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Large Vocabulary Continuous Speech Recognition:
Advances and Applications

Jean-Luc Gauvain and Lori Lamel

Abstract—
The last decade has witnessed substantial advances in speech recogni-

tion technology, which when combined with the increase in computational
power and storage capacity, has resulted in a variety of commercial prod-
ucts already or soon to be on the market. In this paper we review the state-
of-the-art in core technology in large vocabulary continuous speech recog-
nition, with a view towards highlighting recent advances. We then highlight
issues in moving towards applications, discussing system efficiency, porta-
bility across languages and tasks, enhancing the system output by adding
tags and non-linguistic information. Current performance in speech recog-
nition and outstanding challenges for three classes of applications: dicta-
tion, audio indexation and spoken language dialog systems are discussed.

Keywords— Speech recognition, spoken language systems, dictation,
large vocabulary, speaker-independent continuous speechrecognition,
acoustic modeling, model adaptation, portability, multilinguality

I. I NTRODUCTION

This paper overviews recent advances in state-of-the-art labo-
ratory speech recognition systems, and explores application do-
mains made possible by technological progress. Only a few
years ago speech recognition was primarily associated witha
limited number of applications: small vocabulary isolatedword
recognition (IWR) or phrases, mid-sized vocabulary domain
specific spoken language systems, and dictation systems (often
for specific user groups). For the last decade large vocabulary,
continuous speech recognition (LVCSR) has been one of the fo-
cal areas of research in speech recognition, serving as a test bed
to evaluate models and algorithms.

The core technology developed for LVCSR can be used for
applications other than general dictation systems, it alsoserves
as the basis for less demanding applications such as voice-
interactive database access or limited-domain dictation,as well
as more demanding tasks such as the transcription of broadcast
data. Progress in speech recognition can also boost other spoken
language technologies such as speaker and language identifica-
tion which rely on the same modeling techniques.

With the exception of the inherent variability of telephone
channels, in most applications it can be assumed that the
speech is produced in relatively stable environmental (back-
ground acoustic conditions) and in the case of dictation, isspo-
ken with the purpose of being transcribed by the machine. A
major advance is the ability of todays laboratory systems todeal
with non-homogeneous data as is exemplified by broadcast data:
changing speakers, languages, backgrounds, topics. This capa-
bility has been enabled by advances in techniques for robustsig-
nal processing and normalization; improved training techniques
which can take advantage of very large audio and textual cor-
pora; algorithms for audio segmentation; unsupervised acoustic
model adaptation; efficient decoding with long span language

Jean-Luc Gauvain and Lori Lamel are with the LIMSI-CNRS, France. E-mail:
gauvain@limsi.fr and lamel@limsi.fr

models; ability to use much larger vocabularies than in the past
- 64 k words or more is common to reduce errors due to out-
of-vocabulary words; and by the adoption of assessment-driven
technology development methodology largely fostered by the
US DARPA efforts.

In this paper we restrict our attention essentially to largevo-
cabulary continuous speech recognition. However developing
systems based on this technology goes far beyond automatic
speech recognition, and involves other domains such as human
factors and user interface design, natural language understand-
ing, generation and synthesis as well integration with the back-
end (database) or user (often already existing) infrastructure.
There are many issues such as efficiency and costs considera-
tions of final product (central server vs. distributed) thatare
not discussed. Moving towards real-world applications means
building usable systems which involves reconsidering manyde-
sign issues such as signal capture, noise and channel compen-
sation, and rejection capability, while taking into account limi-
tations in computational resources. The difficulties and costs of
adapting existing technology to new languages or new applica-
tions must also be evaluated.

In the next section we review the state-of-the-art in large vo-
cabulary continuous speech recognition, focusing on what is in
the public domain which often implies laboratory systems. The
highlighted techniques were chosen based on experimental re-
sults obtained in different laboratories on publicly available data
using state-of-the-art systems. While we attempt to generalize
the description, some details pertain to LIMSI systems. Sec-
tion IV discusses three main classes of applications: dictation,
audio indexing and dialog systems; as well as some of what we
consider to be outstanding challenges for speech recognition in
the context of these applications.

II. CORE TECHNOLOGY FORLVCSR

Speech recognition is primarily concerned with transcribing a
speech signal as a sequence of words. Most of today’s best per-
forming systems are based on a statistical model of speech gen-
eration. From this point of view, speech is assumed to be gener-
ated by a language model which provides estimates ofPr(w) for
all word stringsw independently of the observed signal, and a
model of the acoustic channel encoding the messagew in the
signalx, which is represented by a probability density func-
tion f(xjw). The speech decoding problem is to maximize the
a posterioriprobability ofw, which is equivalent to maximiz-
ing the productPr(w)f(xjw). The basic principles on which
most state-of-the-art continuous speech recognizers are based
have been known for many years, and include the application of
information theory to speech recognition [8], [71], the useof a
spectral representation of the speech signal [33], [34], the use of
dynamic programming for decoding [153], [154], and the use of
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context-dependent acoustic models [24], [90], [140]. In spite of
this considerable progress has been made in recent years, partic-
ularly in acoustic modeling and decoding. Much of this progress
can be linked to the availability of large speech and text cor-
pora and simultaneous advances made in computational means
and storage, which have facilitated the implementation of more
complex models and algorithms.

A. Acoustic-Phonetic Modeling

Most state-of-the-art LVCSR systems make use of hidden
Markov models (HMM) for acoustic modeling [166]. Other ap-
proaches include segment based models [59], [117], [172] and
neural networks [2], [68] to estimate acoustic observationlike-
lihoods. However except for the acoustic likelihood estimation,
all systems make use of the HMM framework to combine lin-
guistic and acoustic information in a single network represent-
ing all possible sentences.

For HMM based systems, acoustic modeling consists of mod-
eling the probability density function of a sequence of acoustic
feature vectors. The acoustic features are chosen so as to reduce
model complexity while trying to keep the relevant information
(i.e., the linguistic information for the speech recognition prob-
lem). Most recognition systems use short-term cepstral features
based either on a Fourier transform or a linear prediction model.
The two most popular sets of features are cepstrum coefficients
obtained with an MFCC [28] analysis or with a PLP [67] analy-
sis. In both cases a Mel scale short term power spectrum is esti-
mated on a fixed window (usually in the range of 20 to 30 ms),
with the most commonly used frame rate being 10ms. To get
the MFCC cepstrum coefficients a cosine transform is appliedto
the log power spectrum, whereas a root-LPCC analysis is used
to obtain the PLP cepstrum coefficients. Both set of features
have been successfully used, but PLP analysis has been found
for some systems to be more robust in presence of background
noise [78], [163]. Finding the optimal tuning, which may be de-
pendent on the language or the channel conditions, can result in
slight performance improvements.

As an example, the LIMSI front end used to transcribe broad-
cast news data produces a feature vector containing 39 cepstral
parameters derived from a Mel frequency spectrum estimated
on the 0-8 kHz band (or 0-3.5 kHz for telephone data) every
10 ms. For each 30 ms frame the Mel scale power spectrum
is computed, and the cubic root taken followed by an inverse
Fourier transform. Then LPC-based cepstrum coefficients are
computed. These cepstral coefficients are normalized usingcep-
stral mean removal [41] and variance normalization. Each re-
sulting cepstral coefficient therefore has a zero mean and unity
variance.

Most recognition systems use acoustic units correspondingto
phonemic or phonetic units (or phones in context). However it is
certainly possible to perform speech recognition without use of a
phonemic lexicon, either by use of “word models” or a different
mapping such as the fenonic lexicon [10]. Compared to word
models, subword units reduce the number of parameters, enable
cross word modeling and facilitate porting to new vocabular-
ies. Fenones offer the additional advantage of automatic train-
ing, but lack the ability to includea priori linguistic knowledge.
Context-dependent (CD) phone models are today the most com-

monly used acoustic units for LVCSR. Compared to larger units
such asdiphones, demisyllablesor syllables, a large spectrum of
contextual dependencies can be implemented for CD models as-
sociated with backoff mechanisms to model infrequent contexts.
Various types of contexts have been investigated from a sin-
gle phone context (right- or left-context), left and right-context
(triphone), generalized triphones [90], position-dependent tri-
phones (cross-word and within word triphones), function word
triphones, and quinphones [162]. While different approaches
are used to select the phone contexts (often based on frequency
of occurrence or phonetic decision trees), the optimal set of
modeled contexts is usually the result of a tradeoff betweenres-
olution and robustness, and is highly dependent on the available
training data. This optimization is generally done by minimiz-
ing the recognizer error rate on development data. In fact, more
than the number of CD phone models, what is really important
is to match the total number of model parameters to the amount
of available training data. A powerful technique to keep the
models trainable without sacrificing model resolution is totake
advantage of the state similarity among different models ofa
given phone by tying the HMM state distributions. This basic
idea is used in most current systems although there are slight
differences in the implementation and in the naming of the re-
sulting clustered states (senones[69], genones[30], PELs[13],
tied-states[170]). Numerous ways of tying HMM parameters
have been investigated [150], [165] in order to overcome the
sparse training data problem and to reduce the need for distribu-
tion smoothing techniques.

