
IEICE TRANS. INFORMATION, VOL. E00{A, NO. 1 JANUARY 1996 1PAPER Special issue on spoken language systems and ...Large Vocabulary Continuous Speech Recognition: fromLaboratory Systems towards Real-World ApplicationsJean-Luc GAUVAINy and Lori LAMELy, NonmembersSUMMARYThis paper provides an overview of the state-of-the-artin laboratory speaker-independent, large vocabulary continuousspeech recognition (LVCSR) systems with a view towards adapt-ing such technology to the requirements of real-world applica-tions. While in speech recognition the principal concern is totranscribe the speech signal as a sequence of words, the samecore technology can be applied to domains other than dicta-tion. The main topics addressed are acoustic-phonetic modeling,lexical representation, language modeling, decoding and modeladaptation. After a brief summary of experimental results somedirections towards usable systems are given. In moving from lab-oratory systems towards real-world applications, di�erent con-straints arise which in
uence the system design. The applicationimposes limitations on computational resources, constraints onsignal capture, requirements for noise and channel compensation,and rejection capability. The di�culties and costs of adaptingexisting technology to new languages and application need to beassessed. Near term applications for LVCSR technology are likelyto grow in somewhat limited domains such as spoken languagesystems for information retrieval, and limited domain dictation.Perspectives on some unresolved problems are given, indicatingareas for future research.key words: Speech recognition, spoken language systems, dic-tation, large vocabulary, speaker-independent continuous speechrecognition, acoustic modeling, model adaptation, multilingual1. IntroductionIn the past few years large vocabulary, continuousspeech recognition (LVCSR) has been one of the focalareas of research in speech recognition, serving as a testbed to evaluate models and algorithms. This technol-ogy push has been fostered by U.S. ARPA e�orts in pro-viding common corpora and organizing annual bench-mark tests to assess progress. The interest in LVCSR islarger than simply building dictation systems for gen-eral English, it also serves to develop core technologythat can be used in less demanding applications suchas voice-interactive database access or limited-domaindictation. Progress in speech recognition can also boostother spoken language technologies such as speaker andlanguage identi�cation which rely on the same model-ing techniques.Speech recognition is principally concerned withthe problem of transcribing the speech signal as a se-quence of words. Today's best performing systems usestatistical models of speech generation. From this pointManuscript received June 1, 1996.Manuscript revised June 1, 1996.yThe authors are researchers at LIMSI, CNRS ...

of view, message generation is represented by a lan-guage model which provides estimates of Pr(w) for allword strings w, and the acoustic channel encoding themessage w in the signal x is represented by a proba-bility density function f(xjw). The speech decodingproblem then consists of maximizing the a posterioriprobability of w, or equivalently, maximizing the prod-uct Pr(w)f(xjw).The principles on which these systems are basedhave been known for many years now, and includethe application of information theory to speech recog-nition[5], [46], the use of a spectral representation ofthe speech signal [20], [21], the use of dynamic pro-gramming for decoding[92], [93], and the use of context-dependent acoustic models[15], [56], [86]. Despite thefact that some of these techniques were proposed wellover a decade ago, considerable progress has been madein recent year making speaker-independent, continuousspeech dictation feasible for relatively large vocabular-ies of up to 65,000 words. This progress has been sub-stantially aided by the availability of large speech andtext corpora and by signi�cant advances made in micro-electronics which have facilitated the implementation ofmore complex models and algorithms.The same modeling techniques have been adaptedto other related applications, such as speech under-standing or spoken language systems or in the iden-ti�cation of what we refer to as \non-linguistic" speechfeatures[54]. These feature-speci�c models may also bedirectly used to more accurately model the speech sig-nal thus in consequence improving the