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Large Vocabulary Continuous Speech Recognition:
Advances and Applications

Jean-Luc Gauvain and Lori Lamel

Abstract— models; ability to use much larger vocabularies than in s p
The last decade has witnessed substantial advances in speeecogni- - 64 k words or more is common to reduce errors due to out-

tion technology, which when combined with the increase in aoputational 3 . ; ;
power and storage capacity, has resulted in a variety of comercial prod- of VocabUIary words; and by the adOptlon of assessmenéilri

ucts already or soon to be on the market. In this paper we revie the state-  t€Chnology development methodology largely fostered gy th
of-the-art in core technology in large vocabulary continuais speech recog- US DARPA efforts.

nition, with a view towards highlighting recent advances. & then highlight In this paper we restrict our attention essentially to |arge
issues in moving towards applications, discussing systerffieiency, porta-

bility across languages and tasks, enhancing the system put by adding cabulary continuous s_peech recognition. However deveppi _
tags and non-linguistic information. Current performance in speech recog- systems based on this technology goes far beyond automatic

nition and outstanding challenges for three classes of apphtions: dicta- speech recognition and involves other domains such asmuma

tion, audio indexation and spoken language dialog systemsediscusse factors and user interface deS|gn, natural Ianguage hets
Keywords— Speech recognition, spoken language systems, dictation,mg' generation and synthe5|s as well 'nteg_ra_t|on V_Vlth tekb

large vocabulary, speaker-independent continuous speectecogniton, €nd (database) or user (often already existing) infrasirac

acoustic modeling, model adaptation, portability, multiinguality There are many issues such as efficiency and costs considera-
tions of final product (central server vs. distributed) theg
|. INTRODUCTION not discussed. Moving towards real-world applications msea

i i : f-theack | building usable systems which involves reconsidering naeyy
This paper overviews recent advances in state-of-t cign issues such s signal capture, naise and channel compen

ratory speech recognition systems, and explores apiicat- sation, and rejection capability, while taking into accolimi-

mains made possible by technological progress. Only a f@Wi,ng in computational resources. The difficulties anstsof

years ago speech rec_ogn_ition was primarily ass_ociated aWm’é\dapting existing technology to new languages or new agplic
limited number of applications: small vocabulary isolateatd tions must also be evaluated.

recogr_ﬂtion (IWR) or phrases, mid-sized_ vogabulary domain the next section we review the state-of-the-art in large v
specific spoken language systems, and dictation SyStemﬂ?’I"'(Of:abulary continuous speech recognition, focusing on wat i

for specific user groups). For the last decade large vocahul e public domain which often implies laboratory systemise T

continuous speech repognition (LVCSR_)_has bee_n one of the (?ghlighted techniques were chosen based on experimental r
cal areas of research in speech recognition, serving as be@s

| del d algorith sults obtained in different laboratories on publicly asble data
to evaluate models and algorithms. using state-of-the-art systems. While we attempt to gdimera

The core technology developed for LVCSR can be used fig gescription, some details pertain tovisi systems. Sec-

applications other than general dictation systems, it sésves tion IV discusses three main classes of applications: ticta

as the basis for less demanding applications such as VOigggig indexing and dialog systems; as well as some of what we

interactive database access or limited-domain dictaiewell . hsider to be outstanding challenges for speech recogriiti
as more demanding tasks such as the transcription of brsﬁad(t:ﬁle context of these applications.

data. Progress in speech recognition can also boost othegrspo
language technologies such as speaker and language ickentifi [I. CORE TECHNOLOGY FORLVCSR

tion which rely on the same modeling techniques. e . L
y g g Speech recognition is primarily concerned with transcrijea

With the exception of the inherent variability of telephone cech sianal as a sequence of words. Most of today’s best per
channels, in most applications it can be assumed that c?(fe 9 d : y P

speech is produced in relatively stable environmental Kba rming systems_ are _based on astatlstu_:al model of speath ge
eration. From this point of view, speech is assumed to bergene

ground acoustic conditions) and in the case of dictatiospts . ) .
ken with the purpose of being transcribed by the machine. a}%ed by alanguage model which provides estimatésb) for

major advance is the ability of todays laboratory systenuetd all word stringsw md_ependently of the_ observed 5|gn_al, and a
. . e model of the acoustic channel encoding the message the
with non-homogeneous data as is exemplified by broadcasst daF nalz. which is represented by a probability density func-
changing speakers, languages, backgrounds, topics. dpés cSignatr, ¢ P oyap ity 1y
" ) ; i tion f(z|w). The speech decoding problem is to maximize the
bility has been enabled by advances in techniques for reimst teriori brobability of w. which is equivalent to maximiz-
nal processing and normalization; improved training téghes a posterionprobaniiity ot w, q

which can take advantage of very large audio and textual Cﬁ%stpgtggg-%ﬁiﬁ)er-(;')[j;:(gmr)lﬁozgesbiselghp:ler::%plrﬁieorg ;Zgl?
pora; algorithms for audio segmentation; unsupervisedstoo P g

L i ; - ave been known for many years, and include the applicafion o
model adaptation; efficient decoding with long span langua formation theory to speech recognition [8], [71], the ué@

Jean-Luc Gauvain and Lori Lamel are with thevis1-CNRs, France. E-mail: Spec”"{‘l representa_tion of the Sp_eeCh signal [33]1 [3é]uﬂe of
gauvain@limsi.fr and lamel@limsi.fr dynamic programming for decoding [153], [154], and the ufse 0
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context-dependent acoustic models [24], [90], [140]. likespf monly used acoustic units for LVCSR. Compared to largeraunit
this considerable progress has been made in recent yedrs; pasuch agliphones, demisyllables syllables a large spectrum of
ularly in acoustic modeling and decoding. Much of this pesgr contextual dependencies can be implemented for CD models as
can be linked to the availability of large speech and text caociated with backoff mechanisms to model infrequent cdste
pora and simultaneous advances made in computational megsous types of contexts have been investigated from a sin-
and storage, which have facilitated the implementation ofem gle phone context (right- or left-context), left and riglantext

complex models and algorithms. (triphone), generalized triphones [90], position-depenictri-
_ _ _ phones (cross-word and within word triphones), functiondvo
A. Acoustic-Phonetic Modeling triphones, and quinphones [162]. While different appreach

Most state-of-the-art LVCSR systems make use of hidd@ff used to select the phone contexts (often based on frequen
Markov models (HMM) for acoustic modeling [166]. Other appf occurrence or phonetic decision trees), the optimal et o
proaches include segment based models [59], [117], [17@] dRcdeled contexts is usually the result of a tradeoff betwesn
neural networks [2], [68] to estimate acoustic observalilee:  ©lutionand robustness, and is highly dependent on thealail
linoods. However except for the acoustic likelihood estiorg ~ raining data. This optimization is generally done by mim
all systems make use of the HMM framework to combine li{9 the recognizer error rate on development data. In faotem
guistic and acoustic information in a single network repras than the number of CD phone models, what is really important
ing all possible sentences. isto m_atch the Foj[al number of model parameters to the amount

For HMM based systems, acoustic modeling consists of mdy-2vailable training data. A powerful technique to keep the
eling the probability density function of a sequence of atiou models trainable without §a_crnjcmg model _resolutlon igake
feature vectors. The acoustic features are chosen so aiucere 2dvantage of the state similarity among different models. of
model complexity while trying to keep the relevant inforioat  91V€n phone I_Jy tying the HMM state distributions. This bas_ic
(i.e., the linguistic information for the speech recogmitprob- d€@ is used in most current systems although there aretsligh
lem). Most recognition systems use short-term cepstralifea dlffgrences in the implementation and in the naming of the re
based either on a Fourier transform or a linear predictiodeno Sulting clustered statesgnone¢69], genone¢30], PELs[13],

The two most popular sets of features are cepstrum coefficief{ed-stateq170]). Numerous ways of tying HMM parameters
obtained with an MFCC [28] analysis or with a PLP [67] analy?@veé been investigated [150], [165] in order to overcome the
sis. In both cases a Mel scale short term power spectrumiis eSP2rse training data problem and to reduce the need fortlistr
mated on a fixed window (usually in the range of 20 to 30 mgJon smoothing techniques.

with the most commonly used frame rate being 10ms. To get!n practice both agglomerative clustering and divisiveselu
the MFCC cepstrum coefficients a cosine transform is apptiedtering have been found to yield model sets with comparalite pe
the log power spectrum, whereas a root-LPCC analysis is u@fmance. Divisive decision tree clustering is particlylanter-

to obtain the PLP cepstrum coefficients. Both set of featur@8ting when there are a very large number of states to cluster
have been successfully used, but PLP analysis has been fotiAge€ it is at the same time both faster and is more robustghan
for some systems to be more robust in presence of backgrol@itom-up greedy algorithm, and therefore much easierrte.tu
noise [78], [163]. Finding the optimal tuning, which may ke d In addition, HMM state tying based on decision tree cluster-
pendent on the language or the channel conditions, cart iesuind has the advantage of providing a means to build models for
slight performance improvements. unseen contexts, i.e., those contexts which do not occuren t