In practice both agglomerative clustering and divisive clus-
tering have been found to yield model sets with comparable per-
formance. Divisive decision tree clustering is particularly inter-
esting when there are a very large number of states to cluster
since it is at the same time both faster and is more robust thana
bottom-up greedy algorithm, and therefore much easier to tune.
In addition, HMM state tying based on decision tree cluster-
ing has the advantage of providing a means to build models for
unseen contexts, i.e., those contexts which do not occur in the
training data [70], [169]. The set of questions typically concern
the phone position, the distinctive features (and identities) of the
phone and the neighboring phones [111].

Many state-of-the-art recognizers make use of continuous
density HMM with Gaussian mixture for acoustic modeling.
The main advantage continuous density modeling offers over
discrete or semi-continuous (or tied-mixture) observation den-
sity modeling is that the number of parameters used to model
an HMM observation distribution can easily be adapted to the
amount of available training data associated to this state.As
a consequence, high precision modeling can be achieved for
highly frequented states without the explicit need of smoothing
techniques for the densities of less frequented states. Discrete
and semi-continuous modeling use a fixed number of parame-
ters to represent a given observation density and thereforecan-
not achieve high precision without the use of smoothing tech-
niques or tying techniques mentioned above.

The choice of the model structure is highly dependent on the
constraints of the application such as limitations on available
memory or computational capacity.

It is fairly common practice to use separate male and female
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models to more accurately model the speech data. The sex-
dependent models are often obtained from speaker-independent
seed models using MaximumA Posterioriestimators [55], or
may be trained on the independent data subsets if sufficient
training data are available.

B. Lexical Representation

Lexical modeling provides the link between the lexical entries
(usually words) used by the language model and the acoustic
models, with each lexical entry being described as a sequence of
elementary units. Experience has shown that systematic lexical
design can improve system performance [82]. Lexical design
entails two main parts - selection of the vocabulary items and
representation of the pronunciation entry using the basic units
of the recognition system. A common way of selecting a recog-
nition vocabulary is to measure the out-of-vocabulary (OOV)
rate on development data. Judicious selection of the develop-
ment data is important in order to ensure high lexical coverage
on the test material. The best lexical coverage may be obtained
by selecting the vocabulary using only a subset of the training
data (such as the most recent data or data on a given topic) in-
stead of using all the available data [20], [53]. On average,each
OOV word causes more than a single error, with rates of 1.6
to 2.0 additional errors reported [119]. An obvious way to re-
duce the error rate due to OOVs is to increase the size of the
lexicon. Increasing the lexicon size to 64 k or more words has
been shown to improve performance, despite the potential ofin-
creased confusability of the lexical entries [53], so in contradic-
tion to the widely held belief, larger vocabulary does not imply
higher word error rates if a proper language model is used.

For LVCSR, the lexical unit of choice is usually phonemes or
phoneme-like units, specific for the language. For example,the
L IMSI phone set for American English has 46 units, with 45 for
British English, 35 for French, 49 for German, 26 for Spanish,
and 36 for Mandarin (to which tones may be added). In gener-
ating pronunciation baseforms, most lexicons include standard
pronunciations and do not explicitly represent allophones. This
representation is chosen as most allophonic variants can bepre-
dicted by rules, and their use is optional. More importantly,
there often is a continuum between different allophones of a
given phoneme and the decision as to which occurred in any
given utterance is subjective. By using a phonemic representa-
tion, no hard decision is imposed, and it is left to the acoustic
models to represent the observed variants in the training data.
Several efforts to automatically learn and generate word pronun-
ciations have been investigated [21], [26], [40], [129], [149]. To
the best of our knowledge such approaches, while promising,
have to date, given only small performance improvements even
when trained with manual transcriptions [130].

There are a variety of words for which frequent alternative
pronunciation variants are observed, and these variants are not
due to allophonic differences. One common example is the
suffix -ization which can be pronounced with a diphthong or
a schwa. Alternate pronunciations are also needed for homo-
graphs (words spelled the same, but pronounced differently)
which reflect different parts of speech (verb or noun) such as
excuse, record, produce.

Fast speakers tend to poorly articulate unstressed syllables

(and sometimes skip them completely), particularly in long
words with sequences of unstressed syllables. Although such
long words are typically well recognized, often a nearby func-
tion word is deleted. To reduce these kinds of errors, alternate
pronunciations for long words can authorize schwa deletionor
syllabic consonants in unstressed syllables. Phonologicalrules
have been proposed to account for some of the phonological
variations observed in fluent speech [116]. The principle be-
hind the phonological rules is to modify the phone network to
take into account such variations [26], [56], [85]. These rules
can be optionally applied during training and recognition.Us-
ing phonological rules during training results in better acous-
tic models, as they are less “polluted” by wrong transcriptions.
Their use during recognition reduces the number of mismatches.
The same mechanism can also be used to handle liaisons, mute-
e, and final consonant cluster reduction for French [52].

C. Language Modeling

Language models are used to model regularities in natural
language [135]. The most popular methods are statisticaln-
gram models which attempt to capture the syntactic and se-
mantic constraints by estimating the probability of a word in a
sentence given the precedingn-1 words. Different approaches
have been investigated to smooth the estimates of the proba-
bilities of raren-grams [22], [79]. The most common is ap-
proach is to apply a backoff mechanism [76] relying on a lower
order n-gram when there is insufficient training data, provid-
ing a means of modeling unobservedn-grams. Another advan-
tage of the backoff mechanism is that LM size can be arbitrarily
reduced by relying more on the backoff component, obtained
by simply increasing the minimum number of requiredn-gram
observations needed to include then-gram in the model. This
property can also be used to reduce computational requirements.
While bigram and trigram LMs are most widely used, small im-
provements have been reported with the use of longer span4-
grams [9], [162] and5-grams [97] or class5-grams [137]. Lan-
guage models are typically compared by measuring the likeli-
hood of a set of development texts.

Given a large corpus of texts (or transcriptions) it may seem
relatively straightforward to constructn-gram language models.
Most of the steps are pretty standard and make use of tools that
count word and word sequence occurrences [25]. The main dif-
ferences arise in the choice of the vocabulary and in the defi-
nition of words, such as the treatment of compound words or
acronyms, and the choice of the backoff strategy. There is, how-
ever, a significant amount of effort needed to process the texts
before they can be used.

One motivation for normalization is to reduce lexical variabil-
ity so as to increase the coverage for a fixed size task vocabu-
lary. Normalization decisions are generally language-specific.
For example, some standard processing steps include the expan-
sion of numerical expressions, treatment of isolated letters and
letter sequences, and optionally elimination of case distinction.
Further semi-automatic processing is necessary to correctfre-
quent errors inherent in the texts, and the expansion of abbrevi-
ations and acronyms. The error correction consists primarily of
correcting obvious misspellings. Better language models can be
obtained by using texts transformed to be closer to the observed
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reading style, where the transformation rules and correspond-
ing probabilities are automatically derived by aligning prompt
texts with the transcriptions of the acoustic data. For example,
the number 150 may be pronounced as “one hundred fifty” or
“one hundred and fifty”. Similarly, 1/8 may be spoken as “one
eighth” or “an eighth” [53].

There sometimes is a conflicting need for sufficient amounts
of text data to estimate LM parameters and assuring that the data
is representative of the task. It is also common that different
types of LM training material are available in differing quan-
tities, that need to be combined. Combining sources requires
that common normalizations are carried out. One easy way to
combine training material from different sources is to train a
language model per source and to interpolate them. The inter-
polation weights can be directly estimated on some development
data with the EM algorithm. An alternative is to simply merge
then-gram counts and train a single language model on these
counts. If some data sources are more representative than oth-
ers for the task, then-gram counts can be empirically weighted
to minimize the perplexity on a set of development data. While
this can be effective, it has to be done by trial and error and
cannot easily be optimized. In addition, weighting then-gram
counts can pose problems in properly estimating the backoffco-
efficients.

Word class-based language models can be used to reduce the
dependency on the training data, particularly when there isno
a priori reason to believe that any member of the class is more
likely than another. This technique is often used in spoken lan-
guage dialog systems for common items such as locations, dates
and times.

D. Decoding

The main challenge for LVCSR decoding problem is the de-
sign of an efficient search algorithm to deal with the huge search
space obtained by combining the acoustic and language mod-
els. Strictly speaking, the aim of the decoder is to determine
the word sequence with the highest likelihood given the lexicon
and the acoustic and language models. In practice, however,it is
common to search for the most likely HMM state sequence, i.e.,
the best path through a trellis (the search space) where eachnode
associates an HMM state with given time. Since it is often pro-
hibitive to exhaustively search for the best path, techniques have
been developed to reduce the computational load by limitingthe
search to a small part of the search space. Even for research pur-
poses, where real-time recognition is not needed there is a limit
on computing resources (memory and CPU time) above which
the development process becomes too costly. The most com-
monly used approach for small and medium vocabulary sizes
is the one-pass frame-synchronous Viterbi beam search [108]
which relies on a dynamic programming procedure. This ba-
sic strategy has been extended to deal with large vocabular-
ies by adding features such as fast match [12], [57], word-
dependent phonetic trees [109], forward-backward search [7],
N-best rescoring [139], progressive search [107] and simple
one-pass dynamic network decoding [112]. An alternative to
the frame-synchronous Viterbi beam search is an asynchronous
search based on the A� algorithm such asstack decoding[11],
[124] or theenvelope search[62].

