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ABSTRACT

We study the use of Bayesian learning for the estimation of
the parameters of a multivariate mixture Gaussian density.
For speech recognition algorithms based on the continuous
density hidden Markov model (CDHMM) framework,
Bayesian leaming serves as a unified approach for the
following four applications, namely parameter smoothing,
speaker adaptation (SA), speaker group modeling, and
corrective training (CT). In our approach, we use Bayesian
leaming techniques to incorporate prior knowledge into the
CDHMM training process in the form of prior densities of the
HMM parameters. The theoretical basis for this procedure is
presented. All the four applications have been evaluated.
Experimental results on the TI connected digit task and the
Naval Resource Management (RM) task are provided to show
the effectiveness of Bayesian adaptation of CDHMM.

INTRODUCTION

When training sub-word units for continuous speech
recognition using probabilistic modeling techniques, we are
faced with the general problem of sparse training data. This
limits the effectiveness of conventional maximum likelihood
(ML) approaches. The sparse training data problem can not
always be solved by the acquisition of more training data. For
example, in the case of rapid adaptation to new speakers or
environments, the amount of data available for adaptation is
usually much less than what is needed to achieve good
performance for speaker-dependent applications.

Our solution to the problem is to use Bayesian learning to
incorporate prior knowledge into the HMM training process.
This information is characterized in terms of prior densities of
the HMM parameters. Such an approach was shown to be
effective for speaker adaptation in isolated word recognition of
a 39-word, English alpha-digit vocabulary where adaptation
involved only the parameters of a diagonal covariance
Gaussian state observation density of whole-word HMM's [1].
In this paper, Bayesian adaptation is extended to handle
parameters of mixture Gaussian densities for sub-word
HMM’s and applied to various recognition problems.

t Jean-Luc Gauvain is with the Speech Communication Group at
LIMSI/CNRS, Orsay, France. This study was completed while he was
visiting Bell Labs. in 1990-1991.
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MAP ESTIMATE OF CDHMM

The difference between maximum likelihood estimation
(MLE) and Bayesian leamning lies in the assumption of an
appropriate prior distribution for the parameters to be
estimated. Given a sequence of »n  observations
X ={x, - ,x) with a density P(X|6), we are interested
in estimating the parameter vector 6. Let P(8) be the prior
density, one way to estimate O is to assume that 0 is a random
vector and obtain the maximum a posteriori (MAP) estimate
which corresponds to the mode of the posterior density
P@®|X), ie.

Opap = a.rg:gxax P® | X) = arggnax PX | PO . (1)

On the other hand, if 8 is assumed to be a fixed but unknown
parameter vector, then there is no prior knowledge about 6.
This is equivalent to assuming a non-informative prior, i.e.
P (8) = constant. Eq. (1) is now the familiar ML formulation.

MAP of Gaussian mixture densities

MAP formulation for parameters of multivariate Gaussian
densities is well-known [2]. MAP estimation of the
parameters of the Gaussian mixture density has also been
formulated [3-4]. To simplify the notation, we assume here a
mixture of univariate normal densities:

K
P(x|8)=F o Nx|myry @

k=1

where 8 = (@, m;,7;)5.;. There exists no sufficient statistic of
fixed dimension for 8 and hence no conjugate density. We
propose to use a prior joint density which is the product of a
Dirichlet density and normal-gamma densities:

X T B
P(©) o< TT 3 ry ?expl——p—(met* ™ expl—Bire) - (3)
k=1

The choice of such a prior density can be justified by the fact
that the Dirichlet density is the conjugate density of the
multinomial density (for the mixture weights) and the normal-
gamma density is the conjugate density of the nommal
distribution (for the mean and the precision parameters). It
can be shown [3] that the classical EM algorithm [5] can be
used to find the MAP estimate. Define the normalized weight

QN | mery)

“E TPl

the MAP estimate for 0 is solved by the following equations:
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The above iterative re-estimation equation can be shown to
converge to a solution that locally maximizes P(9| X)[3]. L
can also be shown that when more adaptation data are used
(n—), the MAP estimate converges to the MLE
asymptotically [3]. By using a non-informative prior density
(i.e. an improper distribution with A,=0, 1,=0, o,=1/2, and
Be=0) the EM re-estimation formulas to compute the MLE of
the mixture parameters can be recognized.

