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ABSTRACT tice to develop systems that run in 100xRT, especially td-eva
uate the absolute quality of the acoustic and language model
Constraints on the computational resources force us togider
design issues, in particular concerning the acoustic nsoaled
the decoding strategies [2, 14]. In designing a broadcass ne
indexation system with computational resources in the eaofg
10xRT, we gathered experimental results to answer thewello
ing questions: Is it better to use a single pass or multipEspa

with the aim of obtaining reasonable performance for clase t decoding strateav? Do the best models developed for a svstem
real-time operation. We investigated computational resesiin - 9 9y . : P y
without resource constraints still perform the best wheouce

the range 1 to 10xRT on commonly available platforms. Con-constraints are imposed? Which language model order pevid
straints on the computational resources led us to recondie P ’ guag i

sign issues, particularly those concerning the acoustidaiso the best performance given cpu time constraints? What tefve|

and the decoding strategy. A new decoder was implementegord transcription accuracy is needed to achieve reaserabl

which transcribes broadcast data in few times real-timé witly ei(:ttlhoenﬁext section we give an overview of the LIMSI broadcast
a slight increase in word error rate when compared to our best 9

system. Experiments with spoken document retrieval shaw th ntem{[s |ndexqtlo:1 system, foIIowedIt_b)I/ a comparlzotr;l qf deapdin
comparable IR esults are obtained with a J0<RT avtomatvyr - 2 22809 FEoe et ie R BoC S0 e
scription or with manual transcription, and that reasoagigr-

formamce is still obtained with a 1.4xRT transcription €yst language model order on performance. We then_ discuss the im-
pact of the word error rate on the information retrieval [@ss.

1. INTRODUCTION 2. SYSTEM OVERVIEW

A major advance in speech recognition technology is the abil The LIMSI broadcast news automatic indexation system [3]
ity of todays systems to deal with non-homogeneous data as isonsists of an audio partitioner [6], a speech recognize3][@nd
exemplified by broadcast news: changing speakers, languagen indexation module [5].
backgrounds, topics. However transcribing such data regui The goal of audio partitioning is to divide the acoustic sign
significantly higher processing power than whatis needédie  into homogeneous segments, labeling and structuring thesac
scribe read speech data in a controlled environment, sufidr as tic content of the data. Partitioning consists of identifyiand
speaker adapted dictation. With the rapid expansion oéiifit  removing non-speech segments, and then clustering thelspee
media sources for information dissemination, there is aging  segments and assigning bandwidth and gender labels toegch s
need for automatic processing of the audio data stream. A vament. The result of the partitioning process s a set of dpseg-
riety of near-term applications are possible such as audta d ments with cluster, gender and telephone/wideband laléish
mining, selective dissemination of information, media fib@n can be used to generate metadata annotations. While it &-pos
ing services, disclosure of the information content andteaa  ble to transcribe the continuous stream of audio data withay
based indexation for digital libraries, etc. Although itusually  prior segmentation, partitioning offers several advaetagver
assumed that processing time is not a major issue since daempu this straight-forward solution. First, in addition to trranscrip-
power has been increasing continuously, it is also knowttklea  tion of what was said, other interesting information can ke e
amount of data appearing on information channels is inargas tracted such as the division into speaker turns and the speak
at a close rate. Therefore processing time is an important fa identities, and background acoustic conditions. Second|us-
tor in making a speech transcription system viable for addia  tering segments from the same speaker, acoustic modelaadapt
mining and other related applications. In this paper we esiglr tion can be carried out on a per cluster basis, as opposedado on
issues in reducing the computation time for automatic iatiex  single segment basis, thus providing more adaptation daied,
of radio and television broadcasts. Current state-ofafttdab-  prior segmentation can avoid problems caused by linguilsic
oratory systems can transcribe unrestricted broadcast dewa  continuity at speaker changes. Fourth, by using acoustit-mo
with word error rates under 20%. These systems are often desls trained on particular acoustic conditions (such as eialed
signed to minimize the word error rate, without paying tooamu  or telephone band), overall performance can be signifigamt!
attention to the computing resources as long as experincants proved. Finally, eliminating non-speech segments andlufigi
be carried out in a reasonable time frame. So it is common pradhe data into shorter segments (which can still be severalias

Processingtime is an important factor in making a speeah tra
scription system viable for automatic indexation of radid ¢ele-
vision broadcasts. When only concerned by the word errey, rat
it is common to design systems that run in 100 times real-tme
more. This paper addresses issues in reducing the speeh rec
nition time for automatic indexation of radio and TV broasdta
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long), substantially reduces the computation time and Kfiep 3. SINGLE PASSDECODER
decoding. Note that processing the non-speech segmerntts as i

they were speech does not significantly increase the woadt err
rate, but does considerably increase the processing time.