Dynamic decoding can be combined with efficient pruning
techniques in order to obtain a single pass decoder that can pro-
vide the answer using all the available information (i.e., that
in the models) in a single forward decoding pass over of the
speech signal. This kind of decoder, such as the stack de-
coder [124] or the one-pass frame synchronous dynamic net-
work decoder [112], is very attractive for real-time applications.

Static decoders require much more memory than dynamic de-
coders when used with long span language models (3-gram or
higher order), and as a consequence they are mostly used with
smaller language models (usually 2-grams or constrained gram-
mars). It has been recently shown that by proper optimization
of a finite-state automaton1 corresponding to a recognizer HMM
network, substantial reduction of the overall network sizecan be
obtained, enabling static decoding with long span LMs [106].
Evidently, the size of the optimized network remains propor-
tional to the LM size.

Many systems under development use multiple pass decoders
to reduce the computational requirements if real-time decod-
ing is not an issue [7], [51], [107], [128], [162]. In multipass
decoding, additional knowledge sources are progressivelyused
in the decoding process, which allows the complexity of each
individual decoding pass to be reduced and often results in a
faster overall decoder [110]. For example, a first decoding pass
can use a 2-gram language model and simple acoustic models,
and later passes will make use of 3-gram and 4-gram language
models with more complex acoustic models. This multiple pass
paradigm requires a proper interface between passes in order to
avoid losing information and engendering search errors. Infor-
mation is usually transmitted via word lattices or word graphs,
or N-best hypotheses. Lattices are graphs where nodes corre-
spond to particular frames and where arcs representing word
hypothesis have associated acoustic and language model scores.
N-best hypotheses are a list of the most likely word sequences
with their respective scores. This multipass approach is not well
suited to real-time applications since no hypothesis can bere-
turned until the entire utterance has been processed. However if
a small delay is acceptable, then with appropriate synchroniza-
tion, multipass strategies can be envisioned. Evidently, the first
pass used to generate the initial word lattice must be accurate
enough to not introduce lattice errors which are unrecoverable
with further processing.

E. Adaptation

One of the main challenges in LVCSR is building robust sys-
tems that keep high recognition accuracy when testing and train-
ing environmental conditions are different. At the acoustic level,
two classes of techniques to increase system robustness canbe
identified: signal processing techniques which attempt to com-
pensate for the mismatch between testing and training by cor-
recting the speech signal to be decoded; and model adaptation
techniques which attempt to modify the model parameters to
better represent the observed signal. Signal processing based ap-
proaches include normalization techniques that remove variabil-1An HMM-based speech recognizer can be seen as a transductioncascade
which converts the observed feature vectors to a word string, where to some ap-
proximation, each transduction (phone model, word model orlanguage model)
can be represented as a finite-state automaton.
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ity, thereby increasing the system accuracy under mismatched
conditions but often resulting in reduced word accuracy under
matched conditions, and compensation techniques which rely
on a mismatch model and/or speech model. Model adaptation
is a much more powerful approach, especially when the signal
processing relies on a speech model. Therefore when compu-
tational resources are not an issue, model adaptation is thepre-
ferred approach to compensate for mismatches. Model adapta-
tion can be used to reduce the mismatch between test and train-
ing conditions or to improve model accuracy based on the ob-
served test data. Adaptation can be of the acoustic models orthe
language models, or even of the pronunciation lexicon.

Acoustic model adaptation can be used to compensate mis-
matches of various natures due to new acoustic environments, to
new transducers and channels, or to particular speaker character-
istics, such as the voice of a non-native speaker. The most com-
monly used techniques for acoustic model adaptation are par-
allel model combination (PMC), maximuma posteriori(MAP)
estimation, and transformation methods such as maximum like-
lihood linear regression (MLLR). PMC is essentially used to ac-
count for environmental mismatch due to additive noise whereas
MAP estimation and MLLR are general tools that can be used
for speaker adaptation and environmental mismatch.

PMC approximates a noise corrupted model by combining
a clean speech model with a noise model [42]. For practi-
cal reasons, it is generally assumed that the noise density is
Gaussian and that the noise corrupted speech model has the
same structure and number of parameters as the clean speech
model – typically a continuous density HMM with Gaussian
mixture. Various techniques have been proposed to estimate
the noisy speech models, including the log-normal approxima-
tion approach, the numerical integration approach, and thedata
driven approach [43]. The log-normal approximation is crude
especially for the derivative parameters, and all three approaches
require making some approximations to estimate derivativepa-
rameters other than first order differences.

MAP estimation can be used to incorporate prior knowledge
into the CDHMM training process, where the prior information
consists of prior densities of the HMM parameters [54], [89]. In
the case of speaker adaptation, MAP estimation may be viewed
as a process for adjusting speaker-independent models to form
speaker-specific ones based on the available prior information
and a small amount of speaker-specific adaptation data. The
joint prior density for the parameters in a state is usually as-
sumed to be a product of Normal-Gamma densities for the mean
and variance parameters of the Gaussian mixture components
and a Dirichlet density for the mixture gain parameters. MAP
estimation has the same asymptotic properties as ML estimation
but when independent priors are used for different phone mod-
els the adaptation rate may be very slow, particularly for large
models. It is therefore advantageous to represent correlations
between model parameters in the form of joint prior distribu-
tions [143], [171].

MLLR is used to estimate a set of transformation matrices for
the HMM Gaussian parameters in order to maximize the like-
lihood of the adaptation data [31], [92], each transform being
apply to a subset of the Gaussian pdfs. This adaptation method
was originally used for speaker adaptation, but it can equally

be applied to environmental mismatch [163]. Since the num-
ber of transformation parameters is small, large models canbe
adapted with small amounts of data. To obtain ML asymptotic
properties it is necessary to adjust the number of linear transfor-
mations to the amount of available adaptation data. This canbe
done efficiently by arranging the mixture components into a tree
and dynamically defining the regression classes. MLLR adap-
tation is particularly suited to unsupervised adaptation since the
transforms may have a very small number of parameters shared
by the different phonetic units and therefore is very robustto
recognition errors. In practice only a few regression matrices
are used for unsupervised adaptation, usually one or two (corre-
sponding, for example, to speech and non-speech). As a natural
extension of this approach, speaker adaptive training (SAT) in-
corporates supervised MLLR in the SI training procedure and
jointly estimate the training speaker MLLR transforms and the
HMM parameters [4]. The SAT models which are better suited
to MLLR speaker adaptation result in a significant reductionin
the error rate by enhancing or boosting the adaptation in partic-
ular for supervised adaptation on clean data.

Vocal tract length normalization (VTLN) is another technique
which has been proposed to perform some kind of speaker nor-
malization [3]. The approach consists in performing a frequency
warping to account for difference in vocal track length, where
the appropriate warping factor is chosen from a set of candidate
values (typically 13 in the range 0.88 to 1.12 [91]) by maxi-
mizing the test data likelihood based on a first decoding pass
transcription. Like MLLR adaptation, VTLN can also be ap-
plied during the training process to obtain models better suited
to decode the normalized test data. VTLN has been shown to
give small but significant error rate reduction in particular on
telephone conversational speech [151].

Adaptation techniques can evidently also be applied to the
language model. In most systems one or more language mod-
els are used, but these LMs are usually static, even though the
choice of which static model to use can be dependent upon
the dialog state, for example. Various approaches have been
taken to adapt the language model based on the observed text
so far, including the use of acache model[72], [134], a trig-
ger model[133], or topic coherence modeling[142]. The cache
model is based on the idea that words appearing in a dictated
document will have an increased probability of appearing again
in the same document. For short documents the number of
words appearing is small, and as a consequence the benefit is
small. The trigger model attempts to overcome this by using
observed words to increase the probabilities of other wordsthat
often co-occur with the trigger word. In topic coherence model-
ing, selected keywords in the transcribed speech are used tore-
trieve articles on similar topics with which sublanguage models
are constructed and used to rescore N-best hypotheses. Despite
the growing interest in adaptive language models, thus far only
minimal improvements have been obtained compared to the use
of very large, staticn-gram models.

III. ENABLING APPLICATIONS

Performance of a speech recognizer is acknowledged to be
strongly dependent upon the task, which in turn is linked to the
type of user, speaking style, environmental conditions etc. Sub-
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stantial effort is required to develop a usable system according
to the task constraints, even from demonstrated state-of-the-art
technology. In adapting a state-of-the-art laboratory speech rec-
ognizer for real-world use, all aspects of the speech recognizer
must be reconsidered, from signal capture to adaptive acoustic
and language models. Given application constraints, standard
laboratory development procedures may need to be revised. In
this section we summarize some of the issues to be considered
from the technology standpoint, such as enhancing the system
output with additional annotations (metadata), efficiencyand
portability across languages and tasks. We do not address hu-
man factors or system integration issues which are beyond the
scope of this paper.

A. Metadata

More information can be extracted from the audio signal than
the simple word string. This additional information, whichis
useful for higher level processing of the data, can be of a linguis-
tic nature: that is an enhanced transcription (cased text output,
punctuation, semantic tags); or of an acoustic nature: speaker
turn and identity information, audio type information and confi-
dence measures. For example, although in todays dictation sys-
tems the user is required to verbalize all punctuation markers
and formatting commands, in the future systems trained on ap-
propriate texts may be able to propose punctuation markers [14].

