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ABSTRACT Lexical Coverage (%) of N words
In this paper we explore the use of lexical information Language(M) 10 50 100 250 500 1K
for language identification (LID). Our reference LID sys- ]
tem uses language-dependent acoustic phone models and"9lish (2341) 27 49 60 72 82 91
phone-based bigram language models. For each language/ rench (2400) 26 54 64 76 84 91
lexical information is introduced by augmenting the phone German (3255) 22 44 57 68 77 86
vocabulary with theV most frequent words in the training _SPanish (5008) 28 52 61 72 79 86
data. (_Zom_blne_d Phone a”q word plgram mo_dels are_ us?Qole 1: Lexical coverage rates (%) of spontaneous training dataen t
to prowde |InngtIC constraints durlng acoustic dec«}plln IDEAL corpus for theN most frequent words. For each language the
Experiments were carried out on a 4-language te|ephoﬁémberofdistinctwordM in the spontaneoustraining data is also given.
speech corpus. Using lexical information achieves a relq-
tive error reduction of about 20% on spontaneous and re e lexical coverage for the 100 most frequent words is
spee(_:h cc_)mpared to the reference phone-based s_yst iDout 70%. This property may be taken advantage of in
Identification rates of 92%, 96% and 99% are achieve uilding a system for language identification.

for spontaneous, read and task-specific speech segmentsre- . . .
spectively, with prior speech detection. In"this contribution we address the following interrelated

guestions:
1. INTRODUCTION « To what extent do lexical constraints improve LID?

Many state-of-the-art language identification (LID) sys-® Is LID_easier for task-specific domains than for more gen-
tems exploit phone-based acoustic and (or) phonotactf¢al topics? _ _
scores [7]. Training generally consists of designing on& Is LID more difficult with spontaneous speech than with
phone-based recognizer per language (i.e., there is no gad or elicited speech?

plicit use of lexical information). During test, these rec-In the next section we describe our new strategy combining
ognizers are run in parallel, and the one with the highegt phoneme-based models with lexical information from the
likelihood is selected, with the language associated witfost frequent words. Section 3 describes speech corpus
the model set identified [2]. and presents experimental results for different training a
Theoretically, if a large vocabulary continuous speechest configurations. The experimental setup was designed
recognition system (LVCSR) was substituted for thdO give at least partial answers to all of the questionsdtate
phone-based system in each language, better languaove.

identification results could be achieved. This is because

LVCSR systems use higher level knowledge: words and 2. USE OF LEXICAL INFORMATION
sequences of words rather than phonemes and phoneftee motivation for incorporating lexical information the
sequences. In practice this approach has not been widelgoustic approach stems from the observation that rela-
explored [4], since in addition to being computationallytively high lexical coverages can be achieved using a rel-
expensive, it is difficult to use if only small amounts ofatively limited number of words. Table 1 shows the lexical
language-specific data are available. coverage rates obtained for different values of thenost

The words in a language are not evenly distributed — thigequent words in the spontaneous speech portion of the 4-
most frequent words account for a large proportion of allanguage beAL corpus [3]. The 10 most frequent words
word occurrences. For large newspaper corpora in Emccount for about 25% of all word occurrences in the train-
glish (WSJ) and Frenchl(e Monde), the most frequent 100 ing data, and about 70% of the training data are covered
words account for about 40% of all word occurrences. Fansing/N- = 250. These figures hold approximately for the

sk specific vocabularies (such as travel informationgask
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Language #Calls #Male #Female #Hours

Shomme d words |7 English 258 109 149 148
French 259 129 130 13.1
German 257 109 148 15.8
GERMAN i
phones &\ words Spanish 253 114 139 17.9
X
Table 2: Summary of data under matched language/country conditions
ENGLISH arg max(((y ) _
phones &N words spavgenens: Ire - gacond sentence, the unknown word “girl” (followed by
“and”) is replaced with “garden” and the unknown word
“boys” is recognized phonemically. The third example is
phor':eRs%\Il\?\T/ords 7 recognized as a mix qf words and phones. o
fre Each of theK recognizers produces a log-likelihoéd,
which is used to take the LID decision. In our present sys-
tem this is simply the maximum likelihood criterion.
Figure 1: Block diagram of the parallel language-depengémine & N 3. LID EXPERIMENTS

most frequent word recognition approach to LID. . . .
. 9 PP Experiments have been carried out to assess the contribu-

four languages studied, despite the differences in thé totéon of lexical information on 3s and 5s segments of the 4-
number of distinct words in the transcriptiong§.!. language telephone speech corpnsAL [3]. Automatic

The approach described here is an extension of the paanguage identification research using this corpus has been
allel phone recognition approach used in [2], [7], wheré&eported in [1].