performance ofthe speech recognizers.In this paper we review the state-of-the-art inlaboratory systems for LVCSR and give some exam-ple directions taken towards real-world applications.Most state-of-the-art LVCSR systems make use ofhidden Markov models (HMM) for acoustics mod-eling [9], [19], [22], [32], [43], [59], [60], [64], [65], [76], [80],[83], [94]. Other approaches include segment basedmodels [68], [100] and neural networks [42] to estimateacoustic observation likelihoods. However except forthe acoustic likelihood estimation, all systems makeuse of the HMM framework to combine linguistic andacoustic information in a single network representing allpossible sentences. Decoding is the search for the mostlikely word string, which is in most cases approximated



2 IEICE TRANS. INFORMATION, VOL. E00{A, NO. 1 JANUARY 1996by the Viterbi algorithm.Moving towards real-world applications meansbuilding usable systems which involves reconsideringmany design issues such as signal capture, and noiseand channel compensation, while taking into accountlimitations in computational resources. For many ap-plications rejection capabilities will be essential. Thedi�culties and costs of adapting existing technology tonew languages or new applications must also be eval-uated. Although not the direct topic of this article,it should not be forgotten that many applications ofspeech technology will require not the transcription ofspeech into text, but the understanding of speech inorder to carry out appropriate actions. A related con-sideration for the application is whether it is providedas a central service or as a stand-alone system for anindividual user, which has implications for the design.While we attempt to take a general view on someof the outstanding problems in speech recognition andcurrent approaches towards resolving them, for exam-ples we refer mostly to our own work.2. Acoustic-Phonetic ModelingFor HMM based systems, acoustic modeling consistsof modeling the probability density function of a se-quence of acoustic feature vectors. The acoustic fea-tures are chosen so as to reduce model complexitywhile trying to keep the relevant information (i.e. thelinguistic information for the speech recognition prob-lem). Most recognition systems use short-time cepstralfeatures based either on a Fourier transform or a lin-ear prediction model. For wide band analysis (usually8kHz or 10kHz) the two most popular sets of featuresare cepstrum coe�cients obtained with an MFCC [17]analysis or with a PLP [40] analysis. In both cases aMel scale short term power spectrum is estimated ona �xed window (usually in the range of 20 to 30ms),with the most commonly used frame rate being 10ms.To get the MFCC cepstrum coe�cients a cosine trans-form is applied to the log power spectrum, whereas aroot-LPCC analysis is used to obtain the PLP cepstrumcoe�cients. Both set of features have been used withsuccess for LVCSR, but PLP analysis has been foundfor some systems to be more robust in presence of back-ground noise [49], [95]. Our experiance has been thatthe implementation details are not very important, butoptimal tuning, which may be dependent on the lan-guage or the channel conditions, can result in slightperformance improvements.The front end con�guration used in the LIMSI sys-tem for English has been optimized on the ARPA WSJcorpus. We use a 30ms frame window and 26 cosine�lters on a Mel scale over the 8kHz bandwidth, fromwhich 15 cepstrum coe�cients and normalized energyare derived. As in most LVCSR systems, sentence-based cepstral mean removal [25] is performed to nor-

malize the cepstrum features, rendering them more ro-bust to channel variability. Cepstral mean removalis a very simple, yet e�cient technique to deal withchannel changes. It has also been found to slightlyimprove recognition performance with clean speech inmatched channel conditions. First and second ordertime derivative features are used to partially overcomethe HMM limitations in modeling the temporal dynam-ics. The three sets of features are then combined in asingle stream and modeled by continuous density HMM(CDHMM).yMost LVCSR systems use acoustic units corre-sponding to phonemic or phonetic units (or phonesin context). However it is certainly possible to per-form speech recognition without use of a phonemic lex-icon, either by use of \word models" (as was the morecommonly used approach 10 years ago) or a di�erentmapping such