from an initial lexicon with limited variations.
In the first case, an n-best pronunciation list is extracted
directly from a machine translation tool, used as a grapheme-
to-phoneme (g2p) converter. The second is a novel method
based on a pivot approach, previously used for the paraphrase
extraction task, and here applied as a post-processing step
to the g2p converter. Some preliminary speech recognition
experiments with the automatically generated pronunciation
variants are reported using Quaero development data.

Index Terms— pronunciation variants, SMT, pivot para-
phrasing, g2p conversion, English

1. INTRODUCTION

Finding the pronunciation of a word from its written form
(g2p conversion), has long been a research topic and has many
applications, especially in speech synthesis and recognition,
and spelling checkers. For many applications it is important
to predict pronunciation of new terms or to add alternative
pronunciations for existing ones.This is a difficult problem
since the pronunciation of a given word depends on a num-
ber of diverse factors such as the linguistic origin of the word
and the speaker, the speaker’s education level, and the conver-
sational context. It is widely acknowledged that the pronun-
ciation dictionary contributes to the overall performance of
automatic speech recognition (ASR) and synthesis systems.

Historically a substantial amount of manual effort is in-
volved in the creation of a pronunciation lexicon. However,
with the large vocabularies used in automatic systems, there
has been a move towards data-driven approaches, based on
the idea that given enough examples it should be possible to
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predict the pronunciation of an unseen word simply by anal-
ogy. Some proposed machine learning techniques are neu-
ral networks [1], decision trees [2] and hidden Markov mod-
els [3]. Joint-sequence models [4], [5] were shown to achieve
better performance by pairing letter substrings with phoneme
substrings. Recently, g2p conversion has been seen as a statis-
tical machine translation (SMT) problem. Moses, a publicly
available phrase-based SMT toolkit [6], was used for g2p con-
version and tested in French [7] and Italian [8] ASR.

This work aims to generate pronunciation variants in an
automatic and language independent way, even when no vari-
ants are included in the lexical resources available for train-
ing. Most available dictionaries contain no or few variants, or
their variants are not consistent or suitable for training. The
proposed methods are tested for English, a language known
to be difficult for pronunciation generation. In [9], Moses
was used as a phoneme-to-phoneme (p2p) converter to gen-
erate variants from baseform pronunciations when variants
are included in the training set. However, when a single-
pronunciation dictionary is used for training, it fails. In this
latter case a novel approach, originally used for the para-
phrase extraction task, was proposed to use also graphemic in-
formation to generate variants. This novel approach is based
on the principle that sequences of modified phonemes can
be identified using a graphemic sequence as a pivot. In [9],
this pivot-based method was used to generate variants given a
canonical pronunciation of a word. Here the method is used
as a post-processing step to a g2p converter, enabling the gen-
eration of pronunciations with variants for out-of-vocabulary
words (OOVs). It is independent of the origin of the input pro-
nunciations, focusing on local variations, which are the most
common pronunciation variants. The Moses toolkit is used
as a g2p converter in this work, which provides an alternative
method to derive variants via n-best lists.

2. METHODOLOGY

2.1. Generation of n-best lists by Moses
When Moses is used for g2p conversion, a pronunciation
dictionary is used in the place of an aligned bilingual text
corpora. The orthographic transcription is considered as the
source language and the pronunciation as the target language.



This method has the desired properties of a g2p system: To
predict a phoneme from a grapheme, it takes into account
the local context of the input word and of the output pro-
nunciation from a phrase-based model and allows sub-strings
(phrases) of graphemes to generate phonemes. A 5-gram
phoneme language model (LM), estimated on the pronunci-
ations in the training set using the SRI toolkit [10], is used
to provide additional phonemic information and corresponds
to the target LM in SMT. Finally, the combination of all
components is fully optimized with a minimum error training
step (tuning) on a development set. The tuning strategy used
was the standard Moses training framework based on the
maximization of the BLEU score.

Moses can output an n-best translation list, a ranked list
of translations of a source string. The 1-, 2-, 5- or 10-best
translations (i.e. pronunciation variants) per word are kept.

2.2. Pivot paraphrasing approach
The pivot method applies the work of [11] to the generation
of pronunciation variants. Paraphrases are alternative ways
of conveying the same information. The analogy with pro-
nunciation variants of a word is easily seen: the different
pronunciations being alternate phonemic expressions of the
same orthographic information. The paraphrases are phone-
mic phrases of the phrase table generated by Moses from the
word-pronunciation training pairs. For each phonemic phrase
in the translation table, we find all corresponding graphemic
phrases and then look back to find what other phonemic
phrases are associated with the set of graphemic ones. These
phonemic phrases are plausible paraphrases.