The partitioning approach used in theMsi BN transcription
system relies on an audio stream mixture model [6]. Each com
ponent audio source, representing a speaker in a particatd-
ground and channel condition, is in turn modeled by a GMM.
The segment boundaries and labels are jointly identifiedrby a

ite_rative maximum likelihood _segmentation/clusteringcpﬂrdure computations. It can also generate word graphs and resveme t
using GMMs and agglomerative clustering. ] ] with different acoustic and language models. Faster thah re
For each speech segment, the word recognizer determines thighe decoding can be obtained using this decoder with a werd e
sequence of words in the segment, associating start and engr under 30%, running in less than 100 Mb of memory on widely
times an(_j an optional confidence measure Wlth each word. Thgyajlable platforms such Pentium Il or Alpha machines.
speaker-independent large vocabulary, continuous speeog- The decoder by itself does not solve by itself the problem of
nizer makes use of n-gram statistics for language modely a (qycing the recognition time as proper models have to bé use
of continuous density HMMs with Gaussian mixtures for adous i, order to optimize the recognizer accuracy at a given decod
modeling. Word recognition is usually performed in threepst  jq speed. In general, better models have more parametets, a
1) initial hypothesis generation, 2) word graph genera®final  therefore require more computation. However, since theetsod
hypothesis generation. The hypothesis are used in clbag®d 516 more accurate, it is often possible to use a tighter pgieivel
acoustic model adaptation using the MLLR technique [9]p00 ;s reducing the computational load) without any losscieua
word graph generation, and all subsequent decoding paBes. acy Thus, limitations on the available computationabreses
final hypothesis is generated using a 4-gram language model. 5¢act the design of the acoustic and language models. fedr ea
For all the experimental results given in this paper, the fol operating point, the right balance between model complexitl
lowing training conditions were used. The acoustic modedgew  pruning level must be found.
trained on about 150 hours of American English broadcassnew .
data. The phone models are position-dependent triphoritss, w Acoustic models
about 11500 tied-states for the largest model set. The stiaig Processing time constraints significantly affect the way th
is obtained via a divisive, decision tree based clusterigg-a acoustic models are selected. For instance, using woritigros
rithm. Wideband and telephone band sets of gender-depende#ependenttriphone models, enables more accurate acoustic
acoustic models were built using MAP adaptation of S| seeckling at word boundaries as the contexts are limited to ttrose
models. Fixed language models were obtained by interpolai ~ phones actually occurring in cross-word position. Theestaf
n-gram backoff language models trained on 3 different daa se the triphone models are tied by means of a decision tree,3Gith
203 M words of BN transcripts; 343 M words of NAB newspa- questions about the phonetic features of the phone andpstsite
per texts and AP Wordstream texts; 1.6 M words correspondingons. The number of triphone contexts and the amount ofrpara
to the transcriptions of the acoustic training data. Therjmla-  eter sharing (state tying) influence the total model sizen(oer
tion coefficients of these LMs were chosen so as to minimiee th of Gaussians) and consequently the decoding speed. Tidlieis
perplexity on the Hub4 Nov98 evaluation data. The 4-gram LMthis point, Figure 1 plots the word error rate as a functiopmk-
contains 7M bigrams, 14M trigrams and 11M fourgrams. cessing time for 3 sets of acoustic models, which taken keget
The recognition word list contains 65122 words, and has &{pinimize the word error rate over a wide range of processing
lexical coverage of 99.7% and 99.5% on the Hub4-Nov98 andimes (from 0.3xRT to 20xRT) for broadcast news data. Tran-
the eval99 (set 2) test sets, respectively. The pronupaimtare  SC'iPing such inhomogeneous data requires significangieri
based on a 48 phone set (3 of them are used for silence, filld}rOCe€SSINg power than for speaker adapted dictation systms
words, and breath noises). A pronunciation graph is astatia to t_he lack of control of the recordlng_s and Ilngwsth carite
with eachword so as to allow for alternate pronunciatiomsiyid- which on average results in a poorer fit of the acoustic and lan
ing optional phones. Frequent inflected forms have beefiaghri 9uage models to the data, and as a consequence, the need for
to provide more systematic pronunciations. As done in trg, pa larger models. These results on a representative portigdheof

compound words for about 300 frequent word sequences subjef!UP4-98 eval test data are obtained using a 3-gram language
to reduced pronunciations were included in the lexicon dsage ~ Model, and without acoustic model adaptation. The largestah

the representation of the most frequent acronyms as words. ~ S€t (350k Gaussians, 11k tied states, 30k phone contexis) pr