as the fenonic lexicon [8]. Comparedto word models, subword units reduce the number ofparameters, enable cross word modeling and facilitateporting to new vocabularies. Fenones o�er the addi-tional advantage of automatic training, but lack theability to include a priori linguistic models. Context-dependent (CD) phone models are today the most com-monly used acoustic units for LVCSR. Compared tolarger units such as diphones, demisyllables or syllables,a large spectrum of contextual dependencies can be im-plemented for CD phone models associated with back-o� mechanisms to model infrequent contexts. Varioustypes of contexts have been investigated from a singlephone context (right- or left-context), left and right-context (triphone), generalized triphones [56], position-dependent triphones (cross-word and within word tri-phones), function word triphones, and quinphones [94].The optimal set of modeled contexts is usually the re-sult of a tradeo� between resolution and robustness,and is highly dependent on the available training data.This optimization is generally done by minimizing therecognizer error rate on development data. In fact,more than the number of CD phone models, what isreally important is to match the total number of modelparameters to the amount of available training data. Apowerful technique to keep the models trainable with-out sacri�cing model resolution is to take advantage ofthe state similarity among di�erent models of a givenphone by tying the HMM state distributions. This ba-sic idea is used in most current LVCSR systems al-though there are slight di�erences in the implementa-tion and in the naming of the resulting clustered states(senones [44], genones [18], PELs [10], tied-states [98]).Numerous ways of tying HMM parameters have beeninvestigated [91], [96] in order to overcome the sparseyIn some systems based on discrete or tied-mixture dis-tributions, the three streams are modeled separately by as-suming independance of the feature sets which allows theuse of smaller codebooks. For CDHMMs we found that asingle stream outperforms the multiple stream approach.



GAUVAINand LAMEL: LARGEVOCABULARYCONTINUOUS SPEECH RECOGNITION: FROM LABORATORY SYSTEMS TOWARDS REAL-WORLD APPLICATIONS 3training data problem and to reduce the need for distri-bution smoothing techniques. When HMM state tyingis based on a phonetic decision tree it has the additionaladvantage of providing a means to build models for un-seen contexts (i.e. those contexts which do not occur inthe training data) [45], [97].The LIMSI recognizer, which has state-of-art per-formance [73], makes use of continuous density HMMwith Gaussian mixture for acoustic modeling. Themain advantage continuous density modeling o�ers overdiscrete or semi-continuous (or tied-mixture) observa-tion density modeling is that the number of parame-ters used to model an HMM observation distributioncan easily be adapted to the amount of available train-ing data associated to this state. As a consequence,high precision modeling can be achieved for highly fre-quented states without the explicit need of smoothingtechniques for the densities of less frequented states.Discrete and semi-continuousmodeling use a �xed num-ber of parameters to represent a given observation den-sity and therefore cannot achieve high precision with-out the use of smoothing techniques or tying techniquesmentioned above.The acoustic models are sets of context-dependent,position-independent phone models, which include bothintra-word and cross-word contexts. The contexts areautomatically selected based on their frequencies inthe training data. The models include triphone mod-els, right- and left-context phone models, and context-independent phone models. Each phone model is athree state left-to-right CDHMM with Gaussian mix-ture observation densities (typically 32 components).The covariance matrices of all the Gaussians are di-agonal. Separate male and female models are used tomore accurately model the speech data and state-tyingis used to increase the triphone coverage. These mod-els are obtained from speaker-independent seed modelsusing Maximum A Posteriori estimators [30].During system development for LVCSR, phonerecognition experiments are useful to evaluate di�er-ent acoustic model sets. It has been shown that im-provements in phone accuracy are directly indicative ofimprovements in word accuracy when the same phonemodels are used for recognition [53]. Phone recognitionprovides the added bene�t that the recognized phonestring can be used to understand word recognition er-rors and problems in the lexical representation.3. Lexical RepresentationLexical modeling provides the link between the lexi-cal entries (usually words) used by the language modeland the acoustic models, with each lexical entry beingdescribed as a sequence of elementary units. Experi-ence with LVCSR has shown that systematic lexicaldesign can improve system performance [50]. Lexicaldesign entails two main parts - selection of the vocabu-