As an example, theiMs! front end used to transcribe broad{raining data [70], [169]. The set of questions typicallyicern
cast news data produces a feature vector containing 3raepdfie Phone position, the distinctive features (and idezg)tof the
parameters derived from a Mel frequency spectrum estimate@one and the neighboring phones [111].
on the 0-8 kHz band (or 0-3.5 kHz for telephone data) every Many state-of-the-art recognizers make use of continuous
10 ms. For each 30 ms frame the Mel scale power spectr@@nsity HMM with Gaussian mixture for acoustic modeling.
is computed, and the cubic root taken followed by an inverdéie main advantage continuous density modeling offers over
Fourier transform. Then LPC-based cepstrum coefficients dligcrete or semi-continuous (or tied-mixture) observatien-
computed. These cepstral coefficients are normalized esipg Sity modeling is that the number of parameters used to model
stral mean removal [41] and variance normalization. Each r@h HMM observation distribution can easily be adapted to the
sulting cepstral coefficient therefore has a zero mean aitgl urmount of available training data associated to this state.
variance. a consequence, high precision modeling can be achieved for

Most recognition systems use acoustic units corresporidindlighly frequented states without the explicit need of srhom
phonemic or phonetic units (or phones in context). Howenisr i techniques for the densities of less frequented staterddes
certainly possible to perform speech recognition with@etafa and semi-continuous modeling use a fixed number of parame-
phonemic lexicon, either by use of “word models” or a differe t€rs to represent a given observation density and therefore
mapp|ng such as the fenonic lexicon [10] Compared to Wof@t achieve hlgh preCiSion without the use of SmOOthing-teCh
models, subword units reduce the number of parametersleendidues or tying techniques mentioned above.
cross word modeling and facilitate porting to new vocabular The choice of the model structure is highly dependent on the
ies. Fenones offer the additional advantage of automatin-tr constraints of the application such as limitations on add
ing, but lack the ability to includa priori linguistic knowledge. memory or computational capacity.

Context-dependent (CD) phone models are today the most comh is fairly common practice to use separate male and female
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models to more accurately model the speech data. The s@ad sometimes skip them completely), particularly in long
dependent models are often obtained from speaker-indepéndvords with sequences of unstressed syllables. Although suc
seed models using Maximui Posteriori estimators [55], or long words are typically well recognized, often a nearbycfun
may be trained on the independent data subsets if sufficitioh word is deleted. To reduce these kinds of errors, adttern

training data are available. pronunciations for long words can authorize schwa deledion
_ _ syllabic consonants in unstressed syllables. Phonologites
B. Lexical Representation have been proposed to account for some of the phonological

Lexical modeling provides the link between the lexical astr Variations observed in fluent speech [116]. The principle be
(usually words) used by the language model and the acoustgd the phonological rules is to modify the phone network to
models, with each lexical entry being described as a segueinct@ke into account such variations [26], [56], [85]. Thestesu
elementary units. Experience has shown that systemaiizalex ¢an be optlonally applied O_Iurlng f[rglnlng and r_ecogmtmn‘s-
design can improve system performance [82]. Lexical desifft Phonological rules during training results in betteoas-
entails two main parts - selection of the vocabulary items afic Models, as they are less “polluted” by wrong transoapsi.
representation of the pronunciation entry using the basitsu Their use during regognmon reduces the number of_m_lsnwch
of the recognition system. A common way of selecting a reco@he same mechanism can also be u_sed to handle liaisons, mute-
nition vocabulary is to measure the out-of-vocabulary (QO\E: and final consonant cluster reduction for French [52].
rate on development data. Judicious selection of the develg .
ment data is important in order to ensure high lexical cayerac' Language Modeling
on the test material. The best lexical coverage may be addain Language models are used to model regularities in natural
by selecting the vocabulary using only a subset of the tnginilanguage [135]. The most popular methods are statistical
data (such as the most recent data or data on a given topic)gram models which attempt to capture the syntactic and se-
stead of using all the available data [20], [53]. On averageh mantic constraints by estimating the probability of a wardi
OOV word causes more than a single error, with rates of 1séntence given the precedingl words. Different approaches
to 2.0 additional errors reported [119]. An obvious way te rehave been investigated to smooth the estimates of the proba-
duce the error rate due to OOVSs is to increase the size of théities of rare n-grams [22], [79]. The most common is ap-
lexicon. Increasing the lexicon size to 64 k or more words hasoach is to apply a backoff mechanism [76] relying on a lower
been shown to improve performance, despite the potentiat of order n-gram when there is insufficient training data, provid-
creased confusability of the lexical entries [53], so intcadic- ing a means of modeling unobservedrams. Another advan-
tion to the widely held belief, larger vocabulary does nopliyn tage of the backoff mechanism is that LM size can be arbigrari
higher word error rates if a proper language model is used. reduced by relying more on the backoff component, obtained

For LVCSR, the lexical unit of choice is usually phonemes day simply increasing the minimum number of requiredram
phoneme-like units, specific for the language. For exanthke, observations needed to include thgram in the model. This
Limsi phone set for American English has 46 units, with 45 fgroperty can also be used to reduce computational requiresme
British English, 35 for French, 49 for German, 26 for SpanisiWhile bigram and trigram LMs are most widely used, small im-
and 36 for Mandarin (to which tones may be added). In gengrovements have been reported with the use of longer 4pan
ating pronunciation baseforms, most lexicons includedassh grams [9], [162] and-grams [97] or clas&-grams [137]. Lan-
pronunciations and do not explicitly represent allophofidgs guage models are typically compared by measuring the likeli
representation is chosen as most allophonic variants cangbe hood of a set of development texts.
dicted by rules, and their use is optional. More importantly Given a large corpus of texts (or transcriptions) it may seem
there often is a continuum between different allophones ofr@latively straightforward to construntgram language models.
given phoneme and the decision as to which occurred in alost of the steps are pretty standard and make use of todls tha
given utterance is subjective. By using a phonemic reptasencount word and word sequence occurrences [25]. The main dif-
tion, no hard decision is imposed, and it is left to the adousferences arise in the choice of the vocabulary and in the defi-
models to represent the observed variants in the trainit@ danition of words, such as the treatment of compound words or
Several efforts to automatically learn and generate wasdpn- acronyms, and the choice of the backoff strategy. Thereis; h
ciations have been investigated [21], [26], [40], [12989) To ever, a significant amount of effort needed to process ths tex
the best of our knowledge such approaches, while promisitgfore they can be used.
have to date, given only small performance improvementa eve One motivation for normalization is to reduce lexical vaila
when trained with manual transcriptions [130]. ity so as to increase the coverage for a fixed size task vocabu-

There are a variety of words for which frequent alternativiary. Normalization decisions are generally languagesisioe
pronunciation variants are observed, and these variaata@r For example, some standard processing steps include tha-€exp
due to allophonic differences. One common example is th®n of numerical expressions, treatment of isolated fetiad
suffix -izationwhich can be pronounced with a diphthong oletter sequences, and optionally elimination of case rdisiton.

a schwa. Alternate pronunciations are also needed for honflanther semi-automatic processing is necessary to cofrect
graphs (words spelled the same, but pronounced diffefentipent errors inherent in the texts, and the expansion ofeabbr
which reflect different parts of speech (verb or noun) such asons and acronyms. The error correction consists prignafi
excuse, record, produce correcting obvious misspellings. Better language modahshe
Fast speakers tend to poorly articulate unstressed sgflabbbtained by using texts transformed to be closer to the gbder
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reading style, where the transformation rules and corredpo Dynamic decoding can be combined with efficient pruning
ing probabilities are automatically derived by aligningmpt techniques in order to obtain a single pass decoder thatrcan p
texts with the transcriptions of the acoustic data. For golam vide the answer using all the available information (i.@att
the number 150 may be pronounced as “one hundred fifty” or the models) in a single forward decoding pass over of the
“one hundred and fifty”. Similarly, 1/8 may be spoken as “ongpeech signal. This kind of decoder, such as the stack de-
eighth” or “an eighth” [53]. coder [124] or the one-pass frame synchronous dynamic net-
There sometimes is a conflicting need for sufficient amountork decoder [112], is very attractive for real-time apptions.
of text data to estimate LM parameters and assuring thattae d  Static decoders require much more memory than dynamic de-
is representative of the task. It is also common that differecoders when used with long span language models (3-gram or
types of LM training material are available in differing qua higher order), and as a consequence they are mostly used with
tities, that need to be combined. Combining sources regjuisamaller language models (usually 2-grams or constraineahgr
that common normalizations are carried out. One easy wayn@rs). It has been recently shown that by proper optiminatio
combine training material from different sources is tornrai of afinite-state automatdrcorresponding to a recognizer HMM
language model per source and to interpolate them. The inteetwork, substantial reduction of the overall network siae be
polation weights can be directly estimated on some devedmpmobtained, enabling static decoding with long span LMs [106]
data with the EM algorithm. An alternative is to simply merg&vidently, the size of the optimized network remains prepor
the n-gram counts and train a single language model on thdgenal to the LM size.
counts. If some data sources are more representative than ot Many systems under development use multiple pass decoders
ers for the task, the-gram counts can be empirically weightedo reduce the computational requirements if real-time deco
to minimize the perplexity on a set of development data. Whiing is not an issue [7], [51], [107], [128], [162]. In multipg
this can be effective, it has to be done by trial and error amigcoding, additional knowledge sources are progressivatyl
cannot easily be optimized. In addition, weighting thgram in the decoding process, which allows the complexity of each
counts can pose problems in properly estimating the backeff individual decoding pass to be reduced and often results in a
efficients. faster overall decoder [110]. For example, a first decodisgsp
Word class-based language models can be used to reducectireuse a 2-gram language model and simple acoustic models,
dependency on the training data, particularly when thereis and later passes will make use of 3-gram and 4-gram language
a priori reason to believe that any member of the class is maredels with more complex acoustic models. This multiplespas
likely than another. This technique is often used in spoken | paradigm requires a proper interface between passes intorde
guage dialog systems for common items such as locatiores datvoid losing information and engendering search errorforin

and times. mation is usually transmitted via word lattices or word drap
_ or N-best hypotheses. Lattices are graphs where nodes corre
D. Decoding spond to particular frames and where arcs representing word