. . . ) . vides the best performance/speed ratio for processingtower
The information retrieval system relies on a unigram model P P b ¢

vector space model) per st In order to reduce the rlumbe4xRT. The 92k model set (92k Gaussians, 6k tied states, Skepho
( or Sp: ) P ory. 0 : ontexts) performs better in the range of 0.6xRT to 3xRT,ehs
of lexical items for a given word sense, each word is mappe

to its stem (as defined in [13]) or, more generally, into a form much smaller model set (16k Gaussians) gives a small gain fo

that is chosen as being representative of its semanticyfaritile less than 0.5xRT.

score of a story is obtained by summing the query term weightd anguage models

which are simply the log probabilities of the terms given the  For a decoder based on lexical tree copies, the potentiedisea
story model once interpolated with a general English motlels ~ spaceis proportional to the number of LM contexts, i.e. -
term weigthing has been shown to perform as well as the populayer of n-1-grams in the backoff component of thegram LM.

A 4-gram single pass dynamic network decoder has been de-
veloped. It is a time-synchronous Viterbi decoder with dyia
expansion of LM state conditioned lexical trees [1, 11, 1Bhw
acoustic and language model lookaheads. The decoder can han
dle position-dependent, cross-word triphones and lexiasith
contextual pronunciations. It makes use of various prutea-
niques to reduce the search space and computation timedincl
ing three HMM-state pruning beams and fast Gaussian ligetih

TF+IDF weigthing scheme [10]. As observed for the acoustic models, there is a tradeoff dxetw
All the reported runs were done on a Compaqg XP1000model complexity and search space, i.e. the best model wtitho
500MHz machine with Digital Unix. computational constraints may not be the best when such con-
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Figure 1: Word error rate vs. processing time for three acousticFigure 2: Word error rate vs. processing time for 4 language
model sets with 350k, 92k and 16k Gaussians on a subset of thmodels (1-gram to 4-gram LM) on a subset of the Hub4-98 data.
Hub4-98 test data. (Single pass decoding with a trigram LM an (Single pass decoding with the 92k acoustic model set and no
no acoustic model adaptation.) adaptation.)

straints are imposed. Figure 2 gives the word error rate ase: f
tion of the recognition time for four language models (1rgrep

4-gram LM) on the same representative subset of the Hub4-982
eval test data set. The same acoustic model set (6k states, 92B

AM LM Time Total time  Werr
92k 39 6.8XRT 6.8XxRT 16.8%
350k 4g 10.8xRT 10.8xRT 15.9%

Gaussians) is used for all runs. It can be seen that the ririgra 92k 39 0.8xRT 24-7%"
LM is the best comprise for computation times in the range of 350k+milr 49  9.9xRT  10.7xRT  14.6%
interest (0.5 to 10xRT). In this range the 4-gram LM gives the 92k 3g  0.8xRT 24.7%

350k+mllr  3g 6.1xRT 6.9xRT  15.4%

same results, but requires about 50% more parameters than thD
350k+mlr 4g  1.5xRT 8.AxRT 14.2%

3-gram language model. (The difference is even larger if¢he
quired memory space needed to store the models is compared.) ) ) )

To observe a significant difference in favor of the 4-gram LM, Table 1: Comparison of decoding strategies on the NIST Hub4
the computation time needs to be over 20xRT with this singleEVal98 set (partitioning and coding times are not included)

pass decoding. For computation times under 0.5xRT it do€s NQ,teq by the reduction in word error rate. Using adaptedstiou
matter which LM order is used, as long as it is greater than 1. models allows us to use a tighter pruning threshold and Heeve t
same overall computing time but with a significantly lowerrdio
4. MULTIPLE PASSDECODER error rate. Also comparing setups C (2 passes, 10.7xRT%d4.6
Caé1d E (3 passes, 8.4xRT, 14.2%) demonstrate the advantage of
using an extra decoding pass to take advantage of the 4-gvhm L
and hypotheses for the MLLR adaptation.
In Table 2 the word error rates and the total computation time
éincluding partitionning) are given for both the developrmeest
set (Hub4 eval98) and the Hub4 eval99 test set. For reference
the official result on the eval98 test set using our Nov98esyist
yyas 13.6%, with a decoding time around 200xRT [7]. Using only
the first decoding pass, unrestricted BN data can be decoded i
less than 1.4xRT (including partitioning) with a word errate
around 30%. The same decoding strategy has been succgssivel
applied to the BN transcription in other languages (Fre @G-
man and Mandarin) with comparable word error rates.