lary items and representation of the pronunciation en-try using the basic units of the recognition system. Vo-cabulary selection to maximize lexical coverage for agiven size lexicon has been previously reported [13], [33].On average, each out-of-vocabulary (OOV) word causesmore than a single error, with rates of 1.6 to 2.0 addi-tional errors reported. An obvious way to reduce theerror rate due to OOVs is to increase the size of thelexicon. Increasing the lexicon size up to 65k words hasbeen shown to improve performance, despite the poten-tial of increased confusability of the lexical entries. Inthe LIMSI system, going from 20k words to 65k words,recovers on average 1.2 times as many errors as OOVwords removed [33].For LVCSR, the lexical unit of choice is usuallyphonemes or phoneme-like units, speci�c for the lan-guage (We use 46 for American English, 45 for BritishEnglish, 35 for French, 49 for German, and 26 for Span-ish.). In generating pronunciation baseforms, most lexi-cons include standard pronunciations and do not explic-itly represent allophones. This representation is chosenas most allophonic variants can be predicted by rules,and their use is optional. More importantly, there of-ten is a continuum between di�erent allophones of agiven phoneme and the decision as to which occured inany given utterance is subjective. By using a phonemicrepresentation, no hard decision is imposed, and it isleft to the acoustic models to represent the observedvariants in the training data. Several e�orts to auto-matically learn and generate word pronunciations havebeen investigated [14], [16], [79], [90].However, there are a variety of words for which fre-quent alternative pronunciation variants are observed,and these variants are not due to allophonic di�er-ences. One common example is the su�x -izationwhich can be pronounced with a diphthong (/�y/) ora schwa (/�/). Another example is the palatalizationof the /k/ in a /u/ context resulting from the inser-tion of a /y/, such as in the word coupon (pronounced/kup�n/ or /kyup�n/). Alternate pronunciations arealso needed for homographs (words spelled the same,but pronounced di�erently) which re
ect di�erent partsof speech (verb or noun) such as excuse, record, produce.Fast speakers tend to poorly articulate unstressedsyllables (and sometimes skip them completely), par-ticularly in long words with sequences of unstressedsyllables. Although such long words are typicallywell recognized, often a nearby function word isdeleted. To reduce these kinds of errors, alter-nate pronunciations for long words such as Min-neapolis (/m*ni�p�l*s/ or /m*ni�pl*s/) and position-ing (/p�z*M�n'8/ or /p�z*Mn'8/), can be included in thelexicon allowing schwa-deletion or syllabic consonantsin unstressed syllables. Alternative pronunciations canalso be provided for common 3 syllable words such asinterest (/*ntr*st/, /*nt�*st/ or /*n�*st/, where the [n]in the latter example is often realized as a nasal 
ap ~D



4 IEICE TRANS. INFORMATION, VOL. E00{A, NO. 1 JANUARY 1996and company (/k^mp�ni/ or /k^mpni/)which are oftenpronounced with only 2 syllables.Phonological rules have been proposed to accountfor some of the phonological variations observed in 
u-ent speech [67]. The principle behind the phonologi-cal rules is to modify the phone network to take intoaccount such variations [16], [36], [52]. These rules areoptionally applied during training and recognition. Us-ing phonological rules during training results in betteracoustic models, as they are less \polluted" by wrongtranscriptions. Their use during recognition reducesthe number of mismatches. The same mechanism hasbeen used to handle liaisons, mute-e, and �nal conso-nant cluster reduction for French [31].4. Language ModelingLanguage models are used to model regularities in natu-ral language, and can therefore be used in speech recog-nition to limit