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ABSTRACT
Processing time is an important factor in making a speech tran-

scription system viable for automatic indexation of radio and tele-
vision broadcasts. When only concerned by the word error rate,
it is common to design systems that run in 100 times real-timeor
more. This paper addresses issues in reducing the speech recog-
nition time for automatic indexation of radio and TV broadcasts
with the aim of obtaining reasonable performance for close to
real-time operation. We investigated computational resources in
the range 1 to 10xRT on commonly available platforms. Con-
straints on the computational resources led us to reconsider de-
sign issues, particularly those concerning the acoustic models
and the decoding strategy. A new decoder was implemented
which transcribes broadcast data in few times real-time with only
a slight increase in word error rate when compared to our best
system. Experiments with spoken document retrieval show that
comparable IR results are obtained with a 10xRT automatic tran-
scription or with manual transcription, and that reasonable per-
formamce is still obtained with a 1.4xRT transcription system.

1. INTRODUCTION

A major advance in speech recognition technology is the abil-
ity of todays systems to deal with non-homogeneous data as is
exemplified by broadcast news: changing speakers, languages,
backgrounds, topics. However transcribing such data requires
significantly higher processing power than what is needed totran-
scribe read speech data in a controlled environment, such asfor
speaker adapted dictation. With the rapid expansion of different
media sources for information dissemination, there is a pressing
need for automatic processing of the audio data stream. A va-
riety of near-term applications are possible such as audio data
mining, selective dissemination of information, media monitor-
ing services, disclosure of the information content and content-
based indexation for digital libraries, etc. Although it isusually
assumed that processing time is not a major issue since computer
power has been increasing continuously, it is also known that the
amount of data appearing on information channels is increasing
at a close rate. Therefore processing time is an important fac-
tor in making a speech transcription system viable for audiodata
mining and other related applications. In this paper we address
issues in reducing the computation time for automatic indexation
of radio and television broadcasts. Current state-of-the-art lab-
oratory systems can transcribe unrestricted broadcast news data
with word error rates under 20%. These systems are often de-
signed to minimize the word error rate, without paying too much
attention to the computing resources as long as experimentscan
be carried out in a reasonable time frame. So it is common prac-

tice to develop systems that run in 100xRT, especially to eval-
uate the absolute quality of the acoustic and language models.
Constraints on the computational resources force us to reconsider
design issues, in particular concerning the acoustic models and
the decoding strategies [2, 14]. In designing a broadcast news
indexation system with computational resources in the range of
10xRT, we gathered experimental results to answer the follow-
ing questions: Is it better to use a single pass or multiple pass
decoding strategy? Do the best models developed for a system
without resource constraints still perform the best when resource
constraints are imposed? Which language model order provides
the best performance given cpu time constraints? What levelof
word transcription accuracy is needed to achieve reasonable in-
dexation?

In the next section we give an overview of the LIMSI broadcast
news indexation system, followed by a comparison of decoding
strategies (single pass versus multiple pass), and the experiments
carried out to address the influence acoustic model size and of
language model order on performance. We then discuss the im-
pact of the word error rate on the information retrieval process.

2. SYSTEM OVERVIEW

The LIMSI broadcast news automatic indexation system [3]
consists of an audio partitioner [6], a speech recognizer [7, 8] and
an indexation module [5].

The goal of audio partitioning is to divide the acoustic signal
into homogeneous segments, labeling and structuring the acous-
tic content of the data. Partitioning consists of identifying and
removing non-speech segments, and then clustering the speech
segments and assigning bandwidth and gender labels to each seg-
ment. The result of the partitioning process is a set of speech seg-
ments with cluster, gender and telephone/wideband labels,which
can be used to generate metadata annotations. While it is possi-
ble to transcribe the continuous stream of audio data without any
prior segmentation, partitioning offers several advantages over
this straight-forward solution. First, in addition to the transcrip-
tion of what was said, other interesting information can be ex-
tracted such as the division into speaker turns and the speaker
identities, and background acoustic conditions. Second, by clus-
tering segments from the same speaker, acoustic model adapta-
tion can be carried out on a per cluster basis, as opposed to ona
single segment basis, thus providing more adaptation data.Third,
prior segmentation can avoid problems caused by linguisticdis-
continuity at speaker changes. Fourth, by using acoustic mod-
els trained on particular acoustic conditions (such as wide-band
or telephone band), overall performance can be significantly im-
proved. Finally, eliminating non-speech segments and dividing
the data into shorter segments (which can still be several minutes
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long), substantially reduces the computation time and simplifies
decoding. Note that processing the non-speech segments as if
they were speech does not significantly increase the word error
rate, but does considerably increase the processing time.