instead of modeling linguistic information only by phono-3.1. The IDEAL telephone speech corpus
tactic constraints, for_each language thiemost frequent |peal isa large, four-language corpus (French, British En-
words are also taken into account. ~ glish, German and Castillan Spanish) of telephone speech
LetL = {L1, La,..., Lx } the set of languages to be iden-fo research in automatic language identification [3]. The
tified. The approach based on language-dependent phafipus is similar in style to the OGI multi-language cor-
recognition uses a bank df phone recognizers, with a pys [5], containing read and spontaneous speech for each
specific phone set for each language. Acoustic models &gjler. The corpus contains data from over 250 native
trained for each languageand language model constraintsspeakers of each language calling from their home country
are provided by phone bigraris. (matched language/country conditions), and an additional
In the proposed approach the acoustic models remain ung calls per language from another country (crossed condi-
changed, but each system vocabulary contains its languagiems). Table 2 summarizes the matched data for the differ-
specific phones and thé most frequent words observed in ent languages.
training data for the language. The orthographic transcriprhe callers, balanced for sex, age and dialect, were re-
tions of the training are transformed to replace all words n@ruited by a marketing survey company who distributed
in the N most frequent words by their phone transcriptiongalling designed to collect three types of data:
(obtained by Viterbi alignment). The resulting transcsipt o Call information: general questions concerning the call
consisting of sequences of phones and words are usedgifd caller, these data were not used in these experiments.
estimate hybrid language models using standard estimatigrRead & elicited speech: items containing pre-defined
techniques. texts to read and fixed prompts (“what time is it now?");
The system architecture is shown in Figure 1, where thg Spontaneous speech: a set of questions aimed at ob-
incoming test utterance is decoded by thé language- taining spontaneous speech (“speak about your home, your
dependenphone & N most frequent word recognizers. dream vacations, your favorite music” etc.)
Some example system outputs are shown in Figure 2. frhe read and dicited speech items in the caller scripts
the first example the system outputs mostly words. In thgere generated automatically from source files containing
several thousand different texts for each item. These in-
! The significantly higher number for Spanish/(= 5008) is due to clude texts extracted from newspapers, simple telephone
the larger amount of spontaneous speech collected: fortine slumber . . . b
of responses, twice as much speech data was collected f@ptheish introductory phrases or information requests, travel info
language as compared to German, English or French. mation queries, dates, times, credit card numbers, tele-
SR e o s g, Saatanaaes  D1or numbers. spoken and spelled cormmon words
geing able to identify IanguagesforwhicFr)] only u,ntrans:?ihaining?jata proper names, digit strings, m_oney amOL.mtS’ ?”d complete
is available. This work does not use any subsequent phaimtagram ~ Names and addresses. The high proportion of items includ-
models. ingnumbersand dates motivated the LID test on these data
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T: having towait uh for longperiodsfor thebus to come as it'slateon it's schedule and so on

Hyp: | having to way to prefer shopping for the carpet and chipstaesi car etc and a n t

T: 3 children 1girl and 2boys

Hyp: 3 children 1 gardentobcl z

T: the last time | went to a museum was Hea life centre and we saw lots efriousfish intheir natural surroundings
Hyp: f @ t W'Y n to museum was to see my friends k | for lots of b R | u fisd #meen @ C r look forand | G k' s

Figure 2: Some example output showing the partial hypotheses. Théswmotranscripf that are shown in bold are not in the recognition lexicon.

(see below). Thepontaneous portion of the corpus con-
tains responses to a series of questions selected randomly
at record time from a set of about 200 questions. The ques-

Lexical coverage %LID error
Train Test Tepont T spont

tions were not written on the paper script, in order to pre- N #of 5s segments 871 588

vent callers from preparing their answers. The spontaneous 0 - - 17.0 11.6
data accounts for about 15% of the corpus, not including si- 100 60.3 59.4 13.8 9.2
lences. 250 720 70.4 134 8.3

500 80.6 78.3 12.4 8.0

N #of 3ssgments 1242 840
0 - - 21.0 16.2
100 60.3 59.4 17.9 13.0
250 720 70.4 16.9 11.8
500 80.6 78.3 15.9 11.3

3.2. Experimental conditions

Specific test sets were selected so as to be able to compare
LID performance on spontaneous speech to read/elicited
speech. Two different sets of data were used for read and
elicited speech. The first set included all read and elicited
items (i.e. newspaper texts, travel information queries,
date?’ numb.ers’ addresse_s)' The second is a subset able3: LID approach combining phonemes alvdnost frequent words
of this data including only items related to numbers anghr Lm. Language identification error rates on 5s segmemis)(and 3s
dates. The lexical information was included by addingegm_entS (bottom) adpontaneous speech for the 4-language task as a
. . nction of N. Results are given without speech detectiapo.: and