the decoding search space. The mostpopular methods, such as statistical n-gram models, at-tempt to capture the syntactic and semantic constraintsby estimating the frequencies of sequences of n words.A backo� mechanism [48] is generally used to smooththe estimates of the probabilities of rare n-grams byrelying on a lower order n-gram when there is insu�-cient training data, and to provide a means of modelingunobserved n-grams. Another advantage of the backo�mechanism is that LM size can be arbitrarily reducedby relying more on the backo� component, obtained bysimply increasing the minimum number of required n-gram observations needed to include the n-gram. Thisproperty can also be used to reduce computational re-quirements. While bigram and trigram LMs are mostwidely used, small improvements have been reportedwith the use of longer span 4-grams [9], [59], [94] and5-grams[41] or class 5-grams[84]. Language models aretypically compared by measuring the perplexity of a setof development texts.Given a large text corpus it may seem relativelystraightforward to construct n-gram language models.Most of the steps are pretty standard and make use oftools that count word and word sequence occurences.The main di�erences arise in the choice of the vocab-ulary and in the de�nition of words, such as the treat-ment of compound words or acronymns. There is, how-ever, a signi�cant amount of e�ort needed to preprocessthe texts before they can be used. First, the texts mustbe put in a standardized format. For example, for theARPA NAB text corpus [2], this formating work hasbeen carried out by LDC using modi�ed versions oftext processing tools provided from Lincoln Labs [74].The main conditioning steps are text markup and con-version for LVCSR. Text markup consists of taggingthe texts (article, paragraph and sentence markers) and

LexiconTest set Baseline 20k 20k 40k 65kDev94 2.7 2.2 0.8 0.4Eval94 2.5 2.0 0.8 0.4Table 1 OOV rate (%) on development and test sentences for20k, 40k, and 65k lexicons. The baseline 20k vocabulary containsthemost common 20k words in the training texts (processed textsdistributed by LDC).garbage bracketing.y Then numerical expressions areexpanded, and isolated letters marked, and �nally thetext is transformed to upper case. At LIMSI simil-iar processing has been carried out on over 90M wordsof newspaper texts from Le Monde. Further semi-automatic processing is necessary to correct frequenterrors inherent in the texts or arising from processingwith the distributed text processing tools. The errorcorrection consists primarily of correcting obvious mis-pellings (such as milllion, officals, littleknown),systematic bugs introduced by text processing tools,and expanding abbreviations and acronyms in a consis-tent manner. Better language models can be obtainedusing texts transformed to be closer to the observedreading style, where the transformation rules and cor-responding probabilities are automatically derived byaligning prompt texts with the transcriptions of theacoustic data. For example, the word hundred fol-lowed by a number is replaced by hundred and 50% ofthe time. Similarly, half the occurences of one eighthare replaced by an eighth, and 15% of million dol-lars are replaced with simply million. After treatingthe texts, a reduced perplexity of 5 points on develop-ment data was reported [33], along with a better cov-erage of the 65k lexicon.A common way of selecting a recognition vocabu-lary is to measure the OOV rate on development data.For the 1994 ARPA NAB task, it was found that thebest lexical coverage was obtained by selecting the vo-cabulary on a subset of the training data (the mostrecent 2 years), as opposed to using all the availabledata [13], [33]. This is to be expected as the develop-ment test data were selected from a time period fol-lowing the training text material, and the vocabularycoverage re
ects recency e�ects.The lexical coverages of several LIMSI lexicons inTable 1 re
ect the combined e�ect of text cleaningand vocabulary selection. The OOV rate with the 20kwordlist is signi�cantly smaller than that of the base-line 20k wordlist. The OOV rate with the 65k word liston the 1994 development data (Dev94) is 0.39% whichis a pretty accurate indicator of the 0.42% observed onthe evaluation data (Eval94).yGarbage includes not only corrupted text materials,but all text material unsuitable for sentence-based languagemodeling, such as tables and lists.