Semantic tags are another type of linguistic information
which can be associated with the transcription. Adding suchtags
entails applying standard natural language processing (NLP)
techniques to an imperfect transcription of the speech rather than
to a written text. There are two sources of differences compared
with written texts: inherent differences in written and spoken
language, and errors due to the automatic transcription process.
Example tags can be named entities (names of persons, places,
organizations), monetary amounts, dates, times, etc., as well as
higher level tags such as topics (e.g., politics, weather report, fi-
nancial,...). The same HMM-based probabilistic frameworkcan
be used to assign tags [103], [157], [164], while also using stan-
dard NLP techniques such as tokenization, stemming, stopping,
etc. Detailed semantic tagging is often required for dialogtasks
where it is common to use task-dependent representations such
as semantic frames, with predefined semantic slots and values.

Concerning the acoustic nature of the signal, the same ba-
sic modeling techniques can be used to identify other attributes,
such as the gender and identity of the speaker [86], and the back-
ground acoustic conditions [46], [144]. Such information,when
converted to time-aligned markups, can be accessed by search
engines. Determining the acoustic structure of the data is the
subject of the next subsection.

B. Data partitioning

When transcribing continuous audio streams such as broad-
cast data, it is advantageous to first partition the data intohomo-
geneous acoustic segments prior to word recognition. Partition-
ing consists of identifying and removing non-speech segments,
and then clustering the speech segments and assigning band-
width and gender labels to each segment. While it is possibleto
transcribe the continuous stream of audio data without any prior
segmentation, partitioning offers several advantages over this

straight-forward solution. First, in addition to the transcription
of what was said, other interesting information can be extracted
such as the division into speaker turns and the speaker identi-
ties, and background acoustic conditions. Second, by clustering
segments from the same speaker, acoustic model adaptation can
be carried out on a per cluster basis, as opposed to on a sin-
gle segment basis, thus providing more adaptation data. Third,
prior segmentation can avoid problems caused by linguisticdis-
continuity at speaker changes. Fourth, by using acoustic models
trained on particular acoustic conditions (such as wide-band or
telephone band), overall performance can be significantly im-
proved. Finally, eliminating non-speech segments and dividing
the data into shorter segments (which can still be several minutes
long), substantially reduces the computation time and simplifies
decoding.

Various approaches have been proposed to partition the con-
tinuous stream of audio data. Most of these approaches rely on a
two step procedure, where the audio stream is first segmentedin
an attempt to locate acoustic changes (associated with changes
in speaker, background or environmental condition, and channel
condition). The segmentation procedures can be classified into
three approaches: those based on phone decoding [64], [96],
[158], distance-based segmentations [81], [146], and methods
based on hypothesis testing [23], [159]. The resulting segments
are then clustered (usually using Gaussian models), where each
cluster is assumed to identify a speaker or more precisely, a
speaker in a given acoustic condition. The partitioningapproach
used in the LIMSI BN transcription system is not based on such
a two step procedure, but instead relies on an audio stream mix-
ture model [50]. Each component audio source, representinga
speaker in a particular background and channel condition, is in
turn modeled by a mixture of Gaussians. The segment bound-
aries and labels are jointly identified using an iterative maxi-
mum likelihood segmentation/clustering procedure using Gaus-
sian mixture models and agglomerative clustering. In contrast
to partitioningalgorithms that incorporate phoneme recognition,
this approach is language independent. (The same models have
been used to partition English, French and German data.) The
result of the partitioningprocess is a set of speech segments with
speaker, gender and telephone/wide-band labels.

C. Confidence Measures

Confidence measures have been proposed as a way of detect-
ing those hypothesized words that are likely to be erroneous
by estimating word and sentence correctness [19], [58], [147],
[160], [161]. At the sentence level the goal is to get an estimate
of Pr(wjx) for the hypothesized word stringw. One common
approach consists of using the posteriorPr(wjx; �) as an esti-
mate. This assumes that the recognizer models (acoustic model,
language model and lexicon designated by�) are correct and
that the decoder does not make any search errors. Further ap-
proximations may use simpler acoustic and language models
to speed up the computation, for example, the word language
model can be replaced by a phone language model [48]. For
most LVCSR tasks we are essentially interested by a word level
confidence measure, i.e., the goal is to obtain an estimate ofPr(wijx) the posterior probability of thei-th word in the hy-
pothesized word string, or alternativelyPr(wijx; �). An esti-
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mate of this latter probability can be efficiently computed by
applying the Forward-Backward algorithm to a word graph gen-
erated by the speech recognizer [160]. However since this poste-
rior probability relies on incorrect models, it is also common to
use additional features such as word and phone durations, speak-
ing rate, and signal-to-noise ratio to better approximate the word
posterior probabilityPr(wijx). All these predictors can be com-
bined and mapped to the confidence score by using either a lo-
gistic regression [58], a generalized additive model [147], or a
neural-network [161]. These models are trained on development
data by maximizing a confidence score metric such the normal-
ized cross entropy. The proper set of features depends on the
particular application.

D. Efficiency

Efficiency of the speech recognizer is not usually a high pri-
ority for laboratory systems, where it is typical to developon
loaded (lots of memory and disk space), high powered work-
stations. The performances of laboratory systems are usually
optimized so as to obtain the lowest word error given the train-
ing data and the facilities available. However, for commercial
products cost is often an important factor which means that the
efficiency of the recognizer becomes a higher priority, bothin
terms of memory and computational requirements, as does the
cost of the recognition platform.

Fast decoding techniques are of primary interest, and their
requirements influence the choice of model structure and size,
and as a result have an impact on the memory needs. For
speaker-independent LVCSR based on Gaussian mixture HMM,
between 30 and 50% of the recognition time can be spent in
computing the HMM state likelihoods, with the remaining time
corresponding to the search procedure itself. This is due to
the large number of states needed to represent the context-
dependent phone models, even when state tying is used. This
computation can be reduced either by implementing a fast state
likelihood computation which usually requires making someap-
proximations, or by reducing the model size which has the ad-
ditional advantage of reducing the memory requirements. A
widely used technique for speeding up the state likelihood com-
putation is vector quantization of the feature vector spacein or-
der to prepare a Gaussian short list for each HMM state and each
region of the quantified feature space [17]. With this technique
the number of Gaussian likelihoods to be computed during de-
coding for each input frame and each state can be reduced to a
fraction of the number of Gaussians corresponding to the active
states with only a small loss in accuracy.

As discussed in section II-D there are many efficient solutions
to the search problem, however finding the optimal solution is
always a trade-off between the model accuracy and efficient
pruning. In general better models have more parameters, and
therefore require more computation. However since the models
are more accurate, it is often possible to use a tighter pruning
level (thus reducing the computational load) without any loss
in accuracy. In fact, limitations on the available computational
resources can significantly affect the design of the acoustic and
language models. For each operating point, the right balance
between model complexity and pruning level must be found.
Therefore recognizers must be compared at the targeted speed.

Aggressive pruning is generally needed to achieve real-time op-
eration for LVCSR tasks on currently available platforms. This
inevitably is a source of search errors, and as such, many tech-
niques have been proposed to reduce these search errors and to
limit their effect on the recognizer accuracy. One of the most
attractive decoding strategies for real-time operation isthe one-
pass frame-synchronous dynamic network decoder which relies
on a phonetic tree organization of the decoding network using
LM state conditioned tree copies [6], [109], [112]. The success
of such a single pass approach is highly dependent on the use
of efficient pruning strategies associated with a language model
lookahead [115], [138]. Multipass approaches can also be used
successfully for close to real-time operation by chunking the
data and running the different pass in parallel with a slightdelay.

As explained in section II-A model and state tying are com-
monly used to improve the model accuracy but optimal tying
(from the accuracy point of view) can still result in a very large
model with 5 k to 30 k states when large amounts of training
data are available. Parameter tying is also powerful technique to
reduce the number of parameters, and can be applied to all the
levels of the model structure (allophone model, state and Gaus-
sian) [150]. However, more flexibility is available for Gaussian
pdf tying in that large model reductions can be obtained without
sacrificing too much in terms of system accuracy. This is exem-
plified by the subspace distribution tying approach [99], [150],
which in its most elementary implementation can be seen as a
quantization of the model parameters.

Processing time constraints significantly affect the way the
acoustic models are selected. For each operating point, theright
balance between model complexity and search pruning level
must be found. To illustrate this point, Figure 1 plots the word
error rate as a function of processing time for 3 sets of acoustic
models, which taken together minimize the word error rate over
a wide range of processing times (from 0.3xRT to 20xRT) for
the LIMSI broadcast news transcription system. (Transcribing
such inhomogeneous data requires significantly higher process-
ing power than for speaker adapted dictation systems, due tothe
lack of control of the recordings and linguistic content, which
on average results in lower SNR ratios, a poorer fit of the acous-
tic and language models to the data, and as a consequence, the
need for larger models.) These results on a representative por-
tion of the Hub4-98 data set are obtained on a Compaq XP1000
500 MHz machine with a 3-gram language model, and without
acoustic model adaptation. The large model set (350 k Gaus-
sians, 11 k tied states, 30 k phone contexts) provides the best
performance/speed ratio for processing times over 5xRT. The
92 k model set (92 k Gaussians, 6 k tied states, 5 k phone con-
texts) performs better in the range 0.9xRT to 5xRT, whereas a
much smaller model set (16 k Gaussians) is needed to go under
real-time.