the N most frequent words in the respective subcorpa q,ffith prior speech detection” s pon:.
the training data: spontaneous speech transcripts, read &
elicited speech transcripts, and number & date transcriptdeous training data were shown to be somewhat compa-
Bigram language models were trained for each test condiable for different languages (see Table 1). In Table 3 the
tion: spontaneous, read, numbers. lexical coverage rates, averaged across languages, are giv
The same set of acoustic models were used for all expder both training and test data. The difference in coverage
iments. These models were trained on all of the trainingetween training and test is small for all values)of but
data (spontaneous and read speech) from 200 calls per |4hcreases withv.
guage. 50 calls per language were reserved for test. Table 3 shows the language identification error rates for dif
For the test conditionf., 4i¢ion), all utterances of theon- ~ ferent values ofV' on 7,0t and7”spone. The LID error
dition with a minimal duration (5s or 3s) were used. Onlyrates forN = 0 correspond to the phone-only approach.
the first part of the acoustic signal of each utterance wagcorporating lexical knowledge by including only a rela-
used for the LID test. To investigate the extent to whicfively small number § = 100) of frequent words is seen
the LID results are influenced by non-speech acoustic setp improve the relative performance by 15 to 20%. The
ments, an additional series of tests were carried out usimgrformance improvement is larger on the set of segments
prior speech detection, WhefE condition C Teondition-  With Speech detectioft”.
Speech detection was obtained by aligning the data with ttecluding more words f = 250,500) results in further
transcripts, simulating optimal speech/non-speech deteggerformance gains. A relative error reduction of over 10%
tion. After removing initial and final silence portions, theis observed by increasiny from 100 to 500. Comparing
T’ condition t€St SEt CONtains the speech segments contaifisyon: and7”s,,,: error rates for the 5s segments, speech
ing at least 5s of speech. In future work we will measureletection results in a relative gain of more than 30% for all
the effect of using an automatic algorithm for speech/nonvalues ofN. For the 3s segments, the difference in perfor-
speech detection (i.e. without using the transcriptions). mance is over 20%. The 3s results with speech detection
33 h are seen to be better than the 5s results without. These

3. Spontaneous speec . differences highlight the importance of properly handling
The N most frequent words and the hybrid language mOdﬁon-speeCh segments in optimizing LID systems.
els are obtained exclusively from the spontaneous speech

portion of the training corpus. The test d&g,.; (8715s 34 Read and elicited speech
segments) and’,,.: (588 5s segments) also contain onlyWe investigated the performance on the read and elicited
spontaneous speech. The lexical coverage of the sponspeech parts of the IDEAL corpus in order to measure the
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The LID errors rates are significantly lower than those ob-
tained for more general tasks (compare this table with Ta-
bles 3 and 4. With prior speech detection, the LID rate is
close to 100% on the 5s segmerits {umeers)- Significant
gains are still observed by increasifg with the LID error

for N = 250 being half that ofvV = 100.

These results clearly show the impact of linguistic con-
Table 4: Language identification error rates on 5s segmentsad and ~ t€Nt on LID rates. Even for the phone-based approach,
elicited speech for the 4-language task as a functioVof Results are  the task-specific phone bigram, used during the acoustic
Without (<) and with prior speech detectio (reaa)- Tread: 1409 \jitarhi search, can capture some of this information.

5s segments]”, ..q: 644 5s segments.
4. CONCLUSIONS & PERSPECTIVES

Lexical coverage  %LID error
N Train Test ﬁ'ead T/read
0 - - 7.9 5.4
100 72.3 72.0 5.7 4.8
350 85.7 85.1 5.0 4.2
500 88.3 87.5 5.0 4.0

In this paper we have experimented with an alterna-

Lexical coverage %LID error . . ) e _
: , tive approach for automatic language identification which
N Train Test ﬁlumbers T numbers H i i i I
0 - - 36 19 makes combined use of phonemic and lexical information.
) ’ This approach is an extension of the parallel language-
100 97.1 96.9 3.0 0.6 dependent phone-based acoustic decoders, which are aug-
250 99.8  99.5 2.0 0.3 b P ’ g

mented by theV most frequent words of the given lan-
Table 5: Language identification error rates on 5s segments of redd arfuage. Incqrporatlng lexical 'nformat'on_y|e|ds a relativ
elicited speech concerning tmembers domain for the 4-language task error reduction of about 15-30% depending upon the con-
as a function ofV. Results are given for 5s segments BN, ,nper« (NO i ; i i
prior speech detection, #of 5s segments: 642) an@'mmgzrir(prior dition. qu a_g|ven (?Oﬂdltl(_)n, LID rates Were show_n toin
speech detection, #of 5s segments: 321). crease with Increasing lexical coverage. Since lexicat cov

_ erages are typically higher in specific domains, better LID
impact of a more carefully produced speech on LID ratégan e expected. The LID error for spontaneous speech

Read speech is known to be. on the average, more cleaghys 404 s more than twice as high as for read speech
articulated than spontaneous speech, with a lower rate @f 704 given comparable lexical coverages of about 70%.

speaker produced noises such as breath and hesitatioRSypstantial reduction in error rate was obtained by re-
Results are given in Table 4, where tfig ., test set is moving initial and final non-speech portions of the sig-

comprised of 1409 Ss speech segments andthe.a test 5 These non-speech events represent a noise source for

set contains about 644 5s segments of speech. the LID process, which is not sufficiently accounted for

The use of lexical knowledge reduces the LID error by 28%,gyage-independent acoustic silence and noise models.
(N = 100) for the (J...q) test set without no prior speech

detection. Using more wordsV( = 350) reduces the LID 5. REFERENCES
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