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SUMMARY

This paper provides an overview of the state-of-the-art
in laboratory speaker-independent, large vocabulary continuous
speech recognition (LVCSR) systems with a view towards adapt-
ing such technology to the requirements of real-world applica-
tions. While in speech recognition the principal concern is to
transcribe the speech signal as a sequence of words, the same
core technology can be applied to domains other than dicta-
tion. The main topics addressed are acoustic-phonetic modeling,
lexical representation, language modeling, decoding and model
adaptation. After a brief summary of experimental results some
directions towards usable systems are given. In moving from lab-
oratory systems towards real-world applications, different con-
straints arise which influence the system design. The application
imposes limitations on computational resources, constraints on
signal capture, requirements for noise and channel compensation,
and rejection capability. The difficulties and costs of adapting
existing technology to new languages and application need to be
assessed. Near term applications for LVCSR technology are likely
to grow in somewhat limited domains such as spoken language
systems for information retrieval, and limited domain dictation.
Perspectives on some unresolved problems are given, indicating
areas for future research.
key words:  Speech recognition, spoken language systems, dic-
tation, large vocabulary, speaker-independent continuous speech
recognition, acoustic modeling, model adaptation, multilingual

1. Introduction

In the past few years large vocabulary, continuous
speech recognition (LVCSR) has been one of the focal
areas of research in speech recognition, serving as a test
bed to evaluate models and algorithms. This technol-
ogy push has been fostered by U.S. ARPA efforts in pro-
viding common corpora and organizing annual bench-
mark tests to assess progress. The interest in LVCSR is
larger than simply building dictation systems for gen-
eral English, it also serves to develop core technology
that can be used in less demanding applications such
as voice-interactive database access or limited-domain
dictation. Progress in speech recognition can also boost
other spoken language technologies such as speaker and
language identification which rely on the same model-
ing techniques.

Speech recognition is principally concerned with
the problem of transcribing the speech signal as a se-
quence of words. Today’s best performing systems use
statistical models of speech generation. From this point
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of view, message generation is represented by a lan-
guage model which provides estimates of Pr(w) for all
word strings w, and the acoustic channel encoding the
message w in the signal « is represented by a proba-
bility density function f(x|w). The speech decoding
problem then consists of maximizing the a posterior:
probability of w, or equivalently, maximizing the prod-
uct Pr(w)f(z|w).

The principles on which these systems are based
have been known for many years now, and include
the application of information theory to speech recog-
nition[5],[46], the use of a spectral representation of
the speech signal [20],[21], the use of dynamic pro-
gramming for decoding[92], [93], and the use of context-
dependent acoustic models[15],[56],[86]. Despite the
fact that some of these techniques were proposed well
over a decade ago, considerable progress has been made
in recent year making speaker-independent, continuous
speech dictation feasible for relatively large vocabular-
ies of up to 65,000 words. This progress has been sub-
stantially aided by the availability of large speech and
text corpora and by significant advances made in micro-
electronics which have facilitated the implementation of
more complex models and algorithms.

The same modeling techniques have been adapted
to other related applications, such as speech under-
standing or spoken language systems or in the iden-
tification of what we refer to as “non-linguistic” speech
features[54]. These feature-specific models may also be
directly used to more accurately model the speech sig-
nal thus in consequence improving the performance of
the speech recognizers.

In this paper we review the state-of-the-art in
laboratory systems for LVCSR and give some exam-
ple directions taken towards real-world applications.
Most state-of-the-art LVCSR systems make use of
hidden Markov models (HMM) for acoustics mod-
eling [9],[19],[22],[32],[43],[59], [60], [64], [65], [76], [80],
[83],[94]. Other approaches include segment based
models [68],[100] and neural networks [42] to estimate
acoustic observation likelihoods. However except for
the acoustic likelihood estimation, all systems make
use of the HMM framework to combine linguistic and
acoustic information in a single network representing all
possible sentences. Decoding is the search for the most
likely word string, which is in most cases approximated



by the Viterbi algorithm.

Moving towards real-world applications means
building usable systems which involves reconsidering
many design issues such as signal capture, and noise
and channel compensation, while taking into account
limitations in computational resources. For many ap-
plications rejection capabilities will be essential. The
difficulties and costs of adapting existing technology to
new languages or new applications must also be eval-
uated. Although not the direct topic of this article,
it should not be forgotten that many applications of
speech technology will require not the transcription of
speech into text, but the understanding of speech in
order to carry out appropriate actions. A related con-
sideration for the application is whether it is provided
as a central service or as a stand-alone system for an
individual user, which has implications for the design.

While we attempt to take a general view on some
of the outstanding problems in speech recognition and
current approaches towards resolving them, for exam-
ples we refer mostly to our own work.

2. Acoustic-Phonetic Modeling

For HMM based systems, acoustic modeling consists
of modeling the probability density function of a se-
quence of acoustic feature vectors. The acoustic fea-
tures are chosen so as to reduce model complexity
while trying to keep the relevant information (i.e. the
linguistic information for the speech recognition prob-
lem). Most recognition systems use short-time cepstral
features based either on a Fourier transform or a lin-
ear prediction model. For wide band analysis (usually
8kHz or 10kHz) the two most popular sets of features
are cepstrum coefficients obtained with an MFCC [17]
analysis or with a PLP [40] analysis. In both cases a
Mel scale short term power spectrum is estimated on
a fixed window (usually in the range of 20 to 30ms),
with the most commonly used frame rate being 10ms.
To get the MFCC cepstrum coefficients a cosine trans-
form 1s applied to the log power spectrum, whereas a
root-LPCC analysis is used to obtain the PLP cepstrum
coefficients. Both set of features have been used with
success for LVCSR, but PLP analysis has been found
for some systems to be more robust in presence of back-
ground noise [49],[95]. Our experiance has been that
the implementation details are not very important, but
optimal tuning, which may be dependent on the lan-
guage or the channel conditions, can result in slight
performance improvements.