)]

©)

)

MAP estimates for HMM

The above procedure can be applied to estimate the parameters
of an HMM state given a set of n observations
X ={x,...,x,} assumed to be independently drawn from
the mixture Gaussian state distribution. Following the scheme
of the segmental k-means algorithm to estimate the parameters
of an HMM, first the Viterbi algorithm is used to segment the
training data X into sets of observations associated with each
HMM state and then the MAP estimate procedure is applied to
each state. This segmental MAP algorithm was originally
proposed in [1] and was recently extended [3-4] to handle
mixture Gaussian state densities.

A Bayesian version of the Baum-Welch algorithm can also be
designed [3]. As in the case of MLE, one simply replaces c;
in eq. (4) by ¢;; in the re-estimation formulas and applies the
summations over all the observations for each state 5

@ N(x; | Mgyt ja)

P(x; 6, ®

Ci =Yij
where 8, = (@, m;,r;)E, is the mixture density parameter
vector for state s;, y;; is the probability of being in state s; at
time #, given that the model generates X. For the segmental
MAP approach y;; is simply equal to 0 or 1 [3].

Prior parameter estimation

In all applications of Bayesian leamning, the prior density
parameters were estimated along with the estimation of the SI
model parameters using the segmental k-means algorithm. In
our formulation, more parameters are needed for the prior
density than for the mixture density itself. It is therefore of
interest to use tied parameters for the prior densities.
Information about the variability to be modeled with the prior
densities was associated with each frame of the SI training
data. This information was simply represented by a class
number which can be the speaker ID, the speaker sex or the
phonetic context. The HMM parameters for each class C,
given the mixture component were then computed. For the
experiments reported in this paper, the prior density
parameters were estimated as follows:
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O = (T+1)/2 ©)
ajl' = ‘tj,‘/Zrﬂ. (10)
R =mj (11)
K
}»j,, =0, YT (12)
k=1
P+Y cju

(13)

Ty =
jk 11

Z,[Cju(ijl— jk)’(zkmjkr ) Ojer—m)]
where ®je, mj and rj are the SI HMM parameters for each
state 5; and each mixture component k in state s;, and m; and
r; are vectors of dimension p. The class mean vector y,, is
jk P Ykt
equal to z‘_c,l-,,,x,/cj » where ¢ is defined as c=c;; if
x,€C; and ¢;;,,=0 otherwise, and Cx=2 Coje

EXPERIMENTAL SETUP

All the experiments presented in this paper used various sets
of context-independent (CI) and context-dependent (CD)
phone models. Each model is a left-to-right HMM with
Gaussian mixture state observation densities. Diagonal
covariance matrices are used and it is assumed that the
transition probabilities are fixed and known [6]. As described
in Lee et al [7], a 38-dimensional feature vector composed of
12 LPC-derived cepstrum coefficients, 12 delta cepstrum
coefficients, the delta log energy, 12 delta-delta cepstrum
coefficients, and the delta-delta log energy is used.

For RM evaluation, results are reported using the standard
word-pair grammar with a perplexity of about 60. For digit
recognition, we use the TI/NIST connect digit database. Both
databases were down-sampled to telephone bandwidth. All
four recognition applications based on Bayesian leaming have
been tested and are discussed in details in the following.

MODEL SMOOTHING AND ADAPTATION

CD model smoothing was evaluated in {4] and it was found
that the word error rates was reduced by 10% compared with
the results obtained without model smoothing. Speaker
adaptation was tested on the JUN90 data with 1 minute and 2
minutes of speaker-specific adaptation data. A 16% and 31%
reduction in word error were obtained compared to the SI
results [4]. Sex-dependent modeling can be also achieved
similar to the speaker adaptation case by replacing the speaker
labels with the gender labels for each training sentence. On
the FEB91 test, using Bayesian leamning for HMM parameter
smoothing and a combined male/female (M/F) modeling, a
21% word error reduction compared to the baseline system
results was obtained [4].

To further investigate the correlation observed between
speaker sex and performance, the experiment has been carried
out on the FEB91-SD test material which includes data from 7
male and 5 female speakers. For studying issues related to
both SD and SA training, a set of 47 CI phone models was
used. Two, five and thirty minutes of the SD training data
were used for training and adaptation. The SI, SA, SD and
M/F results (in word error rate) are summarized in Table 1.
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Training data || Omin [ 2 min | Smin | 30 min
SD — 315 12.1 35
SA (SI) 13.9 8.7 6.9 34
SA (M/EF) 11.5 7.5 6.0 35

Table 1: Summary of SIL, SA, SD and M/F results (FEB91-SD)