The language model, usually a 3-gram or 4-gram backoff LM
in state-of-the-art systems, can have a very large number ofpa-
rameters (i.e., more than 10 million), and therefore may require
prohibitive amounts of memory for commercially viable plat-
forms. One of the attractive properties ofn-gram models is the
possibility of relying more on the backoff components by in-
creasing the cutoffs on then-gram counts, thus reducing signif-
icantly the LM size. More elaboraten-gram pruning have also
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Fig. 1. Word error vs. processing time for three acoustic model sets with 350k,
92k and 16k Gaussians (for broadcast news data).

been proposed [145], [148] to substantially reduce the LM size
with negligible loss in accuracy. An alternative approach to limit
the memory requirements is to keep most of the LM parameters
on the disk, since mostn-grams are never used, combined with
a cache of the scores for accessed LM states [127].

E. Porting across languages and tasks

Portability is concerned with the porting of technology to new
or changing tasks, and/or to other languages. While the same
basic speech recognition technology has been successfullyused
for a variety of tasks and languages, substantial effort is involved
to construct the acoustic and language models, and to develop
the recognition lexicon. With today’s technology, the adaptation
of a recognition system to a new task or another language re-
quires the availability of sufficient amounts of transcribed train-
ing data. Often, however, the necessary resources are not avail-
able and generating them can be long and expensive. Minimiz-
ing the required training data (or determining how to optimally
acquire such data) remains an outstanding challenge. Yet the
performance and development costs largely depend on the avail-
able resources and the experience of the system designer.

Acoustic models trained on a sufficiently large and varied cor-
pus (for example a minimum of 10 hours of speech from 100
speakers) appear to be general enough to use as bootstrap mod-
els for a new task without task-specific training data if appropri-
ate normalization and compensation techniques are used to re-
duce differences in the recording conditions (microphone,chan-
nel, environmental noise). If speed is an important factor,it can
still be interesting to train on task-specific acoustic datato better
account for the phonetic coverage of the task.

Language model and lexicon development remain quite task
dependent. For some tasks, such as domain-specific dictation,
there is a wealth of written texts that can be used for vocabulary
selection and language model estimation. For other tasks, in
particular for spoken dialog systems, very little (if any) text data
may be available, and data collection is an unavoidable devel-
opment step. Using a recognition system for data collectionhas
been found to be quite effective for such tasks, with successively
more accurate systems available as the amount of training data
increases [59]. Techniques for adaptation of both the acoustic

and language models can greatly improve the performance of a
system throughout the development process.

Determining the pronunciation lexicon is often one of the
most labor intensive aspects of porting to a new task. Al-
though letter-to-sound conversion programs are availablefor
some languages, these have almost exclusively been developed
for speech synthesis purposes and therefore are less appropri-
ate for speech recognition. One of the most common tech-
niques is to make use of a reference lexicon which has been
verified (usually both manually and in the context of a system)
to serve as a base lexicon. The baseform pronunciations may
have been generated using letter-to-sound rules. New wordsare
then added either by using the same letter-to-sound rules, or pro-
nunciation generation tools [82] and often manually corrected.
A means of automatically adding new words and pronunciations
to the recognition lexicon is crucial for successful deployment
of speech technologies.

Although English has been the predominant language for the
computer world there has been a large growth in the information
available in electronic form (both online and offline) in many of
the world’s languages. As a result, speech recognition and nat-
ural language processing in multiple languages has become a
necessity. Building a recognizer for another language is not so
different than building a recognizer for a new task, particularly
for close languages. Language-dependent system components
(such as the phone set, the need for pronunciation alternatives
or phonological rules) evidently must be changed. Other lan-
guage dependent factors are related to the definition and acous-
tic confusability of the words in the language (such as homo-
phone, monophone, and compound word rates) and the word
coverage of a given size recognition vocabulary. Taking into ac-
count language specificities can evidently improve recognition
performance. For example, tonal languages such as Chinese
may benefit from explicit modeling of pitch, which in turn may
require modifications to the feature analysis used.

At the lexical level, a given size lexicon will have different
coverage across languages and highly inflected languages re-
quire a larger lexicon to adequately represent the language. For
example, comparing the number of distinct words in comparably
sized newspaper text corpora for English, French, German and
Italian, the German corpus contains over twice as many distinct
words as French, which has more than Italian and English [84].2
The larger number of distinct words stems mainly from the num-
ber and gender agreement in nouns, adjectives and past partici-
ples, and the high number of different verb forms. As a conse-
quence, to obtain a lexical coverage of 95% on newspaper texts,
an English lexicon need only contain 5000 words, compared to
20,000 for French and Italian, and 65,000 for German.

F. Indexation

One of the main motivations for automatic processing of the
audio channels of broadcast data is to serve as a basis for au-
tomatic disclosure and indexation for information retrieval (IR)
purposes.2The newspaper text corpora compared are theWall Street Journal(English,
37 M words) [5],Le Monde(French, 38 M words) [52],Frankfurter Rundschau
(German, 36 M) [1], andIl Sole 24 Ore(Italian, 26 M words) [37], where the
total number of words of text material are given in parentheses.



SUBMISSION TO THE IEEE PROCEEDINGS 10

While in traditional IR tasks the result is typically an ordered
set of related documents, for spoken document retrieval (SDR)
the result is an ordered set of pointers to temporal excerpts[44]
or to complete stories if an a priori topic segmentation is avail-
able. SDR can support random access to relevant portions of
audio or video documents, reducing the time needed to identify
recordings in large multimedia databases. The aims of projects
like INFORMEDIA [65], THISL [2], and OLIVE [73] are to de-
velop archiving and retrieval systems for broadcast data toen-
able efficient access to large multimedia digital libraries. OLIVE

is also developing tools for cross-lingual access to the archived
documents via online query translation.

Automatic text indexation is classically based on document
term frequencies, where the terms are obtained after standard
text processing, such as text normalization, tokenization, stop-
ping, stemming, query expansion, and named-entity identifica-
tion [131]. The same techniques have been successfully applied
to automatic transcriptions of broadcast news radio and TV doc-
uments. Query expansion making use of additional (parallel)
sources text data (preferably from the same epoch as the audio
data) to locate terms which co-occur with the terms in the orig-
inal query so as to enrich it, make spoken document retrieval
less sensitive to speech recognition errors [74]. In addition topic
segmentation and identification are particularly helpful to struc-
ture audio streams which, as opposed to text documents, usually
have no a priori structure such as story headline and boundaries.

G. Spoken Language Dialog Systems

Spoken language dialog systems (SLDSs) require going be-
yond transcription to understanding, and incorporate other tech-
nologies beyond the focus of this paper, such as dialog man-
agement, natural language understanding and generation and
speech synthesis. Acoustic signal capture, and integration of
speech with other modalities, such as tactile input, are other as-
pects to be considered. Some of the design issues in developing
a speech recognizer for an SLDS are discussed in [15], [27],
[32], [35], [48], [49], [59], [61], [63], [125].

Given the nature of interactive dialog, several constraints are
placed on the speech recognizer. The primary requirements are
for real-time, speaker-independent, recognition of spontaneous
speech. What is really meant by real-time speech recognition
is that there is a very short delay from when the user finishes
speaking and the system responds. An acceptable latency is on
the order of 0.5 seconds. This means that speech recognitionis
being carried out during signal acquisition, in contrast tospeech
recognizers designed to function in a sentence or segment-based
batch processing mode, and requires alternative approaches to
cepstral and energy normalization. One straightforward solu-
tion is to base the normalization on a window of previously ob-
served frames. Most real-time decoders make use of a single
pass search. In order to ensure that a recognition response is
given within an acceptable delay, a common solution is to usea
dynamic pruning approach, based either on the number of active
solutions. If a two-pass search is used, the second pass mustbe
very fast.

It is common practice for the language models of SLDSs to
explicitly model filler words and breath noises, as their occur-
rences are not random, and to use compound words for common

word sequences that are subject to strong reduction and coar-
ticulation. Word-class based language models are often used to
give a priori information to the speech recognizer and reduce the
risk of model inaccuracy due to non-representivity of the train-
ing data. Word classes are usually manually specified, but can
be automatically derived.

Different approaches have been taken to interface the speech
recognizer with the natural language understanding (NLU) com-
ponent which extracts the meaning of the spoken query. In most
systems a bottom up approach is taken, where the output of the
recognizer is passed to the NLU component. The recognizer
output can be the most probable word sequence, an N-best list
of word strings, or a word lattice. In the latter cases, the NLU
component can be used to filter the recognizer output. Whether
or not there is a need for more than the best word string depends
on what information is in the recognition language model and
whether more information is available in the NLU. For exam-
ple, in general the recognizer has limited task domain and world
knowledge. So if the best word sequence output by the recog-
nizer isWednesday, January thirtieth, but the thirtieth of January
is not a Wednesday, the language understanding component may
be able to detect this inconsistency. If thethirteenthis both a
Wednesday and in an alternative solution, a clarification dialog
with the user can be avoided by using this knowledge. The use
of dialog context (or dialog state) language models is a way of
adding task-specific knowledge in the recognizer [32], [136] and
may reduce the need for word graphs or N-best lists.

Most understanding components are based on rules, how-
ever some stochastically based systems have been reported [93],
[141], [105]. The attraction of statistical methods stems from
their success in speech recognition, with human intervention be-
ing limited to labeling (or correcting labels). Known disadvan-
tages are that stochastic models require large training corpora in
order to reliably estimate model parameters, and the model ac-
curacy is highly dependent upon the representivity of the train-
ing data. Also, generalizations that can be made relativelyeasily
by humans may not be automatically learned.