The front end configuration used in the LIMSI sys-
tem for English has been optimized on the ARPA WSJ
corpus. We use a 30ms frame window and 26 cosine
filters on a Mel scale over the 8kHz bandwidth, from
which 15 cepstrum coefficients and normalized energy
are derived. As in most LVCSR systems, sentence-
based cepstral mean removal [25] is performed to nor-
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malize the cepstrum features, rendering them more ro-
bust to channel variability. Cepstral mean removal
is a very simple, yet efficient technique to deal with
channel changes. It has also been found to slightly
improve recognition performance with clean speech in
matched channel conditions. First and second order
time derivative features are used to partially overcome
the HMM limitations in modeling the temporal dynam-
ics. The three sets of features are then combined in a
single stream and modeled by continuous density HMM
(CDHMM).

Most LVCSR, systems use acoustic units corre-
sponding to phonemic or phonetic units (or phones
in context). However it is certainly possible to per-
form speech recognition without use of a phonemic lex-
icon, either by use of “word models” (as was the more
commonly used approach 10 years ago) or a different
mapping such as the fenonic lexicon [8]. Compared
to word models, subword units reduce the number of
parameters, enable cross word modeling and facilitate
porting to new vocabularies. Fenones offer the addi-
tional advantage of automatic training, but lack the
ability to include a prior: linguistic models. Context-
dependent (CD) phone models are today the most com-
monly used acoustic units for LVCSR. Compared to
larger units such as diphones, demisyllables or syllables,
a large spectrum of contextual dependencies can be im-
plemented for CD phone models associated with back-
off mechanisms to model infrequent contexts. Various
types of contexts have been investigated from a single
phone context (right- or left-context), left and right-
context (triphone), generalized triphones [56], position-
dependent triphones (cross-word and within word tri-
phones), function word triphones, and quinphones [94].
The optimal set of modeled contexts is usually the re-
sult of a tradeoff between resolution and robustness,
and 18 highly dependent on the available training data.
This optimization is generally done by minimizing the
recognizer error rate on development data. In fact,
more than the number of CD phone models, what is
really important is to match the total number of model
parameters to the amount of available training data. A
powerful technique to keep the models trainable with-
out sacrificing model resolution is to take advantage of
the state similarity among different models of a given
phone by tying the HMM state distributions. This ba-
sic idea is used in most current LVCSR, systems al-
though there are slight differences in the implementa-
tion and in the naming of the resulting clustered states
(senones [44], genones [18], PELs [10], tied-states [98]).
Numerous ways of tying HMM parameters have been
investigated [91],[96] in order to overcome the sparse

'In some systems based on discrete or tied-mixture dis-
tributions, the three streams are modeled separately by as-
suming independance of the feature sets which allows the
use of smaller codebooks. For CDHMMs we found that a

single stream outperforms the multiple stream approach.
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training data problem and to reduce the need for distri-
bution smoothing techniques. When HMM state tying
is based on a phonetic decision tree it has the additional
advantage of providing a means to build models for un-
seen contexts (i.e. those contexts which do not occur in
the training data) [45],[97].

The LIMSI recognizer, which has state-of-art per-
formance [73], makes use of continuous density HMM
with Gaussian mixture for acoustic modeling. The
main advantage continuous density modeling offers over
discrete or semi-continuous (or tied-mixture) observa-
tion density modeling is that the number of parame-
ters used to model an HMM observation distribution
can easily be adapted to the amount of available train-
ing data associated to this state. As a consequence,
high precision modeling can be achieved for highly fre-
quented states without the explicit need of smoothing
techniques for the densities of less frequented states.
Discrete and semi-continuous modeling use a fixed num-
ber of parameters to represent a given observation den-
sity and therefore cannot achieve high precision with-
out the use of smoothing techniques or tying techniques
mentioned above.

The acoustic models are sets of context-dependent,
position-independent phone models, which include both
intra-word and cross-word contexts. The contexts are
automatically selected based on their frequencies in
the training data. The models include triphone mod-
els, right- and left-context phone models, and context-
independent phone models. Each phone model is a
three state left-to-right CDHMM with Gaussian mix-
ture observation densities (typically 32 components).
The covariance matrices of all the Gaussians are di-
agonal. Separate male and female models are used to
more accurately model the speech data and state-tying
is used to increase the triphone coverage. These mod-
els are obtained from speaker-independent seed models
using Maximum A Posteriori estimators [30].

During system development for LVCSR, phone
recognition experiments are useful to evaluate differ-
ent acoustic model sets. It has been shown that im-
provements in phone accuracy are directly indicative of
improvements in word accuracy when the same phone
models are used for recognition [53]. Phone recognition
provides the added benefit that the recognized phone
string can be used to understand word recognition er-
rors and problems in the lexical representation.

3. Lexical Representation

Lexical modeling provides the link between the lexi-
cal entries (usually words) used by the language model
and the acoustic models, with each lexical entry being
described as a sequence of elementary units. Experi-
ence with LVCSR has shown that systematic lexical
design can improve system performance [50]. Lexical
design entails two main parts - selection of the vocabu-

lary items and representation of the pronunciation en-
try using the basic units of the recognition system. Vo-
cabulary selection to maximize lexical coverage for a
given size lexicon has been previously reported [13],[33].
On average, each out-of-vocabulary (OOV) word causes
more than a single error, with rates of 1.6 to 2.0 addi-
tional errors reported. An obvious way to reduce the
error rate due to OOVs is to increase the size of the
lexicon. Increasing the lexicon size up to 65k words has
been shown to improve performance, despite the poten-
tial of increased confusability of the lexical entries. In
the LIMSI system, going from 20k words to 65k words,
recovers on average 1.2 times as many errors as OOV
words removed [33].

For LVCSR, the lexical unit of choice is usually
phonemes or phoneme-like units, specific for the lan-
guage (We use 46 for American English, 45 for British
English, 35 for French, 49 for German, and 26 for Span-
ish.). In generating pronunciation baseforms, most lexi-
cons include standard pronunciations and do not explic-
itly represent allophones. This representation is chosen
as most allophonic variants can be predicted by rules,
and their use 1s optional. More importantly, there of-
ten 1s a continuum between different allophones of a
given phoneme and the decision as to which occured in
any given utterance is subjective. By using a phonemic
representation, no hard decision is imposed, and it is
left to the acoustic models to represent the observed
variants in the training data. Several efforts to auto-
matically learn and generate word pronunciations have
been investigated [14],[16],[79],[90].