The partitioning approach used in the LIMSI BN transcription
system relies on an audio stream mixture model [6]. Each com-
ponent audio source, representing a speaker in a particularback-
ground and channel condition, is in turn modeled by a GMM.
The segment boundaries and labels are jointly identified by an
iterative maximum likelihood segmentation/clustering procedure
using GMMs and agglomerative clustering.

For each speech segment, the word recognizer determines the
sequence of words in the segment, associating start and end
times and an optional confidence measure with each word. The
speaker-independent large vocabulary, continuous speechrecog-
nizer makes use of n-gram statistics for language modeling and
of continuous density HMMs with Gaussian mixtures for acoustic
modeling. Word recognition is usually performed in three steps:
1) initial hypothesis generation, 2) word graph generation, 3) final
hypothesis generation. The hypothesis are used in cluster-based
acoustic model adaptation using the MLLR technique [9] prior to
word graph generation, and all subsequent decoding passes.The
final hypothesis is generated using a 4-gram language model.

For all the experimental results given in this paper, the fol-
lowing training conditions were used. The acoustic models were
trained on about 150 hours of American English broadcast news
data. The phone models are position-dependent triphones, with
about 11500 tied-states for the largest model set. The state-tying
is obtained via a divisive, decision tree based clustering algo-
rithm. Wideband and telephone band sets of gender-dependent
acoustic models were built using MAP adaptation of SI seed
models. Fixed language models were obtained by interpolation ofn-gram backoff language models trained on 3 different data sets:
203 M words of BN transcripts; 343 M words of NAB newspa-
per texts and AP Wordstream texts; 1.6 M words corresponding
to the transcriptions of the acoustic training data. The interpola-
tion coefficients of these LMs were chosen so as to minimize the
perplexity on the Hub4 Nov98 evaluation data. The 4-gram LM
contains 7M bigrams, 14M trigrams and 11M fourgrams.

The recognition word list contains 65122 words, and has a
lexical coverage of 99.7% and 99.5% on the Hub4-Nov98 and
the eval99 (set 2) test sets, respectively. The pronunciations are
based on a 48 phone set (3 of them are used for silence, filler
words, and breath noises). A pronunciation graph is associated
with each word so as to allow for alternate pronunciations, includ-
ing optional phones. Frequent inflected forms have been verified
to provide more systematic pronunciations. As done in the past,
compound words for about 300 frequent word sequences subject
to reduced pronunciations were included in the lexicon as well as
the representation of the most frequent acronyms as words.

The information retrieval system relies on a unigram model
(vector space model) per story. In order to reduce the number
of lexical items for a given word sense, each word is mapped
to its stem (as defined in [13]) or, more generally, into a form
that is chosen as being representative of its semantic family. The
score of a story is obtained by summing the query term weights
which are simply the log probabilities of the terms given the
story model once interpolated with a general English model.This
term weigthing has been shown to perform as well as the popular
TF�IDF weigthing scheme [10].

All the reported runs were done on a Compaq XP1000
500MHz machine with Digital Unix.

3. SINGLE PASS DECODER

A 4-gram single pass dynamic network decoder has been de-
veloped. It is a time-synchronous Viterbi decoder with dynamic
expansion of LM state conditioned lexical trees [1, 11, 12] with
acoustic and language model lookaheads. The decoder can han-
dle position-dependent, cross-word triphones and lexicons with
contextual pronunciations. It makes use of various pruningtech-
niques to reduce the search space and computation time, includ-
ing three HMM-state pruning beams and fast Gaussian likelihood
computations. It can also generate word graphs and rescore them
with different acoustic and language models. Faster than real-
time decoding can be obtained using this decoder with a word er-
ror under 30%, running in less than 100 Mb of memory on widely
available platforms such Pentium III or Alpha machines.

The decoder by itself does not solve by itself the problem of
reducing the recognition time as proper models have to be used
in order to optimize the recognizer accuracy at a given decod-
ing speed. In general, better models have more parameters, and
therefore require more computation. However, since the models
are more accurate, it is often possible to use a tighter pruning level
(thus reducing the computational load) without any loss in accu-
racy. Thus, limitations on the available computational resources
affect the design of the acoustic and language models. For each
operating point, the right balance between model complexity and
pruning level must be found.