A confidence measure can be associated with each word in the
output, and uncertain words can be rejected by the recognizer or
the higher level understanding components, or confirmed viaa
confirmation subdialog. Rejection has strong implicationsfor
the interaction with the user (there is a risk of annoying theuser
by asking for a repetition) and on average leads to longer di-
alogs. However, this may be preferable to making an error, and
may be more successful in the long run.

IV. A PPLICATIONS

This section addresses three main classes of applications
based on LVCSR technology, and provides some specific ex-
amples taken from our experience at LIMSI. We do not attempt
to provide an exhaustive survey of available systems, but rather
aim to highlight some application areas of recent attentionin the
community.

Dictation is the most obvious application of automatic speech
recognition technology, as is evidenced by long history of re-
search and product development and the availability of low-cost,
off-the-shelf systems for a variety of platforms and languages.
Perhaps the most notable characteristic of this task is that the
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speech data is being produced with the explicit goal of being
transcribed by a machine.

The second application area goes beyond dictation to the tran-
scription and indexation of more general audio data, such asra-
dio and television broadcasts, or meetings and teleconferences,
and any kind of audio data mining. Several characteristics of
this type of audio data can be noted. First, it can be considered
“found” data in that it is produced for other reasons, and it is
only a secondary benefit to be able to automatically structure the
data for other uses. Second, the data consists of a continuous au-
dio stream, where there are multiple speaker turns (maybe over-
lapping), and there is no a priori segmentation into sentences.
Third, the signal capture and background environment can be
only more or less controlled. The earliest work in this area that
we are aware of is the NSF INFORMEDIA project [65] under the
Digital Libraries News-on-Demand action line. A special sec-
tion of the Communications of the ACM was recently devoted
to this topic [102].

The third application class is that of dialog systems. For the
most part such systems aim to enable vocal access to stored in-
formation. While there has recently been an emergence of dia-
log systems on the market, the dialog capability of these systems
is usually more constraining than laboratory prototypes. We do
not address the class of small vocabulary ASR systems as are
starting to be seen in telephony applications, such as automated
operator assistance or call routing where the keypad menu se-
lection is replaced by vocal commands.

A. Dictation

The first commercially available products based on large vo-
cabulary automatic speech recognition technology were forthe
dictation task, and today a variety of software-only continuous
speech dictation systems are available for the general public.
Two main types of dictation tasks can be considered: general
dictation and dictation in specific domains. The first task con-
cerns dictation of letters or email, and various other texts. Dic-
tation for specific domains has mainly addressed the legal and
medical fields and subspecialties, where there has been a long
tradition of dictation services. Another dictation task, that of
aids for language learning, is not considered here. While from
the technological viewpoint, dictation is usually thoughtof as
the “simple” transformation from speech to text, this view over-
looks a variety of formatting and integration issues which are
important for products.

The speech data input for a single dictation session is usu-
ally from a single speaker and has a restricted linguistic content.
The data is close to read speech, and may even be produced
from a handwritten manuscript. Even if the text is not written
in advance, the speech can be considered “prepared” in that the
speaker has planned what text to say. The word stream is also
quite close to the written form, since the result will conform
to the rules of the written language and not those of spoken
language. The microphone can be selected by the system de-
veloper, and is usually a close-talking headset mounted micro-
phone. Most systems have a push-to-talk control (or an equiva-
lent sleep/wake-up command) to let the recognizer know when
it should be transcribing.

The first commercially available dictation systems were

speaker-dependent, requiring an initialization session in which
speaker-specific training data was obtained, and for the most
part, recognized isolated words. IWR mode provided two main
advantages: simplification of the decoding process and of the
means for error correction. Today most systems make use of
speaker-independent acoustic models that are adapted on-line
to the new user with little or no explicit enrollment. Efficient
model adaptation techniques (as discussed in Section II-E)are
used to minimize the need for speaker-specific data thus vastly
improving the perceived system usability.

An advantage of the dictation task from the developers view-
point is that it is relatively simple to evaluate the core technol-
ogy by comparing the system hypothesis to a reference word
transcription. As such, dictation has served as a baseline perfor-
mance measure in LVCSR, most notably in the benchmark tests
sponsored by the US DARPA programs and coordinated by NIST
(National Institute for Science and Technology). This close re-
lation between system development and evaluation, which has
been referred to as “assessment driven technology development”
had led to larger performance improvements despite increas-
ingly difficult tasks. The commonly used error metric is the
“word error” rate defined as:%word error = %substitutions +
%insertions + %deletions. For the DARPA benchmarks, a case-
insensitive text form has always been used to measure the word
error rate. For read speech tasks, the state-of-the-art in speaker-
independent continuous speech recognition in 1995/1996 [119],
[120] is exemplified by the benchmark tests on North American
Business News task. The acoustic training data was comprised
of about 160 h of read newspaper texts from several hundred
speakers and the language model training material was com-
prised of 400 M words of newspaper texts, from a variety of
sources. On test data recorded with a close-talking microphone
with an SNR of about 30 dB, word error rates around 7% were
obtained using a 65 k word vocabulary.3 The same read speech
recorded with a table-top microphone in a computer room/office
environment (noise level 55 dBA, SNR about 15 dB), resulted
in a word error of about 14% with noise compensation. With-
out noise compensation the word error rates of systems trained
on only clean speech data is over 50%. The word error for read
newspaper texts recorded over long distance telephone lines was
over 20%. Spontaneous dictation of business and financial news
was addressed by asking subjects with experience in journalism
to read about a subject and then dictate a text. The journalists
were not allowed to read from a draft, but were allowed to re-
ject ill-formed sentences [80]. The word error on this data was
about 14%. Another task addressed speech recognition of non-
native talkers. With a set of 40 adaptation sentences, speaker
adaptation reduced the word error rate by 2 (from 21% to 11%).
Although not an official benchmark result, comparable word er-
ror reductions have been obtained for native speakers on other
tasks.

While the results given here are for American English, some-
what comparable results have been reported by various sitesfor
other languages. The LRE SQALE (Speech recognizer Qual-
ity Assessment for Linguistic Engineering) project [167],which
aimed to assess language-dependent issues in multilingualrec-3With the exception of the telephone recordings, the speakers were allowed to
repeat a recording if s/he noticed an error or were not satisfied.
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ognizer evaluation, demonstrated that the same recognition tech-
nology and evaluation methodology used for American English
could be successfully applied to British English, French and
German.

B. Audio Indexing

Automatic speech recognition is a key technology for audio
and video indexing, for data such as radio and television broad-
casts. The transcription and indexation of speech recordedat
meetings, workshops and teleconferences has many similarities
to broadcast data. The transcription of such data presents new
challenges as the signal is one continuous audio stream thatcon-
tains segments of different acoustic and linguistic natures.

The characteristics of this type of data are quite differentthose
of data input to most speech recognizers in the past. Up untilthe
last few years, speech recognizers have been confronted primar-
ily with read or prepared speech, as in dictation tasks wherethe
speech data is produced with the purpose of being transcribed
by the machine, or with limited domain spontaneous speech in
more-or-less system driven dialog systems. In all cases, the user
can adapt his/her language to improve the recognition perfor-
mance, which can be crucial for some applications. An interest-
ing aspect of the broadcast news domain is that, at least for what
concerns major news events, similar topics are simultaneously
covered in different emissions and in different countries and lan-
guages. Automatic processing carried out on contemporaneous
data sources in different languages can serve for multilingual
indexation and retrieval. Multilinguality is thus of particular in-
terest for media watch applications, where news may first break
in another country or language.

Radio and television broadcast shows are challenging to tran-
scribe as they contain signal segments of various acoustic and
linguistic natures. The signal may be of studio quality or may
have been transmitted over a telephone or other noisy channel
(i.e., corrupted by additive noise and nonlinear distortions), or
can contain speech over music or pure music segments. Gradual
transitions between segments occur when there is background
music or noise with changing volume, and abrupt changes are
common when there is a switch between speakers in different
locations. The speech is produced by a wide variety of speak-
ers: news anchors and talk show hosts, reporters in remote loca-
tions, interviews with politicians and common people, unknown
speakers, new dialects, non-native speakers, etc. Speech from
the same speaker may occur in different parts of the broadcast,
and with different background noise conditions. The linguis-
tic style ranges from prepared speech to spontaneous speech.
Acoustic and language modeling must accurately account for
this varied data.

Two principle types of problems are encountered in automati-
cally transcribing audio data streams: those relating to the varied
acoustic properties of the signal, and those related to the linguis-
tic properties of the speech. Noise robustness is also needed in
order to achieve acceptable performance levels. In order tobe
robust with respect to the varied acoustic conditions, the acous-
tic models are typically trained on large corpora (several tens of
hours to over a hundred hours) containing all data types. Band-
limited acoustic models are often used for segments labeledas
telephone speech.

The linguistic models are similarly trained on large text cor-
pora from various sources with different linguistic properties,
such as newspaper and newswire texts, Internet data, commer-
cial transcriptions and detailed transcriptions of acoustic data.
For example, the LIMSI American English language models
result from the interpolation of 3 language models trained on
different sources: 200 million words of commercial broadcast
news transcriptions; 350 million words of North American Busi-
ness newspapers and Associated Press Wordstream texts; and
1.6 million words corresponding to the transcriptions of the
broadcast news acoustic training data. The importance of the
accurate transcriptions can be seen in that the interpolation co-
efficient of this data is .25, despite the limited amount available.
In fact, there is only a slight performance degradation (under
2% relative) if only the commercial transcripts and acoustic data
transcripts are used for LM training.