However, there are a variety of words for which fre-
quent alternative pronunciation variants are observed,
and these variants are not due to allophonic differ-
One common example is the suffix -ization
which can be pronounced with a diphthong (/a¥/) or
a schwa (/o/). Another example is the palatalization
of the /k/ in a /u/ context resulting from the inser-
tion of a /y/, such as in the word coupon (pronounced
/kupan/ or /kyupan/). Alternate pronunciations are
also needed for homographs (words spelled the same,
but pronounced differently) which reflect different parts
of speech (verb or noun) such as excuse, record, produce.

Fast speakers tend to poorly articulate unstressed
syllables (and sometimes skip them completely), par-
ticularly in long words with sequences of unstressed
syllables.  Although such long words are typically
well recognized, often a nearby function word 1is
deleted.  To reduce these kinds of errors, alter-
nate pronunciations for long words such as Min-
neapolis (/minizepolis/ or /minizplis/) and position-
ing (/pozifoniy/ or /pozifniy/), can be included in the
lexicon allowing schwa-deletion or syllabic consonants
in unstressed syllables. Alternative pronunciations can
also be provided for common 3 syllable words such as
interest (/Intrist/, /Inta1st/ or /Inaist/, where the [n]
in the latter example is often realized as a nasal flap ©

ences.



and company (/kamponi/ or /kampni/) which are often
pronounced with only 2 syllables.

Phonological rules have been proposed to account
for some of the phonological variations observed in flu-
ent speech [67]. The principle behind the phonologi-
cal rules is to modify the phone network to take into
account such variations [16],[36],[52]. These rules are
optionally applied during training and recognition. Us-
ing phonological rules during training results in better
acoustic models, as they are less “polluted” by wrong
transcriptions. Their use during recognition reduces
the number of mismatches. The same mechanism has
been used to handle liaisons, mute-e, and final conso-
nant cluster reduction for French [31].

4. Language Modeling

Language models are used to model regularities in natu-
ral language, and can therefore be used in speech recog-
nition to limit the decoding search space. The most
popular methods, such as statistical n-gram models, at-
tempt to capture the syntactic and semantic constraints
by estimating the frequencies of sequences of n words.
A backoff mechanism [48] is generally used to smooth
the estimates of the probabilities of rare n-grams by
relying on a lower order n-gram when there is insuffi-
cient training data, and to provide a means of modeling
unobserved n-grams. Another advantage of the backoff
mechanism 1s that LM size can be arbitrarily reduced
by relying more on the backoff component, obtained by
simply increasing the minimum number of required n-
gram observations needed to include the n-gram. This
property can also be used to reduce computational re-
quirements. While bigram and trigram LMs are most
widely used, small improvements have been reported
with the use of longer span 4-grams [9],[59],[94] and
5-grams[41] or class 5-grams[84]. Language models are
typically compared by measuring the perplexity of a set
of development texts.

Given a large text corpus it may seem relatively
straightforward to construct n-gram language models.
Most of the steps are pretty standard and make use of
tools that count word and word sequence occurences.
The main differences arise in the choice of the vocab-
ulary and in the definition of words, such as the treat-
ment of compound words or acronymns. There is, how-
ever, a significant amount of effort needed to preprocess
the texts before they can be used. First, the texts must
be put in a standardized format. For example, for the
ARPA NAB text corpus [2], this formating work has
been carried out by LDC using modified versions of
text processing tools provided from Lincoln Labs [74].
The main conditioning steps are text markup and con-
version for LVCSR. Text markup consists of tagging
the texts (article, paragraph and sentence markers) and
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Lexicon
Test set | Baseline 20k | 20k | 40k | 65k
Devdy 2.7 2.2 0.8 0.4
Eval9y 2.5 2.0 0.8 0.4

Table 1 OOV rate (%) on development and test sentences for
20k, 40k, and 65k lexicons. The baseline 20k vocabulary contains
the most common 20k words in the training texts (processed texts

distributed by LDC).

garbage bracketing.! Then numerical expressions are
expanded, and isolated letters marked, and finally the
text is transformed to upper case. At LIMSI simil-
iar processing has been carried out on over 90M words
of newspaper texts from Le Monde. Further semi-
automatic processing is necessary to correct frequent
errors inherent in the texts or arising from processing
with the distributed text processing tools. The error
correction consists primarily of correcting obvious mis-
pellings (such as MILLLION, OFFICALS, LITTLEKNOWN),
systematic bugs introduced by text processing tools,
and expanding abbreviations and acronyms in a consis-
tent manner. Better language models can be obtained
using texts transformed to be closer to the observed
reading style, where the transformation rules and cor-
responding probabilities are automatically derived by
aligning prompt texts with the transcriptions of the
acoustic data. For example, the word HUNDRED fol-
lowed by a number is replaced by HUNDRED AND 50% of
the time. Similarly, half the occurences of ONE EIGHTH
are replaced by AN EIGHTH, and 15% of MILLION DOL-
LARS are replaced with simply MILLION. After treating
the texts, a reduced perplexity of 5 points on develop-
ment data was reported [33], along with a better cov-
erage of the 65k lexicon.

A common way of selecting a recognition vocabu-
lary is to measure the OOV rate on development data.
For the 1994 ARPA NAB task, it was found that the
best lexical coverage was obtained by selecting the vo-
cabulary on a subset of the training data (the most
recent 2 years), as opposed to using all the available
data [13],[33]. This is to be expected as the develop-
ment test data were selected from a time period fol-
lowing the training text material, and the vocabulary
coverage reflects recency effects.

The lexical coverages of several LIMSI lexicons in
Table 1 reflect the combined effect of text cleaning
and vocabulary selection. The OOV rate with the 20k
wordlist is significantly smaller than that of the base-
line 20k wordlist. The OOV rate with the 65k word list
on the 1994 development data (Dev94) is 0.39% which
Is a pretty accurate indicator of the 0.42% observed on
the evaluation data (Eval94).

TQarbage includes mnot only corrupted text materials,
but all text material unsuitable for sentence-based language
modeling, such as tables and lists.
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5. Decoding

One of the most important problems in implementing
the decoder of a large vocabulary speech recognizer is
the design of an efficient search algorithm to deal with
the huge search space, especially when using language
models with a longer span than two successive words,
such as $-grams and 4-grams. Even for research pur-
poses where real-time recognition is not needed there
is a limit on computing resources (memory and CPU
time) above which the development process becomes
too costly.