It is noted that the SD word error rates was 31.5% for 2
minutes of training data. The word emor rates for the SI
model was 13.9% which is comparable with 5 minutes of SD
training. The performance of SA model in general is better
than the SD model when an equal amount of training (or
adaptation) data were used. When all the training data are
used (600 sentences or roughly 30 minutes), the SA and SD
results were comparable which is consistent with the Bayesian
formulation in equations (5)-(7) that the MAP estimate
converges to the MLE asymptotically. Compared to the SI
results, the word error reduction was 37% with two minutes of
adaptation data, comparable to the improvement observed on
the JUN9O data with CD unit models. Similar to the findings
in our previous experiments [4], the improvement is larger for
the female speakers (51%) than for the male speakers (22%).

Speaker adaptation can also be performed on sex-dependent
models. Starting from the combined M/F model (0 minute
training), the performance improved as more speaker-specific
data were used for adaptation. When compared with the
SA(SI) results shown in Table 1, it is noted that speaker
adaptation is always more effective when initializing with
sex-dependent seed models. The best result on the FEB%91-SD
test, using 47 CI unit models, was 96.6% word accuracy when
all 600 utterances were used for adaptation.

CORRECTIVE TRAINING

Bayesian learning provides a scheme for model adaptation
which can also be used for corrective training. In order to do
so, the state segmentation step of the segmental MAP
algorithm was modified to obtain not only the frame/state
association for the sentence model states but also for the states
corresponding to the model of all the possible sentences
(general model). In the re-estimation formulas, the values c;;
for each state s; are evaluated using equation (8), such that v,
is equal to 1 in the sentence model and to -1 in the general
model. While convergence is not guaranteed, in practice it was
found that by using large values for 7;(=200), the number of
training sentence errors decreased after each iteration until
convergence. It should be noted that if the Viterbi alignment is
replaced by the Baum-Welch algorithm we obtain a corrective
training algorithm for COHMM’s very similar to the recently
proposed corrective MMIE training algorithm [8].

Corrective training was evaluated on both the TI/NIST SI
connected digit task and the RM task. Only the Gaussian
mean vectors and the mixture weights were corrected. For the
connected digit task a set of 21 phonetic HMMs were trained
on the 8565 digit strings. Results on the 8578 test strings are
given in Tables 2 and 3. Both string accuracy and string error
count are listed for comparison. The CT-16 results in Table 2
were obtained with 8 iterations of corrective training while the
CT-32 results in Table 3 were based on only 3 iterations of

adaptation. Iteration O represents the results obtained with
MLE without using corrective training. Here one full iteration
of corrective training is implemented as one recognition run
which produces a set of "new” fraining strings (i.e. errors
andfor barely correct strings) followed by ten iterations of
Bayesian adaptation using the data of these strings. String
error rates of 1.5% and 1.3% were obtained with 16 and 32
mixture components per state respectively. These represent
25% and 15% word error reductions compared to the cases
without corrective training (MLE-16 and MLE-32).

Iteration || Training Accuracy Testing Accuracy
Number || (String Error Count) | (String Error Count)
0 98.4 (134) 98.0 (168)
1 99.0 (82) 98.4 (139)
2 99.3 (60) 98.4 (138)
4 99.5 (14) 98.5 (129)
8 99.8 (18) 98.6 (122)

Table 2: Corrective training results on the TI-digit task
(21 CI models with 16 mixture components per state)

Iteration || Training Accuracy Testing Accuracy
Number || (String Error Count) | (String Error Count)
0 99.2 (67) 98.5 (126)
1 99.5 (44) 98.6 (117)
2 99.6 (32) 98.7 (110)
3 99.7 (29) 98.7 (111)

Table 3: Corrective training results on the TI-digit task
(21 CI models with 32 mixture components per state)

The corrective training procedure is also effective for
continuous sentence recognition. Table 4 gives results for the
RM task, using 47 models with 32 mixture components. The
CT-32 corrective training assumes a fixed beam width. Since
the number of string errors was small in the training set, the
effective amount of data for corrective training is rather
limited. To increase the amount, we propose the use of a
smaller beam width in recognizing strings in the training set.
It was observed that this improved corrective training (ICT-
32) procedure not only reduces the error rate in training but
also increases the separation between the correct string and the
other competing strings. The number of training errors also
increased as predicted. The regular and the improved
corrective training gave an average word error rate reduction
of 15% and 20% respectively on the test data.