Most of todays state-of-the-art systems for transcriptionof
broadcast data employ the techniques described in Section II,
such as PLP features with cepstral mean and variance normal-
ization, VTLN, unsupervised MLLR, decision tree state tying,
gender- and bandwidth-specific acoustic models. The recog-
nition vocabulary contains 65,000 or more words, with a lex-
ical coverage over 99% on the American English broadcast
news data. Given the spontaneous nature of parts of the audio
data, it is important to explicitly model filler words and breath
noise [46], which are less common in dictation.

Word recognition is generally performed in two or more de-
coding passes. The first pass is used to generate an initial word
hypothesis, which is used for unsupervised cluster-based acous-
tic model adaptation. This adaptation, which aims to reduce
the mismatch between the models and the data, is needed for
generating accurate word hypotheses. When multiple decod-
ing passes are carried out, information is usually transmitted via
word graphs or lattices.

Over the last 4 years tremendous progress has been made
on transcription of broadcast data [121], [122], [123]. State-
of-the-art transcription systems achieve word error ratesaround
20% on unrestricted broadcast news data, with a word error of
about 15% obtained on the recent NIST test sets which were se-
lected to include of higher proportions of studio and announcer
data [39]. Transcription performance varies quite a bit across
the data types. The average word error rate reported on pre-
pared, announcer speech was about 8% in the DARPA’98 bench-
mark data and under 2% for some speakers. Performance de-
creased substantially for spontaneous portions (average word
error 15%), degraded acoustic conditions (average word error
16%), or speech from non-native speakers (over 25%).

The transcription of broadcast data has also been a recent
focus of research efforts in several other languages, including
French, German, Italian, Japanese, Mandarin and Spanish [18],
[73], [77], [114], [123] using the same technology. The reported
error for these languages are somewhat higher than for Amer-
ican English which can be at least partially attributed to the
smaller amounts of training data available in other languages, in
particular to the difficulty of obtaining commercial transcripts
for language model estimation. For example, in the context
of the LE-OLIVE project, we have developed transcription sys-
tems for French and German, with word error rates around 30%
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higher than the best reported results for American English.
The same technology can be applied to other problems, such

as the transcription of meetings and conferences, or telephone
conversations (help lines, call centers). Each of these tasks poses
a set of specific problems with regard to signal capture (single
or multiple channels), speaker population, speaking styleand
linguistic content, etc. The closest task for which speech recog-
nition results are publicly available is the DARPA Hub5 conver-
sational speech recognition task using the Switchboard [60] and
multilingual Callhome (Spanish, Arabic, Mandarin, Japanese,
German) corpora. The word rates reported for this data, on the
order of 30-40% [168], are substantially higher than those for
broadcast news. The Callhome data is particularly challenging
to transcribe as the conversations are between two people that
know each other, and speak in a familiar manner about subjects
of common interest. In addition there are varied acoustic condi-
tions with respect to the background environment and the tele-
phone channel.

As part of the SDR’99 TREC-8 evaluation 500 hours of un-
partitioned, unrestricted American English broadcast data were
indexed using both state-of-the-art speech recognizer outputs
and manually generated closed captioning [45], [155]. The av-
erage word error measured on a representative 10 hour subset
of this data was around 20% for state-of-the-art systems [45].
It is important to note that not all errors are important for in-
formation retrieval, particularly since most informationretrieval
systems first normalize word forms (stemming). Only small dif-
ferences in information retrieval performance were observed for
automatic and manual transcriptions when the story boundaries
are known, indicating that the transcription quality may not be a
limiting factor on IR performance for current IR techniques.

C. Spoken Language Dialog

There are many potential services that are based on spoken
language dialog systems. The simplest, which are starting al-
ready to enter the marketplace, are quite similar to DTMF-based
voice response systems, with little requirements for natural lan-
guage understanding and with relatively constrained dialogs.
One example, is call routing services which range from rela-
tive small vocabulary (100-500 words) tasks, such as automatic
standards in small companies, to several thousand words for
standards at large organizations or on-line help services.One
of the most explored application domains is that of travel infor-
mation services, but other areas have also been of interest such
as stock quotations, weather information, names, addresses and
telephone numbers, used car sales, insurance policies and gen-
eral tourist information, to mention a few.

In order to enable user-friendly interaction with a machine,
it is necessary to be able to recognize naturally spoken spon-
taneous utterances. It cannot be assumed that the user will be
familiar with the system (or with speaking to computers), and in
general a user can be expected to interact only briefly with the
machine, so there is very little data available for model adapta-
tion. In certain targeted applications it may be possible tohave
a known user group, in which case this additional information
can be used to improve the overall transaction performance.

In contrast to a dictation application where it is rela-
tively straight-forward to select a recognition vocabulary from

large written corpora, for specific tasks, there usually areno
application-specific training data (acoustic or textual) available.
It is therefore necessary to collect application-specific data,
which is needed for accurate modeling at different levels (acous-
tic, lexical, syntactic and semantic). This data collection repre-
sents a significant portion of the SLDS development effort [87].
Acquiring sufficient amounts of LM training data is more chal-
lenging than obtaining acoustic data. With 10 k queries rela-
tively robust acoustic models can be trained, but this number
of queries will typically contain fewer than 100 k words, which
may not be sufficient for word list development or for training
n-gram language models, and are unlikely to yield a complete
coverage of the task.

Two broad classes of applications are considered: telephone-
based services and multimedia interfaces. Telephone services
are a natural area for spoken dialog systems as the only means
of interaction with the machine are via voice4 and have thus
been the focus of many development efforts. Since all interac-
tion with the caller is by speech, dialog design and responsegen-
eration are very important aspects of the system, particularly in
the context of natural, mixed-initiativesystems where theuser is
free to change the direction of the dialog at essentially anypoint
in time. Therefore careful consideration must be given to the
content and formulation of clear and concise system responses.

Information kiosks and multimedia web interfaces are spread-
ing in availability, providing different ranges of services, such as
automated ticketing, orientation information, and general tourist
services. Audio output (both sound and speech) can be used to
direct the users attention or to provide information. For most
multimedia interfaces, the input modalities are limited toa touch
screen and a keyboard, however there is increasing interestin
speech as an alternative input modality.

Although these 2 application classes share many commonali-
ties, there are important differences that should be pointed out.
The main differences concern dialog strategies and signal cap-
ture. By necessity, dialog plays a much more important role
in telephone-based services, where in general multiple caller-
system turns are required to obtain a satisfactory response. For
example, it is preferable to ask the caller to provide additional
constraints to limit the possible solutions, then to simplyread
off a long list of possible solutions satisfying a request. With a
multimedia interface it can be more efficient to display all pos-
sibilities on the screen, letting the user select amongst them.

Signal capture considerations are also quite different. Tele-
phone signal has reduced bandwidth, and may be affected by
channel distortions and varyied handset characteristics.For
multimedia interfaces a wide-band signal is available, butthe
microphone is generally far from the talker’s mouth. In order
to account for different heights and positions of the expected
user population, it may be desirable to use multiple micro-
phones [48]. One obvious solution is to use a handset to control
the microphone position, but this has the disadvantage of re-
ducing the user’s freedom to use other input modalities. Noisy
background acoustic conditions are to be expected for multime-
dia interfaces located in public places. Background noise can4There are still large populations that do not have touch toneaccess, and the
ergonomics of keypad input with the popular telephone design of keys on the
handset is not evident!
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evidently also be a problem for telephone services if the call is
made from a noisy place.

For both types of applications the capability of the user to in-
terrupt the machine is often considered as crucial for usability.
(There may of course be dialog contexts where it is desirableto
disable barge-in to ensure that the caller hears the entire mes-
sage.) For the telephone application echo cancelation mustbe
used to remove the echo of the known synthetic speech in order
to recognize what is said by the caller. Evidently barge-in which
is based on the recognizer output, and not just speech detection,
is more efficient and less prone to errors. Simple energy based
techniques can be triggered by spurious noises, which can be
generated by the user (coughing, throat clearing, touchingthe
microphone) or externally (tapping, door slam, paper rustling).
Barge-in with multimedia interfaces requires acoustic echo can-
celation, which is a difficult task as the user is generally inthe
acoustic field and any movement changes the filter characteris-
tics.

Using speech technology to improve the usability of kiosks
was addressed in the ESPRIT MASK (Multimodal-Multimedia
Automated Service Kiosk) project, aimed at providing access
to rail travel information via a kiosk located in a Parisian train
station [47]. The MASK kiosk allows both vocal and tactile in-
put. Early in the project a study was carried out of assess ways
if combining input modalities, and it was found that even when
given the opportunity, subjects did not mix input modes within a
single utterance [94]. In fact, subjects typically preferred either
speech or touch, and only switched modes if they experienced
problems.5 Experiments were also carried out to assess the user
acceptance of touch-to-talk, which greatly simplifies the speech
detection problem, and avoids processing queries not directed
to the system. It turned out that the subjects found touch-to-talk
to be reassuring as they knew when the system was listening.
(Evidently the touch-to-talk is only used to get a rough estimate
of the query endpoints as users inevitably speak earlier or later
than they touch.)