The main challenge for LVCSR decoding problem is the gdypothesis have associate_d acoustic and I_anguage modes$ sco
sign of an efficient search algorithm to deal with the hugectea N-Pest hypotheses are a list of the most likely word sequence
space obtained by combining the acoustic and language myifh their respective scores. This multipass approachtisved
els. Strictly speaking, the aim of the decoder is to deteemiguited to real-time applications since no hypothesis carebe
the word sequence with the highest likelihood given thedewi turned until the entire utterance has been processed. Hwufev
and the acoustic and language models. In practice, hovitiger, & Small delay is acceptable, then with appropriate synéaen
common to search for the most likely HMM state sequence, i.HON, multipass strategies can be envisioned. Evidertg/first
the best path through a trellis (the search space) whereneateh Pass used to generate the |_n|t|al word Iafctlce must be amrura
associates an HMM state with given time. Since it is often pr§NPUgh to not introduce lattice errors which are unrecdiera
hibitive to exhaustively search for the best path, techeschave With further processing.
been developed to reduce the computational load by limiting .
search to a small part of the search space. Even for research E Adaptation
poses, where real-time recognition is not needed thereisitil  One of the main challenges in LVCSR is building robust sys-
on computing resources (memory and CPU time) above whitdms that keep high recognition accuracy when testing aaktr
the development process becomes too costly. The most cangenvironmental conditions are different. At the acouiktvel,
monly used approach for small and medium vocabulary sizego classes of techniques to increase system robustnedsecan
is the one-pass frame-synchronous Viterbi beam search [1@&ntified: signal processing techniques which attempbto
which relies on a dynamic programming procedure. This bpensate for the mismatch between testing and training by cor
sic strategy has been extended to deal with large vocabulaeting the speech signal to be decoded; and model adaptatio
ies by adding features such as fast match [12], [57], wortechniques which attempt to modify the model parameters to
dependent phonetic trees [109], forward-backward seafth [better represent the observed signal. Signal processsegitzp-
N-best rescoring [139], progressive search [107] and simpgroaches include normalization techniques that removielvir
one-pass dynamic network decoding [112]. An alternative to
the frame-synchronous Viterbi beam search is an asynchsono 'An HMM-based speech recognizer can be seen as a transdeeticade
search based on the* A&lgorithm such astack decodingl1], which converts the observed feature vectors to a word stvithgre to some ap-

proximation, each transduction (phone model, word modé&mguage model)
[124] or theenvelope searc[62]. can be represented as a finite-state automaton.
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ity, thereby increasing the system accuracy under misradtctbe applied to environmental mismatch [163]. Since the num-
conditions but often resulting in reduced word accuracyaundber of transformation parameters is small, large modelsbean
matched conditions, and compensation techniques whigh ratlapted with small amounts of data. To obtain ML asymptotic
on a mismatch model and/or speech model. Model adaptatfmoperties it is necessary to adjust the number of lineasfra-
is a much more powerful approach, especially when the sigmahtions to the amount of available adaptation data. Thidean
processing relies on a speech model. Therefore when comgane efficiently by arranging the mixture components int@a t
tational resources are not an issue, model adaptation igréhe and dynamically defining the regression classes. MLLR adap-
ferred approach to compensate for mismatches. Model adapédion is particularly suited to unsupervised adaptationesthe
tion can be used to reduce the mismatch between test and traiansforms may have a very small number of parameters shared
ing conditions or to improve model accuracy based on the diy the different phonetic units and therefore is very roldost
served test data. Adaptation can be of the acoustic mod#ig orrecognition errors. In practice only a few regression necasi
language models, or even of the pronunciation lexicon. are used for unsupervised adaptation, usually one or twogco
Acoustic model adaptation can be used to compensate nsigonding, for example, to speech and non-speech). As aahatur
matches of various natures due to new acoustic environptentsxtension of this approach, speaker adaptive training JSAT
new transducers and channels, or to particular speakenctiear corporates supervised MLLR in the Sl training procedure and
istics, such as the voice of a non-native speaker. The mast cgointly estimate the training speaker MLLR transforms ahd t
monly used techniques for acoustic model adaptation are pdMM parameters [4]. The SAT models which are better suited
allel model combination (PMC), maximueposteriori(MAP) to MLLR speaker adaptation result in a significant reduction
estimation, and transformation methods such as maximuen lilthe error rate by enhancing or boosting the adaptation itigaar
lihood linear regression (MLLR). PMC is essentially usedde aular for supervised adaptation on clean data.
count for environmental mismatch due to additive noise wagr  Vocal tract length normalization (VTLN) is another techudg
MAP estimation and MLLR are general tools that can be ushich has been proposed to perform some kind of speaker nor-
for speaker adaptation and environmental mismatch. malization [3]. The approach consists in performing a fietry
PMC approximates a noise corrupted model by combinifggrping to account for difference in vocal track length, wehe
a clean speech model with a noise model [42]. For practhe appropriate warping factor is chosen from a set of caatdid
cal reasons, it is generally assumed that the noise derssityalues (typically 13 in the range 0.88 to 1.12 [91]) by maxi-
Gaussian and that the noise corrupted speech model hasnii#ng the test data likelihood based on a first decoding pass
same structure and number of parameters as the clean spéescription. Like MLLR adaptation, VTLN can also be ap-
model — typically a continuous density HMM with Gaussiaflied during the training process to obtain models bettéedu
mixture. Various techniques have been proposed to estimtedecode the normalized test data. VTLN has been shown to
the noisy speech models, including the log-normal appreximg@ive small but significant error rate reduction in particuten
tion approach, the numerical integration approach, andi#e telephone conversational speech [151].
driven approach [43]. The log-normal approximation is @ud Adaptation techniques can evidently also be applied to the
especially for the derivative parameters, and all three@gghes language model. In most systems one or more language mod-
require making some approximations to estimate derivatave €ls are used, but these LMs are usually static, even thouegh th
rameters other than first order differences. choice of which static model to use can be dependent upon
MAP estimation can be used to incorporate prior knowledd@e dialog state, for example. Various approaches have been
into the CDHMM training process, where the prior informatio taken to adapt the language model based on the observed text
consists of prior densities of the HMM parameters [54], [88] SO far, including the use of eache mode[72], [134], atrig-
the case of speaker adaptation, MAP estimation may be viev@&l mode[133], ortopic coherence modelir{d42]. The cache
as a process for adjusting speaker-independent modelsrto fénodel is based on the idea that words appearing in a dictated
speaker-specific ones based on the available prior infeematdocument will have an increased probability of appearingrag
and a small amount of speaker-specific adaptation data. TRehe same document. For short documents the number of
joint prior density for the parameters in a state is usuatly a/ords appearing is small, and as a consequence the benefit is
sumed to be a product of Normal-Gamma densities for the me¥Rall. The trigger model attempts to overcome this by using
and variance parameters of the Gaussian mixture componétigerved words to increase the probabilities of other wtrdts
and a Dirichlet density for the mixture gain parameters. MAPften co-occur with the trigger word. In topic coherence eled
estimation has the same asymptotic properties as ML estimating, selected keywords in the transcribed speech are used to
but when independent priors are used for different phone-mdé€eVve articles on similar topics with which sublanguagedeis
els the adaptation rate may be very slow, particularly fogea are constructed and used to rescore N-best hypothesesitdesp
models. It is therefore advantageous to represent cdoefat the growing interest in adaptive language models, thusrigr o

between model parameters in the form of joint prior distribuninimal improvements have been obtained compared to the use
tions [143], [171]. of very large, statiom-gram models.

MLLR is used to estimate a set of transformation matrices for
the HMM Gaussian parameters in order to maximize the like-
lihood of the adaptation data [31], [92], each transforrmbei  Performance of a speech recognizer is acknowledged to be
apply to a subset of the Gaussian pdfs. This adaptation metlstrongly dependent upon the task, which in turn is linkedh t
was originally used for speaker adaptation, but it can éguatype of user, speaking style, environmental conditions &th-

IIl. ENABLING APPLICATIONS
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stantial effort is required to develop a usable system alingr straight-forward solution. First, in addition to the traription

to the task constraints, even from demonstrated statheskit of what was said, other interesting information can be ex¢ih
technology. In adapting a state-of-the-art laboratorespeec- such as the division into speaker turns and the speakeriident
ognizer for real-world use, all aspects of the speech reizegn ties, and background acoustic conditions. Second, byearinst
must be reconsidered, from signal capture to adaptive sicousegments from the same speaker, acoustic model adaptation ¢
and language models. Given application constraints, atdndbe carried out on a per cluster basis, as opposed to on a sin-
laboratory development procedures may need to be revised.gle segment basis, thus providing more adaptation datad,Thi
this section we summarize some of the issues to be considguedr segmentation can avoid problems caused by lingudssic
from the technology standpoint, such as enhancing theraysteontinuity at speaker changes. Fourth, by using acoustaeso
output with additional annotations (metadata), efficieacyl trained on particular acoustic conditions (such as widedhar
portability across languages and tasks. We do not address telephone band), overall performance can be significantly i
man factors or system integration issues which are beyoad firoved. Finally, eliminating non-speech segments andltigi

scope of this paper. the data into shorter segments (which can still be severaltes
long), substantially reduces the computation time and Kifieg
A. Metadata decoding_