Acoustic models
Processing time constraints significantly affect the way the

acoustic models are selected. For instance, using word-position
dependent triphone models, enables more accurate acousticmod-
eling at word boundaries as the contexts are limited to thosetri-
phones actually occurring in cross-word position. The states of
the triphone models are tied by means of a decision tree, with90
questions about the phonetic features of the phone and stateposi-
tions. The number of triphone contexts and the amount of param-
eter sharing (state tying) influence the total model size (number
of Gaussians) and consequently the decoding speed. To illustrate
this point, Figure 1 plots the word error rate as a function ofpro-
cessing time for 3 sets of acoustic models, which taken together
minimize the word error rate over a wide range of processing
times (from 0.3xRT to 20xRT) for broadcast news data. Tran-
scribing such inhomogeneous data requires significantly higher
processing power than for speakeradapted dictation systems, due
to the lack of control of the recordings and linguistic content,
which on average results in a poorer fit of the acoustic and lan-
guage models to the data, and as a consequence, the need for
larger models. These results on a representative portion ofthe
Hub4-98 eval test data are obtained using a 3-gram language
model, and without acoustic model adaptation. The largest model
set (350k Gaussians, 11k tied states, 30k phone contexts) pro-
vides the best performance/speed ratio for processing times over
4xRT. The 92k model set (92k Gaussians, 6k tied states, 5k phone
contexts) performs better in the range of 0.6xRT to 3xRT, whereas
a much smaller model set (16k Gaussians) gives a small gain for
less than 0.5xRT.

Language models
For a decoder based on lexical tree copies, the potential search

space is proportional to the number of LM contexts, i.e., thenum-
ber of n-1-grams in the backoff component of then-gram LM.
As observed for the acoustic models, there is a tradeoff between
model complexity and search space, i.e. the best model without
computational constraints may not be the best when such con-
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Figure 1: Word error rate vs. processing time for three acoustic
model sets with 350k, 92k and 16k Gaussians on a subset of the
Hub4-98 test data. (Single pass decoding with a trigram LM and
no acoustic model adaptation.)

straints are imposed. Figure 2 gives the word error rate as a func-
tion of the recognition time for four language models (1-gram to
4-gram LM) on the same representative subset of the Hub4-98
eval test data set. The same acoustic model set (6k states, 92k
Gaussians) is used for all runs. It can be seen that the trigram
LM is the best comprise for computation times in the range of
interest (0.5 to 10xRT). In this range the 4-gram LM gives the
same results, but requires about 50% more parameters than the
3-gram language model. (The difference is even larger if there-
quired memory space needed to store the models is compared.)
To observe a significant difference in favor of the 4-gram LM,
the computation time needs to be over 20xRT with this single
pass decoding. For computation times under 0.5xRT it does not
matter which LM order is used, as long as it is greater than 1.

4. MULTIPLE PASS DECODER

Many systems use a multiple pass decoding strategy to reduce
the computational requirements. In multipass decoding, addi-
tional knowledge sources are progressively used in the decoding
process, which allows the complexity of each individual decod-
ing pass to be reduced and often results in a faster overall de-
coder. One of the main advantages of multiple pass decoding is
the possibility to carry out acoustic model adaptation, such as un-
supervised MLLR, between passes by making use of the current
best hypotheses. Our targeted speed being lower than 10xRT,we
need to pay attention to the computing resources required toper-
form the adaptation. In these experiments we use a single block
diagonal regression matrix and run only one iteration of MLLR
reestimation. Table 1 gives the computation time and word er-
ror rates for various decoding strategies. The pruning thresholds
have been set to try to match the computing time of the most in-
teresting setups. All passes perform a full decode, except the last
decoding pass (labelled E) which is a word graph rescoring us-
ing a graph generated in the second 3-gram pass. Only two of
the acoustic model sets compared in Figure 1 are used: the 350k
Gaussian set and 92k Gaussian set used only in the first decoding
pass.

These results clearly demonstrate the interest of using a multi-
ple pass decoder. Comparing the setups A (1 pass, 16.8%) and D
(2 passes, 15.4%), or comparing setups B (1 pass, 15.4%) and C
(2 passes, 14.6%), we see that the extra computing time needed
for the first decode and the MLLR adaptation is largely compen-
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Figure 2: Word error rate vs. processing time for 4 language
models (1-gram to 4-gram LM) on a subset of the Hub4-98 data.
(Single pass decoding with the 92k acoustic model set and no
adaptation.)