In the following, f is a graphemic phrase and e1 and e2

phonemic phrases. The paraphrase probability p(e2 | e1) is
assigned in terms of the translation phrase table probabilities
φ(f | e1) and φ(e2 | f) estimated based on the counts of
the aligned graphemic-phonemic phrases. Since e1 can be
translated as multiple graphemic phrases, we sum over f for
all the graphemic entries of the phrase translation table:

ê2 = arg max
e2 6=e1

p(e2 | e1) (1)

= arg max
e2 6=e1

∑

f

φ(f | e1)φ(e2 | f) (2)

An example of a paraphrase pattern in the dictionary is:
discounted diskWntxd dIskWnxd
discountenance dIskWntNxns dIskWnNxns

The alternative pronunciations differ only in the part that
can be realized as either nt or n, while the rest remains the
same. The nt and n form a paraphrased pair. The pivot
method focuses on local modifications observed between
variants of a word and is a lot faster than the n-best list gen-
eration by Moses-g2p. All occurrences of these paraphrased
patterns are substituted in the input pronunciations (the 1-best
pronunciations of Moses-g2p).

At this point, different types of pruning are applied on the
generated variants. First, the candidate variants are reranked

based on additional phonemic contextual information ex-
pressed by 5-gram phoneme LM already used by Moses for
the g2p conversion. The SRI toolkit served for the reranking.
Then, pruning is done based on the length of the paraphrases
substituted in the pronunciations. It was experimentally found
that the quality of the generated variants improves when only
3- and 4-grams paraphrases are substituted because more
context is taken into account throughout the procedure and
some confusions are avoided.

The Levenshtein Distance between each pronunciation
and its generated variants was then calculated. This measure
should not exceed a threshold since the different pronuncia-
tions of a word are usually phonemically very close. Pruning
with thresholds of 3 (LD3) and 2 (LD2), meaning that all
the variants with edit distances greater than 3 and 2 respec-
tively are pruned, were tried. Finally, the 1-, 4- and 9-best
pronunciation variants per input pronunciation were kept and
merged with the input pronunciations in order to have 2-, 5-
and 10-best pronunciations generated and so as to be able to
compare these with the n-best lists from Moses g2p.

3. EXPERIMENTAL SETUP

The LIMSI American English pronunciation dictionary, cre-
ated with extensive manual supervision, serves as basis of
this work. The pronunciations are represented using a set
of 45 phonemes [12]. 18% of the words are associated with
multiple pronunciations. These mainly correspond to well-
known phonemic alternatives (for example the pronunciation
of the ending “ization”), and to different parts of speech (noun
or verb). The dictionary contains a mix of common words,
acronyms and proper names, the last two categories being dif-
ficult cases for g2p converters.

Only the canonical pronunciation of each word was used
to train the g2p converter. Since canonical pronunciations are
not explicitly indicated in the lexicon, the longest one is taken
as the canonical form. The dictionary was randomly split into
a training, a development (dev) and a test set. There are 160k
distinct entries (word-pronunciation pairs) in the training set,
9k distinct entries in the dev set and 16k entries (words with
one or multiple pronunciations) in the test set.

4. EVALUATION

Recall and phone error rate (PER) are used to evaluate the
predictions of one or multiple pronunciations. Word xi of the
test set (i=1..w) has j distinct pronunciations yij (yi is a set
with elements yij , j = 1..di). Our systems can generate one
or more pronunciations f(xi) (f(xi) is also a set). Recall
(R) is conventionally defined and calculated on all references
(canonical pronunciations and variants) to evaluate the g2p
conversion. It is also computed only on the variants in order to
specifically evaluate their correctness. 1 The PER is measured

1Macro-recall, defined in [9], gives more weight to examples with multi-
ple variants. Macro-recall gave similar results to the conventional recall.



using the Levenshtein Distance (LD) between the generated
pronunciations and the reference pronunciations:

PERn−best =
∑w

i=1 min LD(yi, f(xi))∑w
i=1 |yi| (3)

PER1−best =
∑w

i=1 min LD(yi, f(xi))∑w
i=1 |yim| (4)

where yim is the pronunciation of the word xi with a mini-
mum LD.