More information can be extracted from the audio signal than Various approaches have been proposed to partition the con-
the simple word string. This additional information, whiish tinuous stream of audio data. Most of these approachesmedy o
useful for higher level processing of the data, can be ofguiiss  two step procedure, where the audio stream is first segménted
tic nature: that is an enhanced transcription (cased teppupu an attempt to locate acoustic changes (associated witlgeban
punctuation, semantic tags); or of an acoustic nature: kmeain speaker, background or environmental condition, andiicela
turn and identity information, audio type information arahéi- condition). The segmentation procedures can be classifted i
dence measures. For example, although in todays dictat#n ghree approaches: those based on phone decoding [64], [96],
tems the user is required to verbalize all punctuation markd158], distance-based segmentations [81], [146], and oaksth
and formatting commands, in the future systems trained en &#sed on hypothesis testing [23], [159]. The resulting segm
propriate texts may be able to propose punctuation maridis [ are then clustered (usually using Gaussian models), wiaete e

Semantic tags are another type of linguistic informatig#uster is assumed to identify a speaker or more precisely, a
which can be associated with the transcription. Adding sagh  Speaker in a given acoustic condition. The partitioningapph
entails app|y|ng standard natural |anguage processingDINLUSGd in the lmsi BN transcription system is not based on such
techniques to an imperfect transcription of the speeclerattan & two step procedure, but instead relies on an audio stream mi
to a written text. There are two sources of differences caetpa ture model [50]. Each component audio source, represeating
with written texts: inherent differences in written and kpon Speaker in a particular background and channel conditgoim, i
language, and errors due to the automatic transcriptioogss turn modeled by a mixture of Gaussians. The segment bound-
Example tags can be named entities (names of persons, plagégs and labels are jointly identified using an iterativexima
organizations)l monetary amounts, dates' times, etc_'eﬂsaw mum likelihood segmentation/clustering procedure usiag@
higher level tags such as topics (e.g., politics, weathesntefi- sian mixture models and agglomerative clustering. In @sttr
nancial,...). The same HMM-based probabilistic framewaaik ~ to partitioning algorithms that incorporate phoneme rettign,
be used to assign tags [103], [157], [164], while also ustag-s this approach is language independent. (The same modeis hav
dard NLP techniques such as tokenization, stemming, mgppibeen used to partition English, French and German data.) The
etc. Detailed semantic tagging is often required for diabmks result of the partitioning process is a set of speech segnweittt
where it is common to use task-dependent representatichs sspeaker, gender and telephone/wide-band labels.
as semantic frames, with predefined semantic slots andszalue _

Concerning the acoustic nature of the signal, the same a- Confidence Measures

sic modeling techniques can be used to identify other ae®)  Confidence measures have been proposed as a way of detect-
such as the gender and identity of the speaker [86], and tie bang those hypothesized words that are likely to be erroneous
ground acoustic conditions [46], [144]. Such informatisiien by estimating word and sentence correctness [19], [58]7]j14
converted to time-aligned markups, can be accessed byhsea®0], [161]. At the sentence level the goal is to get an estim
engines. Determining the acoustic structure of the datles fof Pr(w|z) for the hypothesized word string. One common
subject of the next subsection. approach consists of using the posteftofw|z, \) as an esti-
mate. This assumes that the recognizer models (acoustielmod
language model and lexicon designatedX)yare correct and
When transcribing continuous audio streams such as bro#uht the decoder does not make any search errors. Further ap-
cast data, it is advantageous to first partition the dataliotno- proximations may use simpler acoustic and language models
geneous acoustic segments prior to word recognition.tarti to speed up the computation, for example, the word language
ing consists of identifying and removing non-speech sedgspermodel can be replaced by a phone language model [48]. For
and then clustering the speech segments and assigning bamalst LVCSR tasks we are essentially interested by a wordl leve
width and gender labels to each segment. While it is posgibleconfidence measure, i.e., the goal is to obtain an estimate of
transcribe the continuous stream of audio data without aiay p Pr(w;|z) the posterior probability of theé-th word in the hy-
segmentation, partitioning offers several advantages this pothesized word string, or alternativeBe(w;|x, A). An esti-

B. Data partitioning
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mate of this latter probability can be efficiently computed bAggressive pruning is generally needed to achieve read-tipx
applying the Forward-Backward algorithm to a word graph-geeration for LVCSR tasks on currently available platformist
erated by the speech recognizer [160]. However since tlsipo inevitably is a source of search errors, and as such, mahy tec
rior probability relies on incorrect models, it is also commto niques have been proposed to reduce these search errors and t
use additional features such as word and phone duraticgeksp limit their effect on the recognizer accuracy. One of the mos
ing rate, and signal-to-noise ratio to better approximia¢atord attractive decoding strategies for real-time operatiainésone-
posterior probabilityPr(w;|x). All these predictors can be com-pass frame-synchronous dynamic network decoder whichsreli
bined and mapped to the confidence score by using either ado-a phonetic tree organization of the decoding networkgusin
gistic regression [58], a generalized additive model [147]a LM state conditioned tree copies [6], [109], [112]. The s&x
neural-network [161]. These models are trained on devedmpmof such a single pass approach is highly dependent on the use
data by maximizing a confidence score metric such the normaf-efficient pruning strategies associated with a languagdah

ized cross entropy. The proper set of features depends on lbekahead [115], [138]. Multipass approaches can also bd us

particular application. successfully for close to real-time operation by chunkihg t
p y 9
o data and running the different pass in parallel with a slagtay.
D. Efficiency As explained in section II-A model and state tying are com-

Efficiency of the speech recognizer is not usually a high piaonly used to improve the model accuracy but optimal tying
ority for laboratory systems, where it is typical to develmp (from the accuracy point of view) can still result in a veryge
loaded (lots of memory and disk space), high powered worrodel with 5 k to 30 k states when large amounts of training
stations. The performances of laboratory systems are lysulata are available. Parameter tying is also powerful tegiento
optimized so as to obtain the lowest word error given thentraireduce the number of parameters, and can be applied to all the
ing data and the facilities available. However, for comriarc levels of the model structure (allophone model, state antsGa
products cost is often an important factor which means thet tsian) [150]. However, more flexibility is available for Gaien
efficiency of the recognizer becomes a higher priority, bath Pdftyingin that large model reductions can be obtained eith
terms of memory and computational requirements, as does $i§éfificing too much in terms of system accuracy. This is exem
cost of the recognition platform. plified by the subspace distribution tying approach [995d1L

Fast decoding techniques are of primary interest, and théfpich in its most elementary implementation can be seen as a
requirements influence the choice of model structure ang| siguantization of the model parameters.
and as a result have an impact on the memory needs. FoProcessing time constraints significantly affect the way the
speaker-independent LVCSR based on Gaussian mixture Hvagoustic models are selected. For each operating poirigifite
between 30 and 50% of the recognition time can be spentlialance between model complexity and search pruning level
computing the HMM state likelihoods, with the remaining éimmust be found. To illustrate this point, Figure 1 plots theravo
corresponding to the search procedure itself. This is due&gor rate as a function of processing time for 3 sets of atus
the large number of states needed to represent the contexedels, which taken together minimize the word error rairov
dependent phone models, even when state tying is used. Fhiwide range of processing times (from 0.3xRT to 20xRT) for
computation can be reduced either by implementing a fat stthe LiMsI broadcast news transcription system. (Transcribing
likelihood computation which usually requires making saape such inhomogeneous data requires significantly highergssec
proximations, or by reducing the model size which has the attg power than for speaker adapted dictation systems, dileto
ditional advantage of reducing the memory requirements. |ack of control of the recordings and linguistic content,igfh
widely used technique for speeding up the state likelihamd-c on average results in lower SNR ratios, a poorer fit of the scou
putation is vector quantization of the feature vector space- tic and language models to the data, and as a consequence, the
der to prepare a Gaussian short list for each HMM state arfd eageed for larger models.) These results on a representative p
region of the quantified feature space [17]. With this teqhei tion of the Hub4-98 data set are obtained on a Compag XP1000
the number of Gaussian likelihoods to be computed during dg0 MHz machine with a 3-gram language model, and without
coding for each input frame and each state can be reduced &ecaustic model adaptation. The large model set (350 k Gaus-
fraction of the number of Gaussians corresponding to theeactsians, 11 k tied states, 30 k phone contexts) provides thie bes
states with only a small loss in accuracy. performance/speed ratio for processing times over 5xR€ Th

As discussed in section |1-D there are many efficient sohgtio92 k model set (92 k Gaussians, 6 k tied states, 5 k phone con-
to the search problem, however finding the optimal solutfon fiexts) performs better in the range 0.9xRT to 5xRT, whereas a
always a trade-off between the model accuracy and efficiéntich smaller model set (16 k Gaussians) is needed to go under
pruning. In general better models have more parameters, &gal-time.
therefore require more computation. However since the tsode The language model, usually a 3-gram or 4-gram backoff LM
are more accurate, it is often possible to use a tighter pguniin state-of-the-art systems, can have a very large numbea-of
level (thus reducing the computational load) without angslo rameters (i.e., more than 10 million), and therefore mayireq
in accuracy. In fact, limitations on the available compigta&l prohibitive amounts of memory for commercially viable plat
resources can significantly affect the design of the acoastil forms. One of the attractive propertiesrefjram models is the
language models. For each operating point, the right balarpossibility of relying more on the backoff components by in-
between model complexity and pruning level must be foundreasing the cutoffs on thegram counts, thus reducing signif-
Therefore recognizers must be compared at the targeted .spésantly the LM size. More elaborate-gram pruning have also
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50— —— ‘ and language models can greatly improve the performance of a
' system throughout the development process.