The most commonly used approach for small
and medium vocabulary sizes is the one-pass frame-
synchronous Viterbi beam search [62] which uses a dy-
namic programming procedure. This basic strategy has
been extended to deal with large vocabularies by adding
features such as fast match [7],[37], word-dependent
phonetic trees [63], forward-backward search [4], N-
best rescoring [85], progressive search[29],[61] and one-
pass dynamic network decoding [66]. An alternative to
the frame-synchronous Viterbi beam search is an asyn-
chronous search based on the A* algorithmsuch as stack
decoding [6],[75] or the envelope search [39].

Single pass decoders such the stack decoder [75] or
the one-pass dynamic network decoder [66] which use
all the knowledge sources (e.g. cross word triphones and
trigram language models) in one step are certainly very
attractive to minimize search errors. However, many
LVCSR systems under development use multiple pass
decoders to reduce the computational resources needed
for evaluation runs. In this case, information is trans-
mitted between passes by means of word lattices, word
graphs or N-best lists. (Lattices are graphs where nodes
correspond to particular frames and where arcs repre-
senting word hypothesis have associated acoustic and
language model scores.)

The two-step approach used in the LIMSI research
system is based on the idea of progressive search where
the information between levels is transmitted via word
graphs [29]. Due to memory constraints, each step may
consist of one or more passes, each using successively
more refined models. All decoding passes use cross-
word CD triphone models.

The first step of the decoder uses a bigram-backoff
LM with a tree organization of the lexicon for the back-
off component. This one-pass frame-synchronous beam
search, which includes intra- and inter-word CD phone
models, and gender-dependent models, generates a list
of word hypotheses resulting in a word lattice. The
tree representation of the backoff component (first in-
troduced in our Nov92 CSR system) provides an effi-
cient way of arbitrarily reducing the search space and
of limiting the computational requirements of the first
pass which represent on the order of 75% of the compu-
tation need for the entire decoding process. Addition-
ally, this strategy allows us to use a static graph instead

of building it dynamically, therefore avoiding the com-
putational bookkeeping costs associated with dynamic
network decoding. The key elements of the procedure
used to generate the word graph from the word lattice
are the following. First, a word graph is generated
from the lattice by merging three consecutive frames
(i.e. the minimum duration for a word in our system).
Then, “similar” graph nodes are merged with the goal
of reducing the overall graph size and generalizing the
word lattice. This step is reiterated until no further
reductions are possible. Finally, based on the trigram
backoff language model, a trigram word graph is gener-
ated by duplicating the nodes having multiple language
model contexts. Bigram backoff nodes are created when
possible to limit the graph expansion. The trigram step
may be carried out in more that one pass, using succes-
sively larger language models.

Evidently, the first pass used to generate the initial
word lattice must be accurate enough to not introduce
lattice errors which are unrecoverable with further pro-
cessing. In our 65k system the graph error is usually
small (~ 2%), but poor speakers tend to have higher
graph errors, and higher graph errors are obtained on
telephone and noisy data.

6. Model Adaptation

Model adaptation can be used to reduce the mistmatch
between test and training conditions or to improve
model accuracy based on the observed test data. Adap-
tation can be of the acoustic models or the langugae
models, or even to the pronunciation lexicon. One of
the main challenges in LVCSR is building robust sys-
tems that keep high recognition accuracy when test-
ing and training environmental conditions are different.
Two classes of techniques to increase system robustness
can be identified: signal processing techniques which at-
tempt to compensate for the mismatch between testing
and training by correcting the speech signal to be de-
coded; and model adaptation techniques which attempt
to modify the model parameters to better represent the
observed signal. Signal processing based approaches
include normalization techniques that remove variabil-
ity, thereby increasing the system accuracy under mis-
matched conditions but often resulting in reduced word
accuracy under matched conditions, and compensation
techniques which rely on a mismatch model and/or
speech models. Model adaptation is a much more pow-
erful approach, especially when the signal processing
relies on a speech model. Therefore when computa-
tional resources are not an issue, model adaptation is
the prefered approach to compensate for mismatches.
Acoustic model adaptation can be used to compen-

'In our implementation, a word lattice differs from
a word graph only because it includes word endpoint
information.



sate mismatches of various natures due to new acoustic
environments, to new transducers and channels, or to
particular speaker characteristics, such as the voice of
a non-native speaker. The most commonly used tech-
niques for acoustic model adaptation are parallel model
combination (PMC), maximum a posteriori (MAP) es-
timation, and transformation methods such as maxi-
mum likelihood linear regression (MLLR). PMC is only
used to account for environmental mismatch due to ad-
ditive noise whereas MAP estimation and MLLR are
general tools that can be used for speaker adaptation
and environmental mismatch.

PMC approximates a noise corrupted model by
combining a clean speech model with a noise model [26].
For practical reasons, it is generally assumed that the
noise density 1s Gaussian and that the noise corrupted
speech model has the same structure and number of pa-
rameters as the clean speech model — typically a con-
tinuous density HMM with Gaussian mixture. Various
techniques have been proposed to estimate the noisy
speech models, including the log-normal approximation
approach, the numerical integration approach, and the
data driven approach[27]. The log-normal approxima-
tion is crude especially for the derivative parameters,
and all three approaches require making some approx-
imations to estimate derivative parameters other than
first order differences.

MAP estimation can be used to incorporate prior
knowledge into the CDHMM training process, where
the prior information consists of prior densities of the
HMM parameters [35]. In the case of speaker adapta-
tion, MAP estimation may be viewed as a process for
adjusting speaker-independent models to form speaker-
specific ones based on the available prior information
and a small amount of speaker-specific adaptation data.
The joint prior density for the parameters in a state is
usually assumed to be a product of Normal-Gamma
densities for the mean and variance parameters of the
Gaussian mixture components and a Dirichlet density
for the mixture gain parameters. MAP estimation has
the same asymptotic properties as ML estimation but
when independent priors are used for different phone
models the adaptation rate may be very slow, partic-
ularly for large models. It is therefore avantageous to
represent correlations between model parameters in the
form of joint prior distributions [88],[99].