The Moses-g2p converter (M-g2p) and the pivot para-
phrasing method (P) were tested with single-pronunciation
training. The PER on the test set is presented in Table 1 for
Moses-g2p and Pivot with LD2 pruning (P LD2). The PER is
about 6% for the 1-best Moses-g2p pronunciation, and 1.26%
if the 10-best pronunciations are considered. The string error
rate (SER) is 25%. Since the 1-best pronunciations generated
by Moses-g2p are used as input to the pivot post-processing,
the corresponding entry in the table is empty for Pivot.

Table 2 gives recall results compared to all references
(top) and only variants (bottom) with both methods. Preci-
sion was also calculated, but only recall is presented because
we consider it more important to cover possible pronunci-
ations than to have too many, since other methods can be
applied to reduce the overgeneration (alignment with audio,
manual selection, use of pronunciation probabilities, etc).
The best value that both precision and recall can obtain is 1.
In terms of recall measured on all references (R-all ref), it can
be seen that Moses-g2p outperforms the pivot-based method
(with and without LD pruning). The best results is a recall
of 0.91 when using the 10-best pronunciations generated by
Moses g2p.

It should be pointed out that the all reference measures
(recall and PER) favor the Moses-based approach because the
pivot-based approach aims at generating variants. This is why
we also evaluated the recall only on variants as given in the
lower part of Table 2. For the variants-only case (R-variants)
it can be seen in that pivot with LD2 or LD3 pruning outper-
forms Moses-g2p. It manages to generate more correct vari-
ants when no variants are given in the training set. Pivot takes
directly the variation patterns from the phrase table of Moses
avoiding the overfitting effects of the EM algorithm used by
Moses for the construction of a generative model. Moreover,
to reduce the overall complexity of decoding, the search space
of Moses is typically pruned using simple heuristics and, as
a consequence, the best hypothesis returned by the decoder is
not always the one with the highest score. We plan to experi-
mentally verify this theoretical error analysis in future work.

Table 1. PER on all references (canonical pron+variants) for
Moses-g2p (M-g2p) and Pivot (P)

Method Measure 1-best 2-best 5-best 10-best
M-g2p PER (%) 6.22 3.99 1.98 1.26
P LD2 PER (%) - 6.17 5.16 3.52

Table 2. Recall on all references (canonical pron+variants)
and only on variants for Moses-g2p (M-g2p) and Pivot (P)

Method Measure 1-best 2-best 5-best 10-best
M-g2p R-all ref 0.68 0.79 0.88 0.91
P R-all ref - 0.72 0.78 0.82
P LD3 R-all ref - 0.72 0.78 0.82
P LD2 R-all ref - 0.72 0.78 0.83
M-g2p R-variants 0.10 0.25 0.44 0.55
P R-variants - 0.19 0.32 0.44
P LD3 R-variants - 0.35 0.49 0.60
P LD2 R-variants - 0.36 0.50 0.61

Last but not not least, the reference dictionary is mostly
manually constructed and certainly incomplete with respect
to coverage of pronunciation variants particularly for uncom-
mon words. This means that some of the generated variants
are likely to be correct (or plausible) even if they are not in
the references used in this evaluation.

5. SPEECH RECOGNITION EXPERIMENTS

The pronunciations generated by the Moses-g2p were further
tested in two preliminary speech recognition experiments.
In the first, automatically generated variants are added to a
single-pronunciation dictionary, and in the second we simu-
late adding pronunciations for OOV words. To our knowledge
it is the first time they are tested in a state-of-the-art ASR for
English broadcast data. The speech transcription system uses
the same basic modeling and decoding strategy as in the
LIMSI English broadcast news system [13].

The acoustic models (AMs) are gender-dependent, speaker-
adapted, and Maximum Likelihood trained on about 500
hours of audio data. They cover about 30k phone contexts
with 11600 tied states. N-gram LMs were trained on a corpus
of 1.2 billion words of texts from various LDC corpora (En-
glish Gigaword, BN transcriptions, commercial transcripts),
news articles downloaded from the web, and assorted audio
transcriptions. The recognition word list contains 78k words,
selected by interpolation of unigram LMs trained on different
text subsets as to minimize the OOV rate on a set of indepen-
dent development texts. Word recognition was performed in a
single real-time decoding pass, generating a word lattice with
cross-word, position-dependent AMs, followed by consensus
decoding [14] with a 4-gram LM. Unsupervised AM adapta-
tion is performed for each segment cluster using the CMLLR
and MLLR techniques prior to decoding.

