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ABSTRACT

Radio and television broadcasts consist of a continuous
stream of data comprised of segments of different linguistic
and acoustic natures, which poses challenges for transcrip-
tion. In this paper we report on our recent work in tran-
scribing broadcast news data[2, 4], including the problem
of partitioning the data into homogeneous segments prior
to word recognition. Gaussian mixture models are used to
identify speech and non-speech segments. A maximum-
likelihood segmentation/clustering process is then applied
to the speech segments using GMMs and an agglomera-
tive clustering algorithm. The clustered segments are then
labeled according to bandwidth and gender. The recog-
nizer is a continuous mixture density, tied-state cross-word
context-dependent HMM system with a 65k trigram lan-
guage model. Decoding is carried out in three passes,
with a final pass incorporating cluster-based test-set MLLR
adaptation. The overall word transcription error on the
Nov’97 unpartitioned evaluation test data was 18.5%.

1. INTRODUCTION

In this paper we report on our recent work in transcribing
broadcast news shows [2, 4], and work addressing the prob-
lem of partitioning the data into homogeneous segments for
further processing. Radio and television broadcasts con-
tain signal segments of various linguistic and acoustic na-
tures ranging from well prepared speech of news anchors to
spontaneous speech from unknown callers or interviewees.
The signal may be studio quality or have been transmit-
ted over a telephone or other noisy channel (ie., corrupted
by additive noise and nonlinear distorsions), or may con-
tain speech over music. The transition between segment
types can be gradual, such as when there is background
music with changing volume, or abrupt when switching
between speakers in different locations. Speech from the
same speaker may occur in different parts of the broadcast,
and with different channel conditions. Transcription of this
type of data poses challenges in dealing with the continu-
ous stream of data under varying conditions.

When the acoustic conditions are unknown unsupervised
adaptation techniques can be effective in improving perfor-
mance. Such methods are more effective as the amount of
adaptation data increases, therefore it is of interest to clus-
ter segments from the same speaker and condition. The
goal of data partitioning is to divide the acoustic signal into
homegenous segments, and to associate appropriate labels
with the segments.

2. DATA PARTITIONING

The segmentation and labeling procedure introduced in
[4] is shown in Figure 1. First, the non-speech segments
are detected (and rejected) using Gaussian mixture mod-
els (GMMs). Three GMMs each with 64 Gaussians serve
to detect speech, pure-music and other (background). The
acoustic feature vector used for segmentation contains 38
parameters. It is the same as the recognition feature vector
except that it does not include the energy, although the delta
energy parameters are included. The three GMMs were
each trained on about 1h of acoustic data, extracted from
the training data after segmentation with the transcriptions.
The speech model was trained on data of all types, with the
exception of pure music segments and the silence portions
of segments transcribed as speech over music. These mod-
els are expected to match all speech segments. The music
model was trained only on portions of the data that were
labeled as pure music, so as to avoid mistakenly detect-
ing speech over music segments. The silence model was
trained on the segments labeled as silence during forced
alignment, after excluding silences in segments labeled as
containing speech in the presence of background music.
All test segments labeled as music or silence are removed
prior to further processing.
A maximum likelihood segmentation/clustering iterative
procedure is then applied to the speech segments using
GMMs and an agglomerative clustering algorithm. Given
the sequence of cepstral vectors corresponding to a show(x1; : : : ; xT ), the goal is to find the number of sources
of homogeneous data (modeled by the p.d.f.f(�j�k) with
a known number of parameters) and the places of source
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Figure 1: Partionning algorithm.

changes. The result of the procedure is a sequence of
non-overlaping segments(s1; : : : ; sN ) with their associ-
ated segment cluster labels(c1; : : : ; cN ), whereci 2 [1;K]
andK � N . Each segment cluster is assumed to represent
one speaker in a particular acoustic environment. In ab-
sence of any prior knowledge about the stochastic process
governing(K;N ) and the segment lengths, we use as ob-
jective function a penalized log-likelihood of the formNXi=1 log f(sij�ci)� �N � �K
where� > 0 and� > 0. The terms�N and�K, which
can be seen as segment and cluster penalties, correspond
to the parameters of exponential prior distributions forN
andK. It is easy to prove that starting with overestimates
of N andK, alternate Viterbi reestimation and agglomera-
tive clustering gives a sequence of estimates of(K;N; �k)
with non decreasing values of the objective function. In
the Viterbi step we reestimate(N; �k) so as to increasePi logf(sij�ci) � �N (i.e. adding a segment penalty�
in the Viterbi search) whereas in the clustering step two or
more clusters can be merged as long as the resulting log-
likelihood loss per merge is less than�. This algorithm
stops when no merge is possible. A constraint on the clus-
ter size is also used to ensure that each cluster corresponds