Pass AM LM Time Total time Werr
A 1 92k 3g 6.8xRT 6.8xRT 16.8%
B 1 350k 4g 10.8xRT 10.8xRT 15.9%

1 92k 3g 0.8xRT 24.7%
C 2 350k+mllr 4g 9.9xRT 10.7xRT 14.6%

1 92k 3g 0.8xRT 24.7%
D 2 350k+mllr 3g 6.1xRT 6.9xRT 15.4%
E 3 350k+mllr 4g 1.5xRT 8.4xRT 14.2%

Table 1: Comparison of decoding strategies on the NIST Hub4
eval98 set (partitioning and coding times are not included).

sated by the reduction in word error rate. Using adapted acoustic
models allows us to use a tighter pruning threshold and have the
same overall computing time but with a significantly lower word
error rate. Also comparing setups C (2 passes, 10.7xRT, 14.6%)
and E (3 passes, 8.4xRT, 14.2%) demonstrate the advantage of
using an extra decoding pass to take advantage of the 4-gram LM
and hypotheses for the MLLR adaptation.

In Table 2 the word error rates and the total computation time
(including partitionning) are given for both the development test
set (Hub4 eval98) and the Hub4 eval99 test set. For reference,
the official result on the eval98 test set using our Nov98 system
was 13.6%, with a decoding time around 200xRT [7]. Using only
the first decoding pass, unrestricted BN data can be decoded in
less than 1.4xRT (including partitioning) with a word errorrate
around 30%. The same decoding strategy has been successively
applied to the BN transcription in other languages (French,Ger-
man and Mandarin) with comparable word error rates.

5. IMPACT OF WERR ON RETRIEVAL

In order to assess the effect of the recognition time on the in-
formation retrieval results we transcribed the 500h of broadcast
news data (the TREC SDR99 data set – epoch Feb98 to Jun98)
using two decoder configurations: a single pass 1.4xRT system
and a three pass 10xRT system. The SDR99 test data consists of
21750 stories and an associated set of 50 queries with on aver-
age 14 words. Although for IR purposes the story boundaries are
assumed to be known, this information is not used by the speech
recognizer. The information retrieval results are given interm of
mean average precison (MAP), as is done for the TREC bench-
marks. Word error rates are measured on a 10h test subset [4].For
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Dev data (eval98) Test data (eval99)
Step CPU time Werr CPU time Werr
Coding and Partitioning: 0.5xRT 0.5xRT
Word decoding:

pass#1 (generate 3-gram hyp): 0.8xRT 24.7% 0.9xRT 29.3%
pass#2 (MLLR, 3-gram): 6.1xRT 15.4% 6.5xRT 18.5%
pass#3 (MLLR, 4-gram): 1.5xRT 14.2% 1.5xRT 17.1%

Overall: 8.9xRT 14.2% 9.4xRT 17.1%

Table 2: 10xRT results in word error rate for the NIST BN 1998 and 1999 test sets.

comparison, results are also given for manually produced closed
captions. In order for the same IR system to be applied to dif-
ferent text data types (automatic transcriptions, closed captions,
additional texts from newspapers or newswires), all of the docu-
ments are preprocessed in a homogeneous manner. This prepro-
cessing, or tokenization, is the same as the text source preparation
for training the speech recognizer language models.

Table 3 gives the word error rates and IR results for the three
sets of transcriptions with and without query expansion. Query
expansion uses blind relevance feedback (BRF) on both the au-
dio document collection and some commercially available broad-
cast news transcripts predating the audio corpus (Jun-Dec 1997
vs Feb-Jun 1998). With query expansion comparable IR results
are obtained using the closed captions and the 10xRT transcrip-
tions, and a small degradation (4% absolute) is observed using
the 1.4xRT transcriptions.

Transcriptions Werr Base-MAP BRF-MAP
Closed-captions - 0.4691 0.5430
10xRT 20.5% 0.4528 0.5385
1.4xRT 32.6% 0.4090 0.4938

Table 3: IR results on the 500h SDR99 data set.

6. CONCLUSIONS

In this paper we have described our efforts in developing a fast
decoder for indexation of broadcast data. This new decoder tran-
scribes broadcast data in several (6 to 10) times real-time with
only a slight increase in word error rate when compared to our
best system [7], and with a word error of about 30% for es-
sentially real-time decoding. Our development work with this
decoder showed us how processing time constraints can signifi-
cantly change the way we build our models. For each operating
point, the right balance between model complexity and search
pruning level must be found. For moderate decoding times (inthe
range 0.6xRT to 3xRT) a model set containing 92k Gaussians, 6k
tied states, 5k phone contexts performs substantially better than
smaller or larger models. For processing times over 5xRT, an
a larger model set (350k Gaussians, 11k tied states, 30k phone
contexts) provides the best performance/speed tradeoff.

Experiments with Spoken Document Retrieval [4] illustrate
that only a moderate IR performance degradation is obtainedwith
the real-time system, and that generally speaking, the transcrip-
tion quality of our system is not a limiting factor given todays IR
techniques.
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