Determining the pronunciation lexicon is often one of the
most labor intensive aspects of porting to a new task. Al-
| though letter-to-sound conversion programs are availénle
some languages, these have almost exclusively been dedelop
for speech synthesis purposes and therefore are less approp
8 ate for speech recognition. One of the most common tech-
nigues is to make use of a reference lexicon which has been
verified (usually both manually and in the context of a sy3tem
1B 1 to serve as a base lexicon. The baseform pronunciations may

ol e \ have been generated using letter-to-sound rules. New veoeds
03 oo o XRT then added either by using the same letter-to-sound rulgspe
Recognition Time (x real-time) .. A
nunciation generation tools [82] and often manually cdedc
Fig. 1. Word error vs. processing time for three acoustic etsdts with 350k, A means of automatically adding new words and pronunciation
92k and 16k Gaussians (for broadcast news data). to the recognition lexicon is crucial for successful dephaynt
of speech technologies.

. . Although English has been the predominant language for the
been proposed [145], [148] to substantially reduce the L SIcomputer world there has been a large growth in the inforonati

with negligible IOS.S i accuracy. An alterative approafirtit available in electronic form (both online and offline) in nyaof
the memory requirements is to keep most of the LM paramet%s

. . . . fhe world’s languages. As a result, speech recognition atd n
on the disk, since most-grams are never used, combined W'ﬂ&ral language processing in multiple languages has become a
a cache of the scores for accessed LM states [127]. guage p 9 P guag

necessity. Building a recognizer for another language tssno
different than building a recognizer for a new task, patacy
for close languages. Language-dependent system comgonent
Portability is concerned with the porting of technology tene (such as the phone set, the need for pronunciation alteesati
or changing tasks, and/or to other languages. While the sa@fephonological rules) evidently must be changed. Other lan
basic speech recognition technology has been successfgty guage dependent factors are related to the definition angsaco
for a variety of tasks and languages, substantial effortislived tic confusability of the words in the language (such as homo-
to construct the acoustic and language models, and to gevedone, monophone, and compound word rates) and the word
the recognition lexicon. With today’s technology, the adéipn coverage of a given size recognition vocabulary. Taking au-
of a recognition system to a new task or another language f@unt language specificities can evidently improve recogmi
quires the availability of sufficient amounts of transcdlgain- performance. For example, tonal languages such as Chinese
ing data. Often, however, the necessary resources are aibt aynay benefit from explicit modeling of pitch, which in turn may
able and generating them can be long and expensive. Mininfigquire modifications to the feature analysis used.
ing the required training data (or determining how to opllgna At the lexical level, a given size lexicon will have diffeten
acquire such data) remains an outstanding challenge. ¥et doverage across languages and highly inflected languages re
performance and development costs largely depend on tile avauire a larger lexicon to adequately represent the language
able resources and the experience of the system designer. example, comparing the number of distinct words in comggrab
Acoustic models trained on a sufficiently large and varied cosized newspaper text corpora for English, French, German an
pus (for example a minimum of 10 hours of speech from 1dtalian, the German corpus contains over twice as manyndisti
speakers) appear to be general enough to use as bootstrap W@ads as French, which has more than Italian and English184]
els for a new task without task-specific training data if api- The larger number of distinct words stems mainly from the Aum
ate normalization and compensation techniques are used toler and gender agreement in nouns, adjectives and pastiparti
duce differences in the recording conditions (microphahen- Ples, and the high number of different verb forms. As a conse-
nel, environmental noise). If speed is an important faitegn duence, to obtain a lexical coverage of 95% on newspapes, text

still be interesting to train on task-specific acoustic dataetter an English lexicon need only contain 5000 words, compared to
account for the phonetic coverage of the task. 20,000 for French and Italian, and 65,000 for German.

Language model and lexicon development remain quite task
dependent. For some tasks, such as domain-specific dictatlo
there is a wealth of written texts that can be used for voeaigul  One of the main motivations for automatic processing of the
selection and language model estimation. For other tasks,audio channels of broadcast data is to serve as a basis for au-
particular for spoken dialog systems, very little (if angxtdata tomatic disclosure and indexation for information retab{tR)
may be available, and data collection is an unavoidableldeveurposes.
opment step. Using a recognition system for data collediam

been found to be quite effective for such tasks, with SU(MEI&S 2The newspaper text corpora compared areWadl Street Journa(English,
M words) [5],Le MondgFrench, 38 M words) [52JFrankfurter Rundschau

L .. 7
_more accurate SyStem_S available as the_ amount of tralnn_mg c{%erman, 36 M) [1], andl Sole 24 Ore(ltalian, 26 M words) [37], where the
increases [59]. Techniques for adaptation of both the dmousotal number of words of text material are given in parengises

45 - B
—— 350k gaussian

40 L N N B 92k gaussiarn
R A 16k gaussians

(27}
|

35

30

% Word Error

25 -

E. Porting across languages and tasks

Indexation
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While in traditional IR tasks the resultis typically an ordeé word sequences that are subject to strong reduction and coar
set of related documents, for spoken document retrievaR)SDticulation. Word-class based language models are ofteth tase
the result is an ordered set of pointers to temporal excéddls give a prioriinformation to the speech recognizer and redhe
or to complete stories if an a priori topic segmentation igilav risk of model inaccuracy due to non-representivity of traérty
able. SDR can support random access to relevant portionsraf data. Word classes are usually manually specified, but ca
audio or video documents, reducing the time needed to iiyentbe automatically derived.
recordings in large multimedia databases. The aims of pi®je Different approaches have been taken to interface the peec
like INFORMEDIA [65], THISL [2], and QLIVE [73] are to de- recognizer with the natural language understanding (Nldi)<
velop archiving and retrieval systems for broadcast da&nto ponent which extracts the meaning of the spoken query. Irt mos
able efficient access to large multimedia digital librari@sIVE  systems a bottom up approach is taken, where the output of the
is also developing tools for cross-lingual access to theieed recognizer is passed to the NLU component. The recognizer
documents via online query translation. output can be the most probable word sequence, an N-best list

Automatic text indexation is classically based on documeat word strings, or a word lattice. In the latter cases, théJNL
term frequencies, where the terms are obtained after standeomponent can be used to filter the recognizer output. Whethe
text processing, such as text normalization, tokenizastop- or not there is a need for more than the best word string depend
ping, stemming, query expansion, and named-entity ideatifi on what information is in the recognition language model and
tion [131]. The same techniques have been successfullyegippwhether more information is available in the NLU. For exam-
to automatic transcriptions of broadcast news radio and & d ple, in general the recognizer has limited task domain anddwo
uments. Query expansion making use of additional (pajall&nowledge. So if the best word sequence output by the recog-
sources text data (preferably from the same epoch as the audrer isWednesday, January thirtiethut the thirtieth of January
data) to locate terms which co-occur with the terms in thg-oriis not a Wednesday, the language understanding compongnt ma
inal query so as to enrich it, make spoken document retrie\a@ able to detect this inconsistency. If tiindrteenthis both a
less sensitive to speech recognition errors [74]. In additbpic Wednesday and in an alternative solution, a clarificati@hog)
segmentation and identification are particularly helpfudtruc- with the user can be avoided by using this knowledge. The use
ture audio streams which, as opposed to text documentdjysuaf dialog context (or dialog state) language models is a way o
have no a priori structure such as story headline and boiesdaradding task-specific knowledge in the recognizer [32], | E38&l

may reduce the need for word graphs or N-best lists.
G. Spoken Language Dialog Systems Most understanding components are based on rules, how-

Spoken language dialog systems (SLDSs) require going §¥€r Some stochastically based systems have been rep@gied [
yond transcription to understanding, and incorporaterdbgh-  [141], [105]. The attraction of statistical methods stemsrf
nologies beyond the focus of this paper, such as dialog maReir success in speech recognition, with human intererte-
agement, natural language understanding and generatin &9 limited to labeling (or correcting labels). Known disad-
speech synthesis. Acoustic signal capture, and integratio t2ges are that stochastic models require large trainingpcanin
speech with other modalities, such as tactile input, arerats- Order to reliably estimate model parameters, and the mazlel a
pects to be considered. Some of the design issues in dewglogiuracy is highly dependent upon the representivity of tagir
a speech recognizer for an SLDS are discussed in [15], [2!f]9 data. Also, generalizations that can be made relataesjly
[32], [35], [48], [49], [59], [61], [63], [125]. by huma_ns may not be automatically Igarned._ _