The most widely known efforts in evaluation of SLDSs are
the DARPA ATIS task [66], [98], [126], the German national
Verbmobil project [156] and the EC Language Engineering
projects [100], [101]. Some recent European activities include
the ESPRIT MASK and the LE RAILTEL, MAIS and ARISE

projects [16], [113]. The word error rates of the best systems
reported in the DARPA ATIS benchmark tests [118], [119] are
under 5% for high quality laboratory data, and the spoken lan-
guage system (SLS) understanding error based on the spoken
input is not much larger than the NL understanding error ob-
tained using the orthographic transcription of the query.

More generally, a wide range of word error rates have been
reported for the speech recognition components of a spoken di-
alog systems, ranging from under 5% for simple travel infor-
mation tasks using close-talking microphones to over 25% for
telephone-based information retrieval systems. It is quite dif-
ficult to compare results across systems and tasks as different5An important difference in dialog strategies is offered by the two input
modes. Tactile input is based on a menu driven dialog, where the user must
input specific information in order to move on to the next step. Vocal input al-
lows a real mixed-initiative dialog between the user and thesystem, where the
user can guide the interaction or be guided by the system via the help messages.

transcription conventions and text normalizations are often used.
Also these numbers can be misleading as the word error mea-
sures all differences between the exact orthographic form of the
query and the recognizer output, and some of recognition errors
(such as gender or plurals) are not important for understanding.

While there are commonly used measures and methodolo-
gies for evaluating speech recognizers, the evaluation of spo-
ken dialog systems is considerably more complicated due to
the interactive nature and the human perception of the perfor-
mance [15], [27], [98]. It is therefore important to assess not
only the individual system components, but the overall sys-
tem performance using objective and subjective measures [88],
[104]. For example, in addition to the commonly used word er-
ror rate, it can be enlightening to measure the error on words
that are important for the task. Some objective measures of
the global system performance include the success rate, the
average/maximum/minimum number of turns, the total/waiting
time, the number of repetitions. In the case of multimodal sys-
tems, the effectiveness of speech can be compared with other
modalities, such as touch screen or keypad for input and a vi-
sual display for output.

D. Challenges and Perspectives

Despite the numerous advances made over the last decade,
speech recognition is far from a solved problem, as evidenced
by the large gap between machine and human performance [29],
[36], [95], [152]. The performance difference is a factor of5
to 10, depending upon the transcription task and test conditions.
To reduce this difference further improvements are needed in the
modeling techniques at all levels: acoustic, lexical and linguistic
(syntactic and semantic).

It is well acknowledged that for laboratory systems (to the
best of our knowledge no performance measures are available
for commercial dictation systems) there can be a huge perfor-
mance difference, such as a factor of 20 or more in the word er-
ror rates for the best (1-2%) and worst speakers (25-30%). This
can be attributed to a variety of factors [38] mainly, the speak-
ing style and speaking rate. For moderate speaking rates (120-
160 words per minute), there is no strong correlation between
speaking rate and word error rate, however, for speaking rates
over 180 words per minute, the word error rate increases signif-
icantly [119]. Acoustic model adaptation can partially reduce
this difference, but requires several minutes of data to be effi-
cient, which limits its use. Faster adaptation techniques which
can better account for the correlation between the parameters of
the model are therefore needed. Reducing this difference may
also require adaptive pronunciation models, which can predict
pronunciation variants based on the observed pronunciations for
the given speaker. A person who pronounces a word in a given
manner is likely to pronounce similar words in a similar way.
Similarly, at the cross-word level, different speakers make use
of different phonological rules. Although these rules are usually
systematic, no systems that we know of are able to make use of
this consistency.

Even with an average word error rate of 5% for speaker
adapted dictation systems, the user must correct one out of
twenty words, which is a costly process. An analysis of real
users’ experience with dictation, comparing the efficiencyof
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dictation with typing is given in [75].
One class of future potential products based on dictation tech-

nology are telephone services offering the ability to dictate a
letter, fax or email message. However, before such applications
can become widespread, performance will need to be improved.
Extrapolating from the results given above for spontaneousjour-
nalist dictation and for read telephone speech, expected word er-
ror rates for spontaneous dictation over the telephone are likely
to be over 30%. Distributed speech recognition, where acous-
tic parameterization is carried out on the local handset or web-
phone, and the coded parameters transmitted to a central server
for recognition, may help solve this problem by eliminatingthe
variability due to the telephone channel.

Concerning language modeling, to date techniques for longer
term agreement have resulted in only minimal improvements.
They should however be useful for accurate transcription of
highly inflected languages where3-grams are clearly not the op-
timal solution.

Keeping the language model up-to-date is a challenge for
broadcast news transcription due to the the fast, changing na-
ture of news. New topics appear suddenly, and remain popular
for quite variable length time periods. One of the most difficult
problems is to be able to recognize previously unseen or rare
proper names. Fortunately other sources of contemporary data
are available to help keep the system up-to-date, such as written
documents from newspapers and newswires, many now avail-
able on the Internet, which can be used by the transcription sys-
tem to continually update its lexicon and language model. This
is not a trivial problem since producing phonetic transcriptions
of new words such as proper names (in particular for foreign
names which are quite common in broadcast data) must rely
on some acoustic evidence, since the pronunciation of foreign
words can be quite variable depending upon the talker’s knowl-
edge of the foreign language.

Developing systems for many languages at reasonable cost is
a problem that may require less supervised training procedures.
Some very promising work has been recently reported by [77]
using untranscribed training data for acoustic model estimation.
An initial system is developed using a small amount of training
data (10 hours). This system is then used to transcribe a second
set of data, and models are reestimated. The new models are
then used to transcribe more data, and the cycle is reiterated.

In our view, the main challenge of spoken language dialog
systems is to provide a natural, user-friendly interface with the
computer, allowing easy access to the stored information. The
user should be free to ask any question or to provide any in-
formation at any point in time, but the system should help the
user if the user appears to be in difficulty. We have observed
that some speakers had serious difficulty in interacting with the
ARISE system, and suspect that there is a class of users that will
experience similar difficulties with any such system. How large
a percentage of the targeted user population falls into thiscate-
gory of user is unknown. Even for deployed systems, evaluation
is carried out on the calls that are received, by default elimi-
nating people that have called the system only once and never
called back. Speech recognition for SLDSs is complicated by
the fact that speaker-independent modeling is a necessity,as the
total amount of speech during any interaction is small so that it

is difficult to take advantage of model adaptation. As discussed
above, this results in a wide range in recognition errors across
speakers, and in particular for speech from non-native speak-
ers, for whom the word error can be twice as high as for native
ones [59]. Also, in order to improve speech recognition per-
formance on spontaneous speech it may be interesting to ques-
tion the basic units used for acoustic modeling, as units other
than context-dependent phones may prove to better capture the
large amount of phonological variants. For language modeling
a similar question can be posed regarding how to better model
contractions and sloppy articulation resulting in word deletions.

Task independence is another outstanding challenge, partic-
ularly concerning the language models. If sufficient acoustic
training data is available, it is possible to estimate acoustic mod-
els that work pretty well for a variety of tasks. This is not the
case for language models, where domain coverage is critical.
Constructing corpora that are representative, complete, and yet
at the same time not too big, remains an open research area in
spite of our collective experience.

Although it is generally advocated that speech can provide a
more natural interface with the computer than a keyboard or a
mouse, few studies have addressed multimodal interaction us-
ing speech. User trials of the MASK kiosk [83] carried out with
over 200 subjects demonstrated that for this task multimodality
is more efficient (faster and easier) than unimodality as some ac-
tions are better carried out by voice and others by touch. These
studies also showed that subjects performed their tasks more ef-
ficiently as they became familiarized with the MASK system,
learning to exploit the vocal input and benefiting from the mul-
tiple modalities. Audio-visual speech recognition [132] is a
promising research direction to improve the usability of mul-
timodal kiosks.

V. CONCLUSIONS

The last decade has witnessed significant advances in speech
recognition technology. The move from processing of prepared
speech separated in sentences to continuous inhomogeneousau-
dio streams is one of these major advances. This capability has
been enabled by advances in techniques for robust feature ex-
traction, acoustic modeling with effective parameter sharing, un-
supervised adaptation to speaker and environmental condition,
efficient dynamic network decoding, and audio stream partition-
ing algorithms.

Even though substantial progress has been made, machine
performance is still a long way behind human performance.
Transcription of spontaneous speech remains quite challenging
in part due to the large variety in speaking style and fluency.
While it is clear that all our models could use improvement, it is
not clear which of acoustic modeling, language modeling or the
phonetic lexicon is the weakest link. In fact, we have difficulties
in modeling distant dependencies at all levels.

Ongoing research is addressing issues such as low cost sys-
tem development, lightly supervised training, faster adaptation
techniques, learnable pronunciation lexicons, language model
adaptation, topic detection and labeling, and metadata annota-
tion.

A wide range of potential applications can be envisioned
based on current technology, particularly in the area of auto-
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matic indexation of broadcast data, where automated processing
is a necessity to keep up with the flow of information. This is
an exciting research area, in that there are many outstanding is-
sues to be addressed to improve the transcription accuracy on
this varied data, and at the same time there are near-term appli-
cations which can be successfully built upon this technology.
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