MLLR. is used to estimate a set of transformation
matrices for the HMM Gaussian parameters in order
to maximize the likelihood of the adaptation data [58].
This adaptation method was originally used for speaker
adaptation, but 1t can equally be applied to environ-
mental mismatch [95]. Since the number of transforma-
tion parameters is small, large models can be adapted
with small amounts of data. To obtain ML asymptotic
properties it is necessary to adjust the number of linear
tranformations to the amount of available adaptation
data. This can be done efficiently by arranging the
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mixture components into a tree and dynamically defin-
ing the regression classes [57]. It should be noted that
both MAP estimation and MLLR adaptation can be
used for supervised or unsupervised model adaptation.

Model adaptation can evidently also be applied
to the language model. In most LVCSR systems one
or more language models are used, but these LMs are
usually static. Various approaches have been taken to
adapt the language model based on the observed text
so far, including the use of a cache model [47],[82], a
trigger model [81], or topic coherence modeling [87].
The cache model is based on the idea that words ap-
pearing in a dictated document will have an increased
probability of appearing again in the same document.
For short documents the number of words appearing is
small, and as a consequence the benefit is small. The
trigger model attempts to overcome this by using ob-
served words to increase the probabilities of other words
that often co-occur with the trigger word. In topic co-
herence modeling, selected keywords in the processed
text are used to retrieve articles on similar topics with
which sublanguage models are constructed and used to
rescore N-best hypotheses. Despite the growing inter-
est in adaptive language models, thus far only minimal
improvements have been obtained compared to the use
of very large, static n-gram models.

7. Assessment Driven Technology Develop-
ment

The most widely known evaluation experiments in
speech recognition have been coordinated by NIST (Na-
tional Institute for Science and Technology) and spon-
sored by the U.S. ARPA program. Through the ob-
jective evaluation of different recognition systems; the
community has been able to contrast different meth-
ods, sharing reliable information among participants.
The initial evaluations were carried out on the 1000-
word Resource Management (RM) task [69] and on
the 5000-word and 20,000 word Wall Street Journal
(WSJ) task [70],[71], and most recently on the unlim-
ited vocabulary North American Business News (NAB)
task [72] with high quality read speech and in more chal-
lenging acoustic conditions with unknown microphones
and background environmental noise (MUM) [73]. The
baseline tests constrain the acoustic and language
model training data, as well as fix the vocabulary
and language model so as to permit cross-site compar-
isons in acoustic modeling for speech recognition. Non-
baseline conditions relax these constraints, allowing the
use of additional acoustic and language model training
materials. The results of the last 5 baseline evalua-
tions for speaker-independent LVCSR, held in Septem-
ber 1992 (RM), November 1992 (WSJ) and November
1993 (WSJ), November 1994 (NAB), and November
1995 (MUM) are given Table 2. The commonly used
metric of “word error” rate is defined as: %word error
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| Test | Test Conditions | Vocabulary | Word Error (%) |

Sep92 RM 1k wordpair, closed vocabulary 1k 4.4 -11.7
Nov9a2 WSJ 5k bg, closed vocabulary 5k 6.9 - 15.0
20k bg 20k 15.2 - 25.2
Nov93 WSJ 20k open tg 20k 11.7-19.0
5k bg 5k 87-17.7
5k tg 5k 4.9- 9.2
5k tg, local telephone 5k 12.8- 25.5
Nov94 NAB 20k tg, unlimited 20k 10.5 - 22.8
unlimited 20 - 65k 7.2-174
unlimited, telephone 40 - 65k 22.5 - 24.6
Nov95 MUM unlimited, noise, unknown mic. 65k 13.5- 55.5
unlimited, noise, Sennheiser 65k 6.6 - 20.2

Table 2  Results on ARPA sponsored evaluation tests from 1992 to 1995. The tests were

carried out on increasingly more difficult tasks and conditions. The lowest and highest word

errors are given for each test.

= %substitutions + %insertions + %deletions.

Despite the increasing task difficulties, the word
error rates are seen to decrease over time. In 1992, the
5k baseline test was carried out in a closed-vocabulary
condition, meaning that the commonly used vocabulary
included all the words in the test data. In contrast,
for the open-vocabulary condition the test data are se-
lected without ensuring that all lexical items appear in
the known recognition vocabulary. Since the 1994 eval-
uation, the test data have been selected without limita-
tions on the vocabulary and the use of a common LM is
no longer imposed. The first table entry for 1994 gives
results with an imposed tg LM and in the second entry
no constraints were imposed. An important observation
of this benchmark test is that by increasing the size
of the recognition vocabulary (up to 65k words), the
errors introduced by OOV words are reduced despite
the potential for increased acoustic confusability of the
larger lexicon. In 1994 and 1995 some sites used longer
span language models (4-gram and 5-gram). The com-
parative tests with telephone speech in 1993 and 1994
had performance levels significantly worse (over twice
the word error rate) than on the clean speech data. In
1993 the telephone data was collected with subjects at
SRI, over local Palo Alto lines, while in 1994 data were
collected remotely over long distance channels.

Several points should be made about the above re-
sults. First, it can be seen that typically for a closed-
vocabulary test, word errors are quite low - as low as
4% with a 1000 word vocabulary and 5% with 5000
words. Second, increasing the vocabulary size does
not harm recognition performance, given a sufficient
language model. Third, while the table shows aver-
age word error rates, for the same system there can
be a factor of 10 difference in the word error rates for
the best and worst speakers. Finally, while the bench-
mark tests have been extended to conditions closer to
those of possible applications (telephone, noise condi-
tions, multi-microphone, spontaneous dictation), they
still remain in the domain of laboratory systems, with
significant advances needed for real-world usage.

8. Towards Multilinguality

Speech recognition in multiple languages 1s essential
in Europe, where the national language(s) are closely
linked to the national cultures and identities. Even in
the United States, a “monolingual” country, there is
such a large immigrant population that there is increas-
ing interest in multilingual speech recognition. It is thus
of interest to assess the applicability of commonly used
speech recognition techniques for different languages,
and the issues involved in porting a speech recognizer
to a new language.