to at least 10s of speech. (Recall that the previously re-
jected non-speech segments are not considered here.)
For single Gaussian models the merging criterion is easy
to implement since the log-likelihood loss can be directly
computed from the sufficient statistics of the corresponding
segments[5, 7]. In the more general case of Gaussian mix-
tures, there are no sufficient statistics and there is no direct
solution to compute the resulting mixture and/or the log-
likelihood loss. We can envison estimating the new mix-
ture from the data but this is a costly procedure. Another
solution that we adoped for this work is to modify the ob-
jective function, replacing the likelihood function by the
complete data likelihood of the Gaussian mixtures and ex-
tending the maximum likelihood clustering method to the
Gaussian level. To estimate the log-likelihood loss for two
Gaussian mixtures, we simply have to compute the sum of
the log-likelihood loss while clustering the Gaussians of
the 2 mixtures (until we get the desired number of Gaus-
sians per mixture). We have used 8 mixture components
per cluster, so to compute the log-likelihood loss induced
by merging two clusters agglomerative clustering is per-
formed starting with 16 Gaussians until 8 Gaussians are
left.
The process is initialized using a simple segmentation al-
gorithm based on the detection of spectral change (simi-
lar to the first step used in the CMU’96 system[8]). The
threshold is set so as to over-generate segments. Initially,
the cluster set consists of a cluster per segment. This is
followed by Viterbi training of the set of GMMs (one 8-
component GMM per cluster). This procedure is controlled
by 3 parameters: the minimum cluster size (10s), the max-
imum log-likelihood loss for a merge (�), and the segment
boundary penalty (�). When no more merges are possi-
ble, the segment boundaries are refined using the last set of
GMMs and an additional relative energy-based boundary
penalty, within a 1s interval. This is done to locate the seg-
ment boundaries at silence portions, so as to avoid cutting
words.
Speaker-independent GMMs corresponding to wideband
speech and telephone speech (each with 64 Gaussians) are
then used to label telephone segments. This is followed by
segment-based gender identification, using 2 sets of GMMs
with 64 Gaussians (one for each bandwidth). The result of
the partitioning process is a set of speech segments with
cluster, gender and telephone/wideband labels.

3. TRANSCRIBING PARTITIONED BN DATA

The word decoding procedure is shown in Figure 2. For
acoustic modeling, cepstral parameters are derived from a
Mel frequency spectrum estimated on the 0-8kHz band (0-
3.5kHz for telephone speech models) every 10ms[2, 3]. For
each 30ms frame the Mel scale power spectrum is com-
puted, and the cubic root taken followed by an inverse
Fourier transform. The LPC-based cepstrum coefficents
are normalized on a segment cluster basis using cepstral
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mean removal and variance normalization. Each resulting
cepstral coefficient for each cluster has a zero mean and
unity variance. The 39-component acoustic feature vec-
tor consists of 12 cepstrum coefficents and the log energy,
along with the first and second order derivatives.
Prior to decoding, segments longer than 30s are chopped
into smaller pieces so as to limit the memory required for
the trigram decoding pass[2]. To do so a bimodal distribu-
tion is estimated by fitting a mixture of 2 Gaussians to the
log-RMS power for all frames of the segment. This dis-
tribution is used to determine locations which are likely to
correspond to pauses, thus being reasonable places to cut
the segment. Cuts are made at the most probable pause 15s
to 30s from the previous cut.
Word recognition is performed in three steps: 1) word
graph generation, 2) trigram pass, 3) cluster-based acous-
tic model adaptation. The word graph is generated using a
65K word bigram backoff LM. This step uses a gender-
specific sets of position-dependent triphones with about
8500 tied states and a small bigram LM (about 2M bi-
grams). Differents acoustic models are used for telephone
and wideband segments. The sentence is then decoded
using the word graph generated in the first step with a
large set of gender-dependent acoustic models (position-
dependent triphones with about 11500 tied states) and a
65K word trigram LM (including 8M bigrams and 16M
trigrams). Finally, unsupervised acoustic model adaptation
(both means and variances) is performed for each segment
cluster using the MLLR technique, prior to the last decod-
ing pass with the adapted models and the trigram LM. The
mean vectors are adaptated using a single block-diagonal
regression matrix, and a diagonal matrix is used to adapt
the variances.
Two sets of gender-dependent acoustic models have been
built using MAP adaptation of SI seed models for each of
wideband and telephone band speech. These models were
trained on about 80 hours of transcribed broadcast news
data from a variety of television and radio shows. The bi-
gram and trigram language models were trained on news-
paper texts (the 1995 Hub3 and Hub4 LM material – 155M
words), on the broadcast news (BN) transcriptions (years
92-96, 125M words), and the 866K words in the transcrip-
tions of the 95-96 acoustic training data. The BN transcrip-
tions were processed in order to be homogeneous with the
previous texts, and filler words mapped to a unique form.
After transforming the training texts to be closer to the
observed American reading style, they were processed in
order to add a proportion of breath markers (4%), and of
filler words (0.5%)[2]. Cross sentence trigram counts were
added to the within sentence trigram counts before estimat-
ing the LM parameters.
The recognition vocabulary contains 65,252 words and
72,788 phone transcriptions. The vocabulary selection and
language models have been optimized on the 1996 Hub-4
F0 and F1 evaluation test set. The OOV rate is 0.66% on
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Figure 2: Word decoding.

the 1996 Hub-4 dev test data and 0.97% on F0-F1 part of
the Nov’96 eval test set. Pronunciations are based on a 48
phone set (3 of them are used for silence, filler words, and
breath noises). The filler and breath phones were added
to model these events, which are relatively frequent in the
broadcast data and are not used in transcribing other lexi-
cal entries. A pronunciation graph is associated with each
word so as to allow for alternate pronunciations, including
optional phones. Frequently occuring inflected forms were
verified to provide more systematic pronunciations. The
lexicon contains the most common 1000 acronyms found
in the training texts, and compound words to represent fre-
quent word sequences[2]. This provides an easy way to
allow for reduced pronunciations.