Given the nature of interactive dialog, several consteaime A confidence measure can be assoqated with each worq inthe
placed on the speech recognizer. The primary requiremeats @UtPut, and uncertain words can be rejected by the recogoize
for real-time, speaker-independent, recognition of saoeous the higher level understanding components, or confirmeavia
speech. What is really meant by real-time speech recognitig®nfirmation subdialog. Rejection has strong implicatitars
is that there is a very short delay from when the user finishE interaction with the user (there is a risk of annoyinguser
speaking and the system responds. An acceptable latenoy (€% asking for a repetition) and on average leads to longer di-
the order of 0.5 seconds. This means that speech recogistiofl09s. However, this may be preferable to making an erraf, an
being carried out during signal acquisition, in contrastgeech May be more successful in the long run.
recognizers designed to function in a sentence or segna=sb
batch processing mode, and requires alternative appredohe
cepstral and energy normalization. One straightforwatd-so This section addresses three main classes of applications
tion is to base the normalization on a window of previously oltbased on LVCSR technology, and provides some specific ex-
served frames. Most real-time decoders make use of a singieples taken from our experience amisi. We do not attempt
pass search. In order to ensure that a recognition respenswiprovide an exhaustive survey of available systems, lthera
given within an acceptable delay, a common solution is tcausaim to highlight some application areas of recent atteritidhe
dynamic pruning approach, based either on the number afacttommunity.
solutions. If a two-pass search is used, the second pasdmust Dictation is the most obvious application of automatic shee
very fast. recognition technology, as is evidenced by long historyesf r

Itis common practice for the language models of SLDSs &®arch and product development and the availability oftos,
explicitly model filler words and breath noises, as theirwec off-the-shelf systems for a variety of platforms and largesa
rences are not random, and to use compound words for comniRerhaps the most notable characteristic of this task is Heat t

IV. APPLICATIONS
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speech data is being produced with the explicit goal of beiisgeaker-dependent, requiring an initialization sessiowhich
transcribed by a machine. speaker-specific training data was obtained, and for the mos
The second application area goes beyond dictation to the trpart, recognized isolated words. IWR mode provided two main
scription and indexation of more general audio data, such-as advantages: simplification of the decoding process and ef th
dio and television broadcasts, or meetings and telecamfess means for error correction. Today most systems make use of
and any kind of audio data mining. Several characteristics gpeaker-independent acoustic models that are adapteideon-|
this type of audio data can be noted. First, it can be consitleto the new user with little or no explicit enrollment. Efficie
“found” data in that it is produced for other reasons, and it imodel adaptation techniques (as discussed in Sectiondl€)
only a secondary benefit to be able to automatically stre¢he used to minimize the need for speaker-specific data thul/vast
data for other uses. Second, the data consists of a consmusu improving the perceived system usability.
dio stream, where there are multiple speaker turns (mayee ov An advantage of the dictation task from the developers view-
lapping), and there is no a priori segmentation into serggncpoint is that it is relatively simple to evaluate the corehigal-
Third, the signal capture and background environment can dgy by comparing the system hypothesis to a reference word
only more or less controlled. The earliest work in this ategt t transcription. As such, dictation has served as a baseéirferp
we are aware of is the NSIFORMEDIA project [65] under the mance measure in LVCSR, most notably in the benchmark tests
Digital Libraries News-on-Demand action line. A speciat-se sponsored by the USARPA programs and coordinated by NIST
tion of the Communications of the ACM was recently devote@ational Institute for Science and Technology). This elos-
to this topic [102]. lation between system development and evaluation, whish ha
The third application class is that of dialog systems. Fer thbeen referred to as “assessment driven technology develofim
most part such systems aim to enable vocal access to sterediad led to larger performance improvements despite increas
formation. While there has recently been an emergence ef diagly difficult tasks. The commonly used error metric is the
log systems on the market, the dialog capability of thestesys “word error” rate defined as%word error = %substitutions +
is usually more constraining than laboratory prototypes.dy  %insertions + %deletiong~or the D\RPA benchmarks, a case-
not address the class of small vocabulary ASR systems as iagensitive text form has always been used to measure theé wor
starting to be seen in telephony applications, such as atém error rate. For read speech tasks, the state-of-the-gpeiaker-
operator assistance or call routing where the keypad menu elependent continuous speech recognition in 1995/1988 [1

lection is replaced by vocal commands. [120] is exemplified by the benchmark tests on North American
o Business News task. The acoustic training data was congprise
A. Dictation of about 160 h of read newspaper texts from several hundred

The first commercially available products based on large veP€2akers and the language model training material was com-
cabulary automatic speech recognition technology wergtfer Prised of 400 M words of newspaper texts, from a variety of
dictation task, and today a variety of software-only contins SOUrces. On test data recorded with a close-talking mi@ogh
speech dictation systems are available for the generaiqub\Vith @n SNR of about 30 dB, word error rates around 7% were
Two main types of dictation tasks can be considered: genefitained using a 65 k word vocabuldriThe same read speech
dictation and dictation in specific domains. The first task-co'€corded with a table-top microphone in a computer roonweffi
cerns dictation of letters or email, and various other teRtig- €nvironment (noise level 55 dBA, SNR about 15 dB), resulted
tation for specific domains has mainly addressed the leghl 4 & Word error of about 14% with noise compensation. With-
medical fields and subspecialties, where there has beerga I8Ht N0ise compensation the word error rates of systemsetiain
tradition of dictation services. Another dictation taskat of ©On only clean speech data is over 50%. The word error for read
aids for language learning, is not considered here. Whiefr N€Wspaper texts recorded over long distance telephorevias
the technological viewpoint, dictation is usually thoughitas ©Ver 20%. Spontaneous dictation of business and financia ne
the “simple” transformation from speech to text, this vieven  WasS addressed by asking subjects with experience in jdamal

looks a variety of formatting and integration issues which ato read about a subject and then dictate a text. The joutsalis
important for products. were not allowed to read from a draft, but were allowed to re-

The speech data input for a single dictation session is usgct iII-forOmed sentences [80]. The word error on this datsw
ally from a single speaker and has a restricted linguistiteat. about 14%. Another task addressed speech recognition ef non

The data is close to read speech, and may even be produi@ive talkers. With a set of 40 adaptation sentences, speak

from a handwritten manuscript. Even if the text is not writte@d@ptation reduced the word error rate by 2 (from 21% to 11%).
in advance, the speech can be considered “prepared” inttaatAlthough not an official benchmark result, comparable ward e

speaker has planned what text to say. The word stream is 4f€preductions have been obtained for native speakers ar oth

quite close to the written form, since the result will comfor @SS

to the rules of the written language and not those of spokenWh”e the results given here are for American English, some-

language. The microphone can be selected by the system‘ﬁ@‘:"t comparable results have been reported by va_riousfeites
veloper, and is usually a close-talking headset mountedomicOther languages. The LREQBLE (Speech recognizer Qual-

phone. Most systems have a push-to-talk control (or an equilfy Assessment for Linguistic Engineering) project [16#hich
lent sleep/wake-up command) to let the recognizer know whiffned to assess language-dependent issues in multilirgpsal

it ShOUId_ be transcrlblr_lg. . . . 3Wwith the exception of the telephone recordings, the spaakere allowed to
The first commercially available dictation systems wern@peat a recording if s/he noticed an error or were not satisfi
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ognizer evaluation, demonstrated that the same recogréai- The linguistic models are similarly trained on large text-co
nology and evaluation methodology used for American Ehglipora from various sources with different linguistic projes,
could be successfully applied to British English, Frencll arsuch as newspaper and newswire texts, Internet data, cemmer

German. cial transcriptions and detailed transcriptions of acoudata.
_ _ For example, the imsi American English language models
B. Audio Indexing result from the interpolation of 3 language models trained o

Automatic speech recognition is a key technology for audf§fferent sources: 200 million words of commercial broasica
and video indexing, for data such as radio and televisioadyo NEWS transcriptions; 350 million words of North Americansu
casts. The transcription and indexation of speech recoaled€SS néwspapers and Associated Press Wordstream texts; and
meetings, workshops and teleconferences has many sitieigaril-6 million words corre_spon_ch_ng to the trangcrlptlons oé th
to broadcast data. The transcription of such data presemts Proadcast news acoustic training data. The importanceef th
challenges as the signal is one continuous audio strearoghat 2Ccurate transcriptions can be seen in that the interpolat-
tains segments of different acoustic and linguistic nature efficient of this data is .25, despite the limited amount ladé.