To build a recognizer in a new language, the first
step i1s obtaining the necessary acoustic and language
model training data, and a pronunciation lexicon. Sys-
tem parameters or components which are dependent on
the language (such as the phone set, the need for pro-
nunciation alternatives or phonological rules) evidently
must be changed. Other language dependent factors
are related to the acoustic confusability of the words
in the language (such as homophone, monophone, and
compound word rates) and the word coverage of a
given size recognition vocabulary. These factors will
influence the size of the recognition vocabulary and
the choice of acoustic units (context-independent or
context-dependent), as well as the choice of language
model (bigram, trigram, class-n-grams).

Taking into account language specificities can im-
prove recognition performance. For example, in Ger-
man, glottalized segments are good indicators of mor-
pheme boundaries, a characteristic which, when ac-
counted for in the lexicon and the acoustic models, has
led to better recognition [3]. While word-initial glottal-
ization also occurs in other languages such as English,
its occurrence is less systematic and therefore more dif-
ficult to model.

At the lexical level, a given size lexicon will have
different coverage across languages. Highly inflected
languages require a larger lexicon to adequately repre-
sent the language. For example, comparing the num-
ber of distinct words in newspaper text corpora for En-



glish, French, German and Italian, the German corpus
contains over twice as many distinct words as French,
which has more than Italian and English [51].T The
larger number of distinct words stems mainly from the
number and gender agreement in nouns, adjectives and
past participles, and the high number of different verb
forms. While in English there is only one form for the
definite article the, in French there are 3 forms le, la, les
(masculine singular, feminine singular, plural), and in
German are found singular forms der, die, das (male,
female, neuter) and the plural form die. Declension
case distinction adds 3 additional forms des, dem, den
to the nominative form der. As a consequence, to ob-
tain a lexical coverage of 95%, an English lexicon need
only contain 5000 words, compared to 20,000 for French
and Italian, and 65,000 for German.

Homophone rates differ across languages. A com-
parative study of French and English showed that, given
a perfect phonemic transcription, 23% of words in the
WSJ training texts are ambiguous, whereas 75% of the
words in the Le Monde training texts have an ambigu-
ous phonemic transcription [31]. Another difficulty spe-
cific to French is that most of the phonemes are also
words (we refer to these as “monophone” words), and
often have several graphemic forms (the phoneme /e/
can stand for ai, ate, ates, ait, aient, hais, hait, hate,
haies, es, est and /s/ can stand for s’, ¢’ ). These
words that are short and frequent can easily be in-
serted and deleted by the recognizer, having the re-
sult that any out-of-vocabulary word (OOV) can be re-
placed by a sequence of highly probable phonemes. An
extreme example is the OOV “s’épanousissait” which
was recognized as the word sequence “c’est pas nous
oui ¢’est” [23].

The LRE SQALE (Speech recognizer Quality As-
sessment for Linguistic Engineering) project aimed to
assess language-dependent issues in multilingual recog-
nizer evaluation [89]. In the project the ARPA evalu-
ation paradigm was used to assess the performance of
the same system on comparable tasks in different lan-
guages (American English, British English, French and
German) to determine cross-lingual differences, as well
as different systems on the same data so as to compare
different methods. Table 3 summarizes the experimen-
tal conditions and results of the evaluation, in which
the test data were selected so as to control the OOV
rate. This exercise demonstrated that the same recog-
nition technology and evaluation methodolgy could be
successfully adapted to these 4 languages.

"The newspaper text corpora compared are the Wall
Street Journal (English, 37TM words) [2], Le Monde (French,
38M words) [31], Frankfurter Rundschau(German, 36 M) [1],
and Il Sole 24 Ore (Italian, 26M words) [24], where the total
number of words of text material are given in parentheses.
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9. Towards Usable Systems

In adapting a state-of-the-art speech recognizer devel-
oped in a laboratory for real-world use, all aspects of the
speech recognizer must be reconsidered from signal cap-
ture to adaptive acoustic and language models. Given
application constraints, standard laboratory develop-
ment procedures may need to be revised. At LIMSI
we have recently faced this challenge in the context
of the ESPRIT Mask (Multimodal-Multimedia Auto-
mated Service Kiosk) project, aimed at providing ac-
cess to rail travel information [28]. The speech recogni-
tion requirements for the Mask information kiosk are:
speaker-independence; real-time spontaneous, contin-
uous speech recognition; a recognition vocabulary in-
cluding 600 station/city names; and robustness as the
expected background noise level for the Mask kiosk
located in a Parisian train station is on the order of
63dBA SPL. In this section we address issues related
to signal capture and real-time decoding in non-ideal
environmental conditions. Issues related to recognition
of spontaneous speech are discussed in the next section.

In order to better simulate the acoustic conditions
of the final kiosk, a data collection kiosk has been built
according to the physical specifications supplied by er-
gonomics experts. This data collection kiosk, shown in
Figure 1, is being used to carry out laboratory exper-
iments and to record data under more realistic condi-
tions, by placing the users in conditions closer to that of
real use. The touch screen (1) is located so as to acco-
modate a wide variety of user sizes. In order to account
for the different customer heights and positions when
using the kiosk, 3 PCC (Phase Coherent Cardioid) mi-
crophones have been positioned around the screen cav-
ity on the top (2), left (3) and right (4) of the screen.
Based on the SNR of each channel, the output of one of
the three microphones is selected. Beam forming was
considered but found to not be efficient for the kiosk
configuration, since the distance between the speaker
and the closest microphone is less than the distance be-
tween microphones. A fourth channel is used to capture
the signal played over the loudspeaker, coming from the
message synthesizer or from video soundtracks, in order
to compensate for the acoustic feedback on the micro-
phones.

In order to simulate the environmental condi-
tions of the kiosk, measurements were carried out in
a Parisian train station to estimate the expected mid
working day background noise. Laboratory subjects
are recorded in both quiet and noisy conditions, so as
to model potentially different user behaviors. A touch-
to-talk mechanism is used to get a rough estimate of the
query endpoints, as well as to avoid processing queries
not directed to the system. The system response signal
1s cancelled only until the user’s speech is detected, and
the response signal is stopped as soon as possible after
the touch is detected.
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Training # Vocabulary ooV Word
Language Corpus Participants Size rate Error (%)
AmEng WSsJo 4 20k 1.43 12.9 - 14.7
BritEng WSJCAMO 3 20k 1.66 13.8-15.4
French BREF-80 3 20k 1.70 151 -16.1
German Phondat/FR 3 64k 1.85 16.1 — 19.7
Table 3 Results in % word error of the SQALE evaluation for speech recognition in four

languages (American English, British English, French and German) with 20k/64k trigram
LMs.