4. EXPERIMENTAL RESULTS

For development data we used the dev96 and eval96 data
sets. In this paper we report results on the eval96 and
eval97 test sets. In order to evaluate the partitioningquality,
we compare the segmentation error at the frame level (sim-
ilar to [6]) to the test data transcriptions for 4 half-hour
shows (eval96). The NIST transcriptions of the test data
contain segments that were not scored, since they contain
overlapping or foreign speech, and occasionally there are
small gaps between consecutive transcribed segments. We
therefore relabeled all excluded segments as speech, music
or other background.
Table 1(top) shows the segmentation frame error rate and
speech/non-speech errors for the 4 shows. The average
frame error is 3.7%, but is much higher for show 1 than for
the others. This is due to a long and very noisy segment that
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Show 1 2 3 4 Avg
Frame Error 7.9 2.3 3.3 2.3 3.7
M/F Error 0.4 0.6 0.6 2.2 1.0

#spkrs/#clusters 8/10 12/17 14/21 20/21 -
ClusterPurity 99.5 93.2 96.9 94.9 95.9
Coverage 87.6 71.0 78.0 81.1 78.7

Table 1: Top: Speech/non-speech frame segmentation error (%),
using NIST labels, where missing and excluded segments were
manually labeled as speech or non-speech. Bottom: Cluster purity
and best cluster coverage (%).

Test set Corr Sub Del Ins Err
eval96 77.8 15.4 6.9 3.1 25.3
eval97* 84.1 12.4 3.5 2.5 18.5

Table 2: Word error rates for of unpartitioned evaluation on 1996
and 1997 eval test data. (* Official NIST score).

was deleted. Averaged across shows the gender labeling
has a 1% frame error. In addition to these errors, there are
6.2% female speech frames deleted (largely due to the same
segment) and 1.7% of the male frames deleted. The bottom
of Table 1 shows measures of the cluster homogeneity. The
first entry gives the total number of speakers and identified
clusters per file. There are more clusters than speakers, as a
cluster can represent a speaker in a given acoustic environ-
ment. We define the cluster purity to be the % of frames in
the given cluster coming from the most represented speaker
in the cluster. (A similar measure was proposed in [1], but
at the segment level.) The table shows the weighted av-
erage cluster purities for the 4 shows. When clusters are
impure, they tend to include speakers with similar acoustic
conditions. The “best cluster” coverage is a measure of the
dispersion of a given speaker’s data across clusters. We av-
eraged the percentage of data for each speaker in the cluster
which has most of his/her data. There is a large variance in
the best cluster coverage across speakers. For most speak-
ers, a single cluster covers essentially all frames of their
data. However, for some speakers for whom there is a lot
of data we have observed that the speaker is covered by two
clusters, with comparable amounts of data.
In Table 2 we report word recognition results on the eval96
and eval97 data sets. The high deletion rate on the eval96
data is mainly due to 2 very noisy speech segments which
were classified as non-speech. (This type of error was less
frequent on the eval97 data which was of higher quality on
average.) However since the word error is very high on
these segments, rejecting them has only a marginal effect
on the overall word error rate. The result is a higher dele-
tion rate and a lower substitution one.

5. SUMMARY

In this paper we have presented our recent research in par-
titioning and transcribing televison and radio broadcasts.
The data partitioning algorithm makes use of Gaussian

mixture models and an iterative segmentation and cluster-
ing procedure. The resulting segments are labeled accord-
ing to gender and bandwidth using 64-component GMMs.
The speech detection frame error is less than 4%, and gen-
der identification has a frame error of 1%. Many of the
errors occur at the boundary between segments, and can
involve silence segments which can be considered as with
speech or non-speech without influencing transcription per-
formance.
Our clustering procedure tends to generate slightly more
clusters than the true number of speakers in a show. The
average cluster purity is 95%, with many clusters represent-
ing a single speaker. The per speaker best cluster coverages
are either close to 100% or close to 50% in cases where a
speaker’s data was split into two equal-sized clusters.
Word recognition is carried out in multiple passes for each
speech segment using more progressively more accurate
models. The final decoding pass uses cluster-based test-
set MLLR adaptation. The overall word transcription error
of the Nov’97 unpartitioned evaluation test data (3 hours)
was 18.5%. Based on our experience, it appears that cur-
rent word recognition performance is not critically depen-
dent upon the partitioningaccuracy and that any reasonable
approach that separates speaker turns and major acoustic
boundaries is sufficient.
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