The characteristics of this type of data are quite diffetease [N fact, there is only a slight performance degradation und
of data input to most speech recognizers in the past. Upthetil 2% rela_ltlve) if only the commer_m_al transcripts and acaudtta
last few years, speech recognizers have been confrontedspri (ranscripts are used for LM training.
ily with read or prepared speech, as in dictation tasks wtrere ~ Most of todays state-of-the-art systems for transcriptibn
speech data is produced with the purpose of being transcritoadcast data employ the techniques described in Sedtion |
by the machine, or with limited domain spontaneous speechStch as PLP features with cepstral mean and variance normal-
more-or-less system driven dialog systems. In all casegyghr 1zation, VTLN, unsupervised MLLR, decision tree state gin
can adapt his/her language to improve the recognition perf@ender- and bandwidth-specific acoustic models. The recog-
mance, which can be crucial for some applications. An istereNition vocabulary contains 65,000 or more words, with a lex-
ing aspect of the broadcast news domain is that, at leasttfar wical coverage over 99% on the American English broadcast
concerns major news events, similar topics are simultasigoun€Wws data. Given the spontaneous nature of parts of the audio
covered in different emissions and in different countries kan-  data, it is important to explicitly model filler words and btk
guages. Automatic processing carried out on contempoteneB0ise [46], which are less common in dictation.
data sources in different languages can serve for multihg Word recognition is generally performed in two or more de-
indexation and retrieval. Multilinguality is thus of pantilar in- coding passes. The first pass is used to generate an initiell wo
terest for media watch applications, where news may firsikorehypothesis, which is used for unsupervised cluster-basedsa
in another country or language. tic model adaptation. This adaptation, which aims to reduce
Radio and television broadcast shows are challengingre tréhe mismatch between the models and the data, is needed for
scribe as they contain signal segments of various acoustic #enerating accurate word hypotheses. When multiple decod-
linguistic natures. The signal may be of studio quality oymang passes are carried out, informationis usually trartsahitia
have been transmitted over a telephone or other noisy chanwerd graphs or lattices.
(i.e., corrupted by additive noise and nonlinear distorso or Over the last 4 years tremendous progress has been made
can contain speech over music or pure music segments. Gradumtranscription of broadcast data [121], [122], [123]. t&ta
transitions between segments occur when there is backdrowofrthe-art transcription systems achieve word error ratesind
music or noise with changing volume, and abrupt changes 2@ on unrestricted broadcast news data, with a word error of
common when there is a switch between speakers in differ@out 15% obtained on the recent NIST test sets which were se-
locations. The speech is produced by a wide variety of spea&eted to include of higher proportions of studio and anruauin
ers: news anchors and talk show hosts, reporters in remodie Iodata [39]. Transcription performance varies quite a bibasr
tions, interviews with politicians and common people, umkn the data types. The average word error rate reported on pre-
speakers, new dialects, non-native speakers, etc. Spemuh fpared, announcer speech was about 8% in theAx' 98 bench-
the same speaker may occur in different parts of the brogdcagark data and under 2% for some speakers. Performance de-
and with different background noise conditions. The lirsguicreased substantially for spontaneous portions (average w
tic style ranges from prepared speech to spontaneous speedior 15%), degraded acoustic conditions (average wouat err
Acoustic and language modeling must accurately account fd8%), or speech from non-native speakers (over 25%).
this varied data. The transcription of broadcast data has also been a recent
Two principle types of problems are encountered in automatocus of research efforts in several other languages, diotu
cally transcribing audio data streams: those relatingeoslied French, German, Italian, Japanese, Mandarin and Spar@$h [1
acoustic properties of the signal, and those related tartheails- [73], [77], [114], [123] using the same technology. The nepd
tic properties of the speech. Noise robustness is also deéadeerror for these languages are somewhat higher than for Amer-
order to achieve acceptable performance levels. In ordbetoican English which can be at least partially attributed te th
robust with respect to the varied acoustic conditions, tweis- smaller amounts of training data available in other langsam
tic models are typically trained on large corpora (sevesaktof particular to the difficulty of obtaining commercial tramigts
hours to over a hundred hours) containing all data typesdBarfor language model estimation. For example, in the context
limited acoustic models are often used for segments latsdedof the LE-OLIVE project, we have developed transcription sys-
telephone speech. tems for French and German, with word error rates around 30%
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higher than the best reported results for American English. large written corpora, for specific tasks, there usually @aoe
The same technology can be applied to other problems, swgiplication-specific training data (acoustic or textuabikable.
as the transcription of meetings and conferences, or teleph It is therefore necessary to collect application-specititad
conversations (help lines, call centers). Each of thegsfasses which is needed for accurate modeling at different levets(a-
a set of specific problems with regard to signal capture (singdic, lexical, syntactic and semantic). This data collaectiepre-
or multiple channels), speaker population, speaking siyi@ sents a significant portion of the SLDS development effort.[8
linguistic content, etc. The closest task for which speetog- Acquiring sufficient amounts of LM training data is more chal
nition results are publicly available is theaRPA Hub5 conver- lenging than obtaining acoustic data. With 10 k queries-rela
sational speech recognition task using the Switchboartde@ tively robust acoustic models can be trained, but this numbe
multilingual Callhome (Spanish, Arabic, Mandarin, Japame of queries will typically contain fewer than 100 k words, whi
German) corpora. The word rates reported for this data, en tmay not be sufficient for word list development or for traigin
order of 30-40% [168], are substantially higher than thase fn-gram language models, and are unlikely to yield a complete
broadcast news. The Callhome data is particularly chailleng coverage of the task.
to transcribe as the conversations are between two peoglie th Two broad classes of applications are considered: telegshon
know each other, and speak in a familiar manner about subjesaised services and multimedia interfaces. Telephonecesrvi
of common interest. In addition there are varied acoustitlico are a natural area for spoken dialog systems as the only means
tions with respect to the background environment and thee tebf interaction with the machine are via vofcand have thus
phone channel. been the focus of many development efforts. Since all intera
As part of the SDR’99 TREC-8 evaluation 500 hours of urtion with the caller is by speech, dialog design and respgese
partitioned, unrestricted American English broadcasadatre eration are very important aspects of the system, partigula
indexed using both state-of-the-art speech recognizegutsit the context of natural, mixed-initiative systems wheretbker is
and manually generated closed captioning [45], [155]. The dree to change the direction of the dialog at essentiallyoigt
erage word error measured on a representative 10 hour sulisétme. Therefore careful consideration must be given ® th
of this data was around 20% for state-of-the-art systemk [4Bontent and formulation of clear and concise system regsons
It is important to note that not all errors are important for i Information kiosks and multimedia web interfaces are sprea
formation retrieval, particularly since most informaticatrieval ing in availability, providing different ranges of servisesuch as
systems first normalize word forms (stemming). Only smdH diautomated ticketing, orientation information, and gehtenarist
ferences in information retrieval performance were obserfor services. Audio output (both sound and speech) can be used to
automatic and manual transcriptions when the story boueslardirect the users attention or to provide information. Forsino
are known, indicating that the transcription quality mayIm®a multimediainterfaces, the input modalities are limited touch
limiting factor on IR performance for current IR techniques screen and a keyboard, however there is increasing interest
speech as an alternative input modality.
C. Spoken Language Dialog Although these 2 application classes share many commonali-

There are many potential services that are based on spolgf. there are important differences that should be pdiote.
language dialog systems. The simplest, which are starting &he main differences concern dialog strategies and sigaml ¢
ready to enter the marketplace, are quite similar to DTMEebla ture. By necessity, dialog plays a much more important role
voice response systems, with little requirements for rmtian- in telephone-based services, where in general multiplereal
guage understanding and with relatively constrained dialo System turns are required to obtain a satisfactory respdrwe
One example, is call routing services which range from rel§xample, it is preferable to ask the caller to provide addai
tive small vocabulary (100-500 words) tasks, such as auiomgonstraints to limit the possible solutions, then to simlgd
standards in small companies, to several thousand words ®§ra long list of possible solutions satisfying a requestttve
standards at large organizations or on-line help serviGse Multimedia interface it can be more efficient to display @lsp
of the most explored application domains is that of travésin Sibilities on the screen, letting the user select amongshth
mation services, but other areas have also been of intereist s Signal capture considerations are also quite differente-Te
as stock quotations, weather information, names, addressk Phone signal has reduced bandwidth, and may be affected by
te|ephone numbers, used car 5a|es, insurance po“ciesmnd ghannel distortions and varyied handset characteristieer
eral tourist information, to mention a few. multimedia interfaces a wide-band Signal is available, thet

In order to enable user-friendly interaction with a machin&icrophone is generally far from the talker's mouth. In arde
it is necessary to be able to recognize naturally spoken-spé® account for different heights and positions of the exgect
taneous utterances. It cannot be assumed that the userewilHger population, it may be desirable to use multiple micro-
familiar with the system (or with speaking to computers)j an Phones [48]. One obvious solution is to use a handset toalontr
general a user can be expected to interact only briefly wigh tHe microphone position, but this has the disadvantage-of re
machine, so there is very little data available for modelaata ducing the user's freedom to use other input modalities.sioi
tion. In certain targeted applications it may be possibleage background acoustic conditions are to be expected for meti
a known user group, in which case this additional informatiglia interfaces located in public places. Background noése ¢
can be used to improve the overall transaction performance. ) )