Fig. 1 The LIMSI Mask data collection kiosk, (1) touch
screen, (2), (3) and (4) are microphones, and (5) loudspeaker.

An important aspect of real-time speech recog-
nition 1s the design of a fast search algorithm that
maintains high recognition accuracy. Even though the
Mask task 1s less ambitious than our laboratory 65k
system, decoding is still not trivial, particularly in the
presence of noise which slows down the decoder. Since
an immediate response is required, not too much time
can be spent in multipass decoding. Recognizer opti-
mization is trickier given the constraint of real-time de-
coding, as performance may be more dependent upon
other factors (such as the pruning level) than on the
accuracy of the acoustic models. For laboratory sys-
tems our experience has been that improving model
accuracy both improves recognition performance, and
leads to better decoding due to more efficient pruning.
However, if the decoding strategy remains the same,
the trade off between accuracy and speed is dependent
upon the total number of model parameters. Several
techniques have been combined to achieve the Mask
goals: a lexicon tree, multipass decoding, distributed

LM weights, Gaussian shortlists and gender dependent
(GD) acoustic models.

The network used in the bigram pass is built in
such a way that the word tails (the last phone or last
few phones of the word) are shared between the lexicon
tree and the linear representation of the words, so as
to minimize the number of interword connections. Evi-
dently single phoneme words are represented only once.
Bigram decoding with CI phone models is realized in
real-time (RT), where real time is defined as taking 1s
to process a 1s utterance. The language model weights
are distributed over the phone graph so as to allow the
use of a reduced pruning threshold, enabling both faster
and more accurate search. When a trigram LM is used,
a second decoding pass is carried out using a word graph
generated with the bigram. The result of the first de-
coding pass is used to guide the search of the second
pass, enabling the use of a dynamic pruning threshold.
This second pass uses more accurate acoustic and lan-
guage models and can be carried out in about 20% of
CPU time of the first pass.

For small and medium vocabulary tasks, the state
likelihood computation can represent a significant por-
tion of the overall computation. One way to speed up
this computation is to reduce the number of Gaussians
needing to be considered to compute the likelithood for
a state by preparing a Gaussian short list for each
HMM state and each region of the quantified feature
space [12]. Doing so, only a fraction of the Gaussians
of each mixture is considered during decoding. This
approach allows us to reduce the average number of
examined Gaussians per mixture from 12 to 4 without
any loss in accuracy.

One easy way to improve the accuracy of the rec-
ognizer is to use GD acoustic models. By building two
separate networks and carrying out frame-synchronous
decoding on the two networks in parallel, recognition
accuracy can be improved without increasing the de-
coding time since after only a few frames the network
corresponding to the speaker’s gender is under consid-
eration [52]. The small overhead of searching the 2
networks at the start of the sentence 1s largely compen-
sated by more efficient pruning due to the use of more
accurate models.

To deal with noisy conditions, the data-driven
model adaptation scheme used in the LIMSI Nov9h
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NAB system [34] is applied. Related to model com-
bination schemes [26],[27], adaptation is based on the
following model of the observed signal y given the input
signal z: y = (& + n) * h, where n is the additive noise
and h the convolutional noise. Compensation is per-
formed iteratively, where refined estimates of n and h
are obtained before each decoding process. To adapt to
different conditions at different times of day, noise es-
timation and compenstation can be performed at regu-
lar intervals or inbetween customer sessions. In order to
perform the speech analysisin real-time, sentence-based
cepstral mean removal is approximated by removing the
mean of the previously observed frames, where the cep-
strum mean is updated at each frame with a first order

filter (1 - 0.995271).

10. Towards Natural Speech and Speech Un-
derstanding

The capabilities of speech recognition systems in multi-
ple languages reported here have all been obtained us-
ing read-speech, recorded in laboratory conditions. To
approach more closely future speech recognition appli-
cations, it is necessary to be able to recognize naturally
spoken utterances. It is well-known that spontaneous
speech does not respect written grammar, and has com-
mon phenomena such as hesitations, filler words, false
starts, repetitions and repairs. The speaking style is
often more relaxed than read speech, and more phono-
logical modifications are observed in which word real-
izations can differ from their canonical lexical represen-
tation. For a wide range of applications it 1s also likely
that the system will need to understand the linguistic
content of the utterance, not only to simply transcribe
it into words. For many tasks a dialog component will
be necessary, which can also be used to reduce the task
perplexity by using different language models in differ-
ent dialog states. A dialog component in turn requires
a response generation component, optionally with vo-
cal output. Although in this paper we address only the
speech recognition aspects of spoken language under-
standing systems, we acknowledge the important roles
of the dialog management and response generation com-
ponents in system design and development.
Recognition of spontaneous speech implies several
consequences for the recognizer, including identifying
available information sources which can be used to
bring up an initial system. In contrast to a dictation
application where it is relatively straight-forward to se-
lect a recognition vocabulary from large written cor-
pora, for specific tasks, a priori even the vocabulary
size 18 not known, and there usually are no application-
specific training data (acoustic or textual) available. A
commonly adopted approach for data collection is to
start with an initial system (that may involve a Wizard
of Oz configuration to replace non-existant system com-
ponents) and to collect a set of data which can be used
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to start an iterative development cycle. The recogni-
tion vocabulary and language model are initially based
on the designers’ expectations and task domain knowl-
edge, and augmented according to the collected corpus.
The capacity to easily add new words 1s thus essential.

The most effective manner of obtaining representa-
tive speech data is with preliminary versions of a com-
plete system. It has been observed that as the system
improves, subjects speak more easily and use longer and
more varied sentences [55]. They are also more likely to
perceive that errors are their own fault, rather than the
system’s. As a result they continue to speak relatively
naturally to the system, enabling the collection of more
representative spontaneous speech.

Different approaches have been taken for interfac-
ing between the speech recognizer and the natural lan-
guage (NL) understanding component. In most systems
a bottom up approach is taken, where the output of the
recognizer is passed to the NL component. The recog-
nizer output can be the best word string, an N-best list
of word strings, or a word lattice. In the latter cases,
the NL component can be used to filter the recognizer
output.