(AJNHI\JHI—\HE

Many systems use a multiple pass decoding strategy to redu
the computational requirements. In multipass decodingj-ad
tional knowledge sources are progressively used in thediego
process, which allows the complexity of each individual akc
ing pass to be reduced and often results in a faster overall d
coder. One of the main advantages of multiple pass decosling
the possibility to carry out acoustic model adaptationhsagun-
supervised MLLR, between passes by making use of the curre
best hypotheses. Our targeted speed being lower than 1Q«RT,
need to pay attention to the computing resources requirpdrto
form the adaptation. In these experiments we use a singt&kblo
diagonal regression matrix and run only one iteration of NRLL
reestimation. Table 1 gives the computation time and word er

ror rates for various decoding strategies. The pruningstinoéls 5. IMPACT OF WERR ON RETRIEVAL
have been set to try to match the computing time of the most in- )
teresting setups. All passes perform a full decode, exbegast In order to assess the effect of the recognition time on the in

decoding pass (labelled E) which is a word graph rescoring usformation retrieval results we transcribed the 500h of diozest

ing a graph generated in the second 3-gram pass. Only two afews data (the TREC SDR99 data set — epoch Feb98 to Jun98)

the acoustic model sets compared in Figure 1 are used: the 35@sing two decoder configurations: a single pass 1.4xRT syste

Gaussian set and 92k Gaussian set used only in the first ecigcodiand a three pass 10xRT system. The SDR99 test data consists of

pass. 21750 stories and an associated set of 50 queries with on aver
These results clearly demonstrate the interest of usinglé&emu age 14 words. Although for IR purposes the story boundaries a

ple pass decoder. Comparing the setups A (1 pass, 16.8%) andddsumed to be known, this information is not used by the $peec

(2 passes, 15.4%), or comparing setups B (1 pass, 15.4%) andr€cognizer. The information retrieval results are giveteirm of

(2 passes, 14.6%), we see that the extra computing time deedenean average precison (MAP), as is done for the TREC bench-

for the first decode and the MLLR adaptation is largely compen marks. Word error rates are measured on a 10h test subsEt].
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Dev data (eval98) Test data (eval99)
Sep CPUtime Werr CPUtime  Werr
Coding and Partitioning: 0.5xRT 0.5xRT
Word decoding:
pass#1 (generate 3-gram hyp): 0.8xRT 247%  0.9xRT  29.3%
pass#2 (MLLR, 3-gram): 6.1XRT 15.4% 6.5xRT 18.5%
pass#3 (MLLR, 4-gram): 1.5xRT 14.2% 1.5xRT 17.1%
Overall: 8.9xRT 14.2% 9.4xRT 17.1%

Table2: 10xRT results in word error rate for the NIST BN 1998 and 1994 sets.

comparison, results are also given for manually producesied
captions. In order for the same IR system to be applied to dif-
ferent text data types (automatic transcriptions, closattions,
additional texts from newspapers or newswires), all of theud

ments are preprocessed in a homogeneous manner. Thisprepro

cessing, or tokenization, is the same as the text sourcerzgn
for training the speech recognizer language models.

Table 3 gives the word error rates and IR results for the three
sets of transcriptions with and without query expansioneu
expansion uses blind relevance feedback (BRF) on both the au
dio document collection and some commercially availabdetr
cast news transcripts predating the audio corpus (Jun-B8¢ 1
vs Feb-Jun 1998). With query expansion comparable IR esult
are obtained using the closed captions and the 10xRT tignscr
tions, and a small degradation (4% absolute) is observedjusi
the 1.4xRT transcriptions.

Transcriptions Werr  Base-MAP  BRF-MAP
Closed-captions - 0.4691 0.5430
10xRT 20.5% 0.4528 0.5385
1.4xRT 32.6% 0.4090 0.4938

Table 3: IR results on the 500h SDR99 data set.

6. CONCLUSIONS

In this paper we have described our efforts in developingt fa
decoder for indexation of broadcast data. This new decoaer t
scribes broadcast data in several (6 to 10) times real-tiritte w
only a slight increase in word error rate when compared to our
best system [7], and with a word error of about 30% for es-
sentially real-time decoding. Our development work witiis th
decoder showed us how processing time constraints carfisigni

cantly change the way we build our models. For each operatinfL0]

point, the right balance between model complexity and $earc
pruning level must be found. For moderate decoding timethén

range 0.6xRT to 3xRT) a model set containing 92k Gaussidns, 6[11]

tied states, 5k phone contexts performs substantiallyeb#tan

smaller or larger models. For processing times over 5xRT, an

a larger model set (350k Gaussians, 11k tied states, 30kephon

contexts) provides the best performance/speed tradeoff.
Experiments with Spoken Document Retrieval [4] illustrate

that only a moderate IR performance degradation is obtairitbd

the real-time system, and that generally speaking, thedréip
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