There are still large populations that do not have touch tmuess, and the

) In Cont_raSt to a dictation applicatio_n_ where it is relaérgonomics of keypad input with the popular telephone desigkeys on the
tively straight-forward to select a recognition vocabylfiom handset s not evident!
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evidently also be a problem for telephone services if theisal transcription conventions and text normalizations areroftsed.
made from a noisy place. Also these numbers can be misleading as the word error mea-
For both types of applications the capability of the usento i sures all differences between the exact orthographic fdrtineo
terrupt the machine is often considered as crucial for Uigpbi query and the recognizer output, and some of recognitiarerr
(There may of course be dialog contexts where it is desittable(such as gender or plurals) are not important for understand
disable barge-in to ensure that the caller hears the entse m While there are commonly used measures and methodolo-
sage.) For the telephone application echo cancelation beustgies for evaluating speech recognizers, the evaluatiorpof s
used to remove the echo of the known synthetic speech in oren dialog systems is considerably more complicated due to
to recognize what is said by the caller. Evidently bargedmolr  the interactive nature and the human perception of the perfo
is based on the recognizer output, and not just speech aetectmance [15], [27], [98]. It is therefore important to asses$ n
is more efficient and less prone to errors. Simple energycbasgly the individual system components, but the overall sys-
techniques can be triggered by spurious noises, which cantee performance using objective and subjective measuBis [8
generated by the user (coughing, throat clearing, touctiing [104]. For example, in addition to the commonly used word er-
microphone) or externally (tapping, door slam, paper img)l ror rate, it can be enlightening to measure the error on words
Barge-in with multimedia interfaces requires acousticoecén- that are important for the task. Some objective measures of
celation, which is a difficult task as the user is generallyhi@ the global system performance include the success rate, the
acoustic field and any movement changes the filter charactefiverage/maximum/minimum number of turns, the total/waagiti
tics. time, the number of repetitions. In the case of multimodal sy
Using speech technology to improve the usability of kioskgms, the effectiveness of speech can be compared with other
was addressed in thesBRIT MAsk (Multimodal-Multimedia modalities, such as touch screen or keypad for input and a vi-
Automated Service Kiosk) project, aimed at providing asce§ual display for output.
to rail travel information via a kiosk located in a Parisiaain )
station [47]. The Msk kiosk allows both vocal and tactile in-P- Challenges and Perspectives
put. Early in the project a study was carried out of assessway Despite the numerous advances made over the last decade,
if combining input modalities, and it was found that even whespeech recognition is far from a solved problem, as evid&nce
given the opportunity, subjects did not mix input modes with by the large gap between machine and human performance [29],
single utterance [94]. In fact, subjects typically preéereither [36], [95], [152]. The performance difference is a factor5of
speech or touch, and only switched modes if they experienaedl0, depending upon the transcription task and test comdit
problems’ Experiments were also carried out to assess the ugerreduce this difference furtherimprovements are need éuki
acceptance of touch-to-talk, which greatly simplifies theexh modeling techniques at all levels: acoustic, lexical anguistic
detection problem, and avoids processing queries nottditec(syntactic and semantic).
to the system. It turned out that the subjects found touetato |t is well acknowledged that for laboratory systems (to the
to be reassuring as they knew when the system was listenipgst of our knowledge no performance measures are available
(Evidently the touch-to-talk is only used to get a roughreate for commercial dictation systems) there can be a huge perfor
of the query endpoints as users inevitably speak earlieater | mance difference, such as a factor of 20 or more in the word er-
than they touch.) ror rates for the best (1-2%) and worst speakers (25-30%$. Th
The most widely known efforts in evaluation of SLDSs arean be attributed to a variety of factors [38] mainly, theadpe
the DARPA ATIS task [66], [98], [126], the German nationaling style and speaking rate. For moderate speaking ratés (12
Verbmobil project [156] and the EC Language Engineering60 words per minute), there is no strong correlation betwee
projects [100], [101]. Some recent European activitietlide speaking rate and word error rate, however, for speakirgsrat
the ESPRIT MsK and the LE RILTEL, MAIs and ARISE over 180 words per minute, the word error rate increasesfsign
projects [16], [113]. The word error rates of the best systentantly [119]. Acoustic model adaptation can partially ued
reported in the BRPA ATIS benchmark tests [118], [119] arethis difference, but requires several minutes of data toffie e
under 5% for high quality laboratory data, and the spoken lagient, which limits its use. Faster adaptation techniqueihv
guage system (SLS) understanding error based on the spogam better account for the correlation between the paramete
input is not much larger than the NL understanding error okhe model are therefore needed. Reducing this differenge ma
tained using the orthographic transcription of the query. also require adaptive pronunciation models, which canipred
More generally, a wide range of word error rates have be@nonunciation variants based on the observed pronunnistay
reported for the speech recognition components of a spokenttie given speaker. A person who pronounces a word in a given
alog systems, ranging from under 5% for simple travel inforanner is likely to pronounce similar words in a similar way.
mation tasks using close-talking microphones to over 2586 f8imilarly, at the cross-word level, different speakers malke
telephone-based information retrieval systems. It iseqdif- of different phonological rules. Although these rules ssaally
ficult to compare results across systems and tasks as diffeigystematic, no systems that we know of are able to make use of
this consistency.
5An important difference in dialog strategies is offered e ttwo input Even with an average word error rate of 5% for speaker

modes. Tactile input is based on a menu driven dialog, whereuser must adapted dictation systems, the user must correct one out of
input specific information in order to move on to the next stépcal input al- t t d hich i tl A lvsis of |
lows a real mixed-initiative dialog between the user andsysem, where the WENLY WOrds, which Is a costly process. An analysis of real

user can guide the interaction or be guided by the systenieiaglp messages. Users’ experience with dictation, comparing the efficielnfy
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dictation with typing is given in [75]. is difficult to take advantage of model adaptation. As diseds
One class of future potential products based on dictaticimte above, this results in a wide range in recognition erroreser
nology are telephone services offering the ability to dizgta speakers, and in particular for speech from non-nativekspea
letter, fax or email message. However, before such applicat ers, for whom the word error can be twice as high as for native
can become widespread, performance will need to be improvesies [59]. Also, in order to improve speech recognition per-
Extrapolating from the results given above for spontangows  formance on spontaneous speech it may be interesting te ques
nalist dictation and for read telephone speech, expectedeve tion the basic units used for acoustic modeling, as unitsroth
ror rates for spontaneous dictation over the telephonelkety! than context-dependent phones may prove to better catere t
to be over 30%. Distributed speech recognition, where acolgrge amount of phonological variants. For language madeli
tic parameterization is carried out on the local handsetes-w a similar question can be posed regarding how to better model
phone, and the coded parameters transmitted to a centval segontractions and sloppy articulation resulting in wordeti@ins.
for recognition, may help solve this problem by eliminatthe Task independence is another outstanding challengecparti
variability due to the telephone channel. ularly concerning the language models. If sufficient adoust
Concerning language modeling, to date techniques for londeaining data is available, itis possible to estimate atousod-
term agreement have resulted in only minimal improvemengs that work pretty well for a variety of tasks. This is noeth
They should however be useful for accurate transcription e&se for language models, where domain coverage is critical
highly inflected languages wheBegrams are clearly not the op-Constructing corpora that are representative, compleie yat
timal solution. at the same time not too big, remains an open research area in
Keeping the language model up-to-date is a challenge fgtite of our collective experience.
broadcast news transcription due to the the fast, changing n Althoughiit is generally advocated that speech can provide a
ture of news. New topics appear suddenly, and remain popu@re natural interface with the computer than a keyboard or a
for quite variable length time periods. One of the most dific mouse, few studies have addressed multimodal interacten u
problems is to be able to recognize previously unseen or rai@ speech. User trials of the MK kiosk [83] carried out with
proper names. Fortunately other sources of contemporaay daver 200 subjects demonstrated that for this task multidityda
are available to help keep the system up-to-date, such genvriis more efficient (faster and easier) than unimodality asesac
documents from newspapers and newswires, many now aviRns are better carried out by voice and others by touchs&he
able on the Internet, which can be used by the transcriptisn sstudies also showed that subjects performed their taske efor
tem to continually update its lexicon and language modeis THiciently as they became familiarized with theAdk system,
is not a trivial problem since producing phonetic transtioips learning to exploit the vocal input and benefiting from thelmu
of new words such as proper names (in particular for foreigtple modalities. Audio-visual speech recognition [138]a
names which are quite common in broadcast data) must réf@mising research direction to improve the usability oflmu
on some acoustic evidence, since the pronunciation ofgoretimodal kiosks.
words can be quite variable depending upon the talker’'s know
edge of the foreign language.
Developing systems for many languages at reasonable cost i$he last decade has witnessed significant advances in speech
a problem that may require less supervised training praesdu recognition technology. The move from processing of pregar
Some very promising work has been recently reported by [73peech separated in sentences to continuous inhomogeneous
using untranscribed training data for acoustic model egtiion.  dio streams is one of these major advances. This capabégy h
An initial system is developed using a small amount of tragni been enabled by advances in techniques for robust feature ex
data (10 hours). This system is then used to transcribe adectraction, acoustic modeling with effective parameter Bigaun-
set of data, and models are reestimated. The new models sarpervised adaptation to speaker and environmental ¢ondit
then used to transcribe more data, and the cycle is reiterate efficient dynamic network decoding, and audio stream pautit
In our view, the main challenge of spoken language dialdigg algorithms.
systems is to provide a natural, user-friendly interfacthwhe Even though substantial progress has been made, machine
computer, allowing easy access to the stored informatidie Tperformance is still a long way behind human performance.
user should be free to ask any question or to provide any ifranscription of spontaneous speech remains quite cluatign
formation at any point in time, but the system should help thie part due to the large variety in speaking style and fluency.
user if the user appears to be in difficulty. We have observ¥dhile it is clear that all our models could use improvemetis i
that some speakers had serious difficulty in interactingpwie  not clear which of acoustic modeling, language modelindner t
ARISE system, and suspect that there is a class of users that wilbnetic lexicon is the weakest link. In fact, we have ditfies
experience similar difficulties with any such system. Homéa in modeling distant dependencies at all levels.
a percentage of the targeted user population falls intociis- Ongoing research is addressing issues such as low cost sys-
gory of user is unknown. Even for deployed systems, evalnatitem development, lightly supervised training, faster aalpn
is carried out on the calls that are received, by defaultielintechniques, learnable pronunciation lexicons, languagdem
nating people that have called the system only once and neadaptation, topic detection and labeling, and metadatatann
called back. Speech recognition for SLDSs is complicated bgn.
the fact that speaker-independent modeling is a neceasitile =~ A wide range of potential applications can be envisioned
total amount of speech during any interaction is small sbithabased on current technology, particularly in the area ob-aut

V. CONCLUSIONS
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matic indexation of broadcast data, where automated psoes

is a necessity to keep up with the flow of information. This i

an exciting research area, in that there are many outstgiin
sues to be addressed to improve the transcription accumacy o

this varied data, and at the same time there are near-terla ap

cations which can be successfully built upon this techngplog
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