The Quaero 2010 development data were used in these
experiments. This 3.5 hour data set contains 9 audio files
recorded in May 2010, covering a range of styles, from broad-
cast news (BN) to talk shows. Roughly 50% of the data can be
classed as BN and 50% broadcast conversation (BC). These
data are considerably more difficult than pure BN data. The
overall word error rate (WER) with the original recognition
dictionary is 30%, but the individual shows vary from 20% to
over 40%. These are competitive WERs on these data.

In Table 3, the n-best pronunciations (1-, 2- and 5-best)



Table 3. WER(%) adding Moses nbest-lists (M1, M2, M5) to
single pronunciation baselines.

System Baseline M1 M2 M5
Baseline longest 41.6 38.2 38.4 40.8
Baseline most frequent 32.9 32.0 33.4 37.3

Table 4. WER(%) generating prons for OOVs using l2s and
Moses nbest-lists (M1, M2, M5, M10).

l2s M1 M2 M5 M10
37.8 31.3 31.2 32.0 33.2

generated by the Moses-based system under the single-
pronunciation training condition, are added to the canonical
pronunciation of the original recognition dictionary (Baseline
longest). Then, the same pronunciations are added to the most
frequent one (Baseline most frequent). The results show that
using only the longest pronunciation results in a large increase
in WER. Adding pronunciations improves over the baseline
longest dictionary, up until the 5-best pronunciations. The
most frequent pronunciation baseline dictionary has a WER
closer to the baseline of the original multiple pronunciation
dictionary. In this case adding one pronunciation improves
the performance of the ASR system, but adding more pro-
nunciations degrades it. We expect that using pronunciation
probabilities can reduce this degradation.

We then simulated the generation of pronunciations for
OOVs. Starting with the full dictionary with variants, the
pronunciations for the 20% least frequent words in the test
data (about 7% of dictionary) were replaced with automati-
cally generated pronunciations using the Moses g2p system.
For comparison, the g2p system l2s [15], obtained from the
Cambridge University ftp server and slightly modified to use
the phone set of the LIMSI ASR system, was used to gen-
erate pronunciations for the missing words. [12] reports that
this system provided consistent pronunciations and gave sat-
isfactory recognition results. The results in Table 4 show that
the dictionary with Moses-based pronunciations for the OOVs
outperforms those of the l2s system, even with 10 pronuncia-
tions, even though these many alternatives can be expected to
cause confusions. We add up to ten pronunciations because in
Table 1 it is shown that there is a significant improvement to
the PER passing from 5-best to 10-best generated pronunci-
ations (36% relative) and thus in the quality of the generated
pronunciations.

Nevertheless, in neither case was the performance of the
original multiple pronunciation dictionary achieved. This dic-
tionary is a difficult baseline because it is mostly manually
constructed and well-suited to the needs of an ASR system.
However, we expect that it is possible to obtain additional
gains if probabilities are added to the generated pronuncia-
tion variants to moderate confusability.

6. CONCLUSION AND DISCUSSION

This paper has reported on generating pronunciation variants
by a proposed novel pivot-based method and compared this
approach with directly taking the n-best lists from a Moses

SMT system. The n-best lists of Moses have a higher recall
when a comparison is made to all reference pronunciations in
the test set. However, the pivot-based method generates more
correct variants. This is an advantage of the pivot method
that could be useful in certain cases, for example to generate
variants from the output of a rule-based g2p system which,
if originally developed for speech synthesis, may not model
pronunciation variants or to enrich a dictionary with limited
pronunciation variants.

The pronunciations generated by Moses were also used to
carry out preliminary tests in a state-of-the-art ASR system.
These experiments show that the added pronunciations are of
good quality even though trained under limited variation con-
ditions and can improve the single pronunciation baselines.
Our point in this paper is not, however, to present an ASR
system and focus on the improvement of its performance, but
to propose data-based approaches for variant generation that
better model variability in spoken language. In the future,
we plan to further evaluate the pronunciations generated by
pivot by measuring their influence in ASR systems for dif-
ferent data sets (broadcast news, conversational speech). A
continuation of the present work will be to find a way to add
probabilities to the generated pronunciations to avoid confu-
sion that may arise from adding a large number of variants.
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