Test Set - || MLE-32 | CT-32 | ICT-32
TRAIN 77 1.8 31
FEB89 11.9 10.2 8.9
OCT89 11.5 9.8 8.9
JUN9O 10.2 8.8 8.1
FEB91 114 10.3 10.2
FEB91-SD 13.9 11.3 11.0
Overall Test 11.8 10.1 9.4

Table 4: Corrective training results on the RM task
(47 CI models with 32 mixture components per state)
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PDF SMOOTHING

We have shown that Bayesian leaming can be used for
context-dependent model smoothing. This approach can be
seen either as a way to add extra constraints to the model
parameters so as to reduce the effect of insufficient training
data, or it can be seen as an "interpolation" between two sets
of parameter estimates: one corresponding to the desired
model and the other to a smaller model which can be trained
using MLE on the same data. Instead of defining a reduced
parameter set by removing the context dependency, we can
alternatively reduce the mixture size of the observation
densities and use a single Gaussian per state in the smaller
model. Cast in the Bayesian leaming framework, this implies
that the same marginal prior density is used for all the
components of a given mixture. Variance clipping can also be
viewed as a MAP estimation technique with a uniform prior
density constrained by a maximum (positive) value for the
precision parameters [1]. However, this does not have the
appealing interpolation capability of the conjugate priors.

We experimented with this pdf smoothing approach on the TI
digit and RM databases. A set of 213 CD phone models with
32 mixture components (213 CD-32) for the TI digits and a
set of 2421 CD phone models with 16 mixture components
(2421 CD-16) for RM were used for evaluation. Results are
listed in Tables 5 and 6 for MLE training, MLE with variance
clipping (MLE+VC), and MAP estimation with pdf smoothing.
In Table 5, string accuracy (SACC) and word accuracy
(WACC) are given. When compared with the varance
clipping scheme, it can be seen that the MAP estimate reduces
the number of string errors from 101 to 76, which represents a
25% string error reduction. Using pdf smoothing on the 213
CD models, the string accuracy was 99.1% which is the best
result reported on this task.

SACC (Strings Correct) | WACC
MLE 98.7 (8464) 99.6
MLE+VC 98.8 (8477) 99.6
MAP 99.1 (8502) 99.7

Table 5: TI test results for pdf smoothing
(using 213 inter-word CD-32 models)

FEB89 | OCT89 | JUN9O | FER91
MLE 93.3 92.5 92.1 92.9
MLE+VC 95.0 95.0 94.8 95.9
MAP(SI) 95.0 95.5 95.0 96.2
MAPM/F) 95.2 96.2 95.2 96.7

Table 6: RM test results for pdf smoothing
(using 2421 inter-word CD-16 models)

As for the RM testing shown in Table 6, we also observed a
consistent improvement over the variance clipping scheme
(MLE+VC) when pdf smoothing is applied. When combined
with sex-dependent modeling, the MAP(M/F) scheme shown
in Table 6 gives a slight improvement over the MAP(SD)
results. The 96.7% word accuracy on FEB91 test data
represents the best results we have achieved on this set.
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SUMMARY

A study on the use of Bayesian leamning of CDHMM
parameters has been carried out. The theoretical framework
for training HMM's with mixture Gaussian state observation
densities was presented. It was shown that Bayesian learning
serves as a unified approach for parameter smoothing, speaker
adaptation, speaker group modeling and corrective training.

Tested on the RM task, encouraging results have ‘been
obtained for all four applications. For speaker adaptation, a
37% word error reduction over the best SI results was
obtained on the FEB91-SD test with 2 minutes of speaker-
specific training data. It was also found that speaker
adaptation based on sex-dependent models gave a better result
than that obtained with speaker-independent seed. Compared
with speaker-dependent training, speaker adaptation achieved a
better performance based on the same amount of
training/adaptation data. Corrective training was also found
effective in reducing word errors by 15-25%. It is noted that
corrective training helps more with models with a smaller
number of parameters. The best results on SI RM testing was
obtained with pdf smoothing and sex-dependent modeling.
For the FEB91 SI test, we achieved a word accuracy of 96.7%
using the word-pair grammar. The overall average for the
four SI sets was 95.8% word accuracy.

Only pdf smoothing and corrective training were applied to
the TI/NIST connected digit task. It was found that corrective
training ‘is effective for improving both CI and CD models.
When more models were estimated (213 CD models), pdf
smoothing provided a robust model that gave a 99.1% string
accuracy on the testing data. This represents the best
performance reported on this database.
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