The most widely known work in this area are
the ARPA ATis task[78] and the ESPRIT SUNDIAL
project[77]. More recent projects are the ESPRIT
Mask project [28] and the Language Engineering Mul-
tilingual Action Plan (LE-MLAP) projects RAILTEL
and Ma1s. The range of results obtained for different
sites in the ARPA ATIs benchmark tests [71],[72] are
shown in Table 4. The performance of the best sys-
tem 1s seen to have significantly improved from 1993
to 1994.T The word error rates of the best system are
quite low, and the spoken language system (SLS) under-
standing error based on the spoken input is not much
larger than the NL understanding error obtained us-
ing the orthographic transcription of the query. The
performance of the L’ATIs system[11], a French ATIs
system developed at LIMSI, is within the same range
of the ATIS systems. For the MASK system, reducing
the word error from 15% in to 10%, led to a 29% re-
duction in SLS error to 15%. The current Mask NL
understanding error is 7%. We expect that further im-
provements in recognition performance will reduce the
difference in NL and SLS understanding error rates, as
was observed for the ARPA ATis task.

For spoken language applications, global evalua-
tion measures and subjective user ratings are likely
to be more important than word error and query un-
derstanding rates. An important need for such ap-
plications 1s the capability to reject out of domain
queries. Qur strategy is to estimate the a posteri-
ort sentence probability for the recognizer hypothesis,

TAlthough benchmark SLS tests were carried out prior
to 1993, the scoring used a weighted error which makes it
difficult to compare with these results.
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SPREC NL SLS
Test Word Error (%) | Error (%) | Error (%)
ATIS’93 3.3-9.0 9.3-43.1 13.2 - 46.8
ATIS'94 1.9-14.1 5.9-41.7 8.6 - 55.3
L’Atis Jan’95 6.0 11.0 12.0
Table 4  Range of spoken language system results for the ATIs

task. Speaker-independent speech recognition results (SPREC)
are given in terms of word error. Natural language (NL) and
Spoken Language System (SLS) results are in unweighted error,
which is the sum of #(no answer) + #(wrong answer). Results
are given for queries of type A+D (A answerable without context,
D answerable with context).

i.e. Pr(wlz), by modeling the talker as a source of
phones with phonotactic constraints provided by phone
bigrams. We approximate Pr(w|z) by Pr(pw|r) =~
f(z|ow) Pr(pw)/ max, f(z|¢) Pr(¢), where ¢, is the
recognized phone transcription corresponding to the
recognizer hypothesis w. Pr(py |x) is then compared to
a fixed threshold to decide whether to accept or reject
the query. This procedure requires only a small amount
of additional computation if you use simple models and
a tight prunning threshold.

11. Summary and Perspectives

In this paper we have provided an overview of the state-
of-the-art in laboratory speaker-independent, large vo-
cabulary continuous speech recognition systems, and
discussed some of the issues involved in adapting such
technology to the requirements of real-world applica-
tions. Much of the recent progress made over the last 5-
10 years in LVCSR has been made possible by the avail-
ability of large corpora for training and testing speech
recognition and understanding technology. However,
despite our experience as a community, constructing
corpora that are representative, complete, and yet at
the same time not too big, is an open research area. It
1s extremely hard to even demonstrate the effects of dif-
ferent corpus design strategies. Yet at the same time,
the performance of all recognition systems is acknowl-
edged to be quite dependent on the training data.

For dictation tasks, it is relatively easy to obtain
text data for training language models. After process-
ing of the texts to clean them and to transform them
to be closer to observed reading styles, a task vocab-
ulary can be selected and language models trained. A
subset of texts can be selected to ensure good phonetic
coverage and used as prompts to obtain spoken data.
Obtaining representative data for spontaneous speech is
much more difficult and expensive. It is difficult, if not
impossible, to control the content of the speech data,
be it at the semantic, lexical or phonetic level, or the
speaking style. The Switchboard corpus [38] contains a
rich set of telephone conversations on a variety of top-
ics. Even with the detailed orthographic transcriptions,
language modeling for this task remains a challenge.

For LVCSR, we attempt to obtain speaker-
independence by recording speech from many different
speakers, hoping to cover the speaker population. Opin-
ions differ as to the number of speakers needed: some
favor more data from a fewer number of speakers, while
others favor less data per speaker from more speakers.
In order to have models that are relatively task indepen-
dent, it is important to cover many different phonetic
contexts in the training corpus. More generally speak-
ing, we do not know how to design and train accurate
task-independent models that can be used for various
applications without the need for additional data col-
lection.

While rapid progress has been made in LVCSR,
there are many factors that are observed to influence
the speech recognition performance, and many out-
standing problems. Some of these unsolved problems
are inter-speaker variability, speaking rate, and lexi-
cal and language modeling. Regarding inter-speaker
variability, even todays best systems have a huge dif-
ference in performance (sometimes as much as a fac-
tor of 30) between the word error of the best speaker
(1-2%) and the word error of the worst speaker (25-
30%). These performance differences are often related
to differences in speaking rate - speakers that are much
faster or slower than the norm tend to have much higher
word error rates. Differences in speaking rate affect not
only the acoustic level, but also the phonological level
and maybe even the word level. At the lexical level, it
should be possible to choose among pronunciation vari-
ants according to observed pronunciations for the given
speaker. A person who pronounces a word in a given
manner is likely to say derived forms, and other similar
words with a similar form. Similarly, at the cross-word
level, different speakers make use of different phono-
logical rules. For most speakers, the choice of rules is
systematic, yet no system that we know of is able to
make use of this consistency. More generally, today’s
systems do not easily adapt to new accents, be they
different dialects or speech of non-native speakers. As
humans we usually are able to do this rather quickly.

Concerning language modeling, the n-gram lan-
guage models which are reasonably successful for dic-
tation in English, are less efficient for more highly in-
flected languages (such as French and German). Higher
order n-grams or class-based n-grams may be more
appropriate for such languages. FEfforts in adaptinve
language modeling are enticing, but still have not re-
sulted in significant performance improvements. There
certainly remains room for a lot of research in this
area, particularly in language modeling for spontaneous
speech, where models trained on written texts are sure
to be less effective. Perhaps the ultimate question is
how far can we go in recognizing speech without under-
standing it? We do not know this limit.
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