GAUVAINand LAMEL: LARGEVOCABULARYCONTINUOUS SPEECH RECOGNITION: FROM LABORATORY SYSTEMS TOWARDS REAL-WORLD APPLICATIONS 55. DecodingOne of the most important problems in implementingthe decoder of a large vocabulary speech recognizer isthe design of an e�cient search algorithm to deal withthe huge search space, especially when using languagemodels with a longer span than two successive words,such as 3-grams and 4-grams. Even for research pur-poses where real-time recognition is not needed thereis a limit on computing resources (memory and CPUtime) above which the development process becomestoo costly.The most commonly used approach for smalland medium vocabulary sizes is the one-pass frame-synchronous Viterbi beam search [62] which uses a dy-namic programming procedure. This basic strategy hasbeen extended to deal with large vocabularies by addingfeatures such as fast match [7], [37], word-dependentphonetic trees [63], forward-backward search [4], N-best rescoring [85], progressive search[29], [61] and one-pass dynamic network decoding [66]. An alternative tothe frame-synchronous Viterbi beam search is an asyn-chronous search based on the A� algorithmsuch as stackdecoding [6], [75] or the envelope search [39].Single pass decoders such the stack decoder [75] orthe one-pass dynamic network decoder [66] which useall the knowledge sources (e.g. cross word triphones andtrigram language models) in one step are certainly veryattractive to minimize search errors. However, manyLVCSR systems under development use multiple passdecoders to reduce the computational resources neededfor evaluation runs. In this case, information is trans-mitted between passes by means of word lattices, wordgraphs or N-best lists. (Lattices are graphs where nodescorrespond to particular frames and where arcs repre-senting word hypothesis have associated acoustic andlanguage model scores.)The two-step approach used in the LIMSI researchsystem is based on the idea of progressive search wherethe information between levels is transmitted via wordgraphs [29]. Due to memory constraints, each step mayconsist of one or more passes, each using successivelymore re�ned models. All decoding passes use cross-word CD triphone models.The �rst step of the decoder uses a bigram-backo�LM with a tree organization of the lexicon for the back-o� component. This one-pass frame-synchronous beamsearch, which includes intra- and inter-word CD phonemodels, and gender-dependent models, generates a listof word hypotheses resulting in a word lattice. Thetree representation of the backo� component (�rst in-troduced in our Nov92 CSR system) provides an e�-cient way of arbitrarily reducing the search space andof limiting the computational requirements of the �rstpass which represent on the order of 75% of the compu-tation need for the entire decoding process. Addition-ally, this strategy allows us to use a static graph instead

of building it dynamically, therefore avoiding the com-putational bookkeeping costs associated with dynamicnetwork decoding. The key elements of the procedureused to generate the word graph from the word latticeare the following.y First, a word graph is generatedfrom the lattice by merging three consecutive frames(i.e. the minimum duration for a word in our system).Then, \similar" graph nodes are merged with the goalof reducing the overall graph size and generalizing theword lattice. This step is reiterated until no furtherreductions are possible. Finally, based on the trigrambacko� language model, a trigram word graph is gener-ated by duplicating the nodes having multiple languagemodel contexts. Bigram backo� nodes are created whenpossible to limit the graph expansion. The trigram stepmay be carried out in more that one pass, using succes-sively larger language models.Evidently, the �rst pass used to generate the initialword lattice must be accurate enough to not introducelattice errors which are unrecoverable with further pro-cessing. In our 65k system the graph error is usuallysmall (� 2%), but poor speakers tend to have highergraph errors, and higher graph errors are obtained ontelephone and noisy data.6. Model AdaptationModel adaptation can be used to reduce the mistmatchbetween test and training conditions or to improvemodel accuracy based on the observed test data. Adap-tation can be of the acoustic models or the langugaemodels, or even to the pronunciation lexicon. One ofthe main challenges in LVCSR is building robust sys-tems that keep high recognition accuracy when test-ing and training environmental conditions are di�erent.Two classes of techniques to increase system robustnesscan be identi�ed: signal processing techniques which at-tempt to compensate for the mismatch between testingand training by correcting the speech signal to be de-coded; and model adaptation techniques which attemptto modify the model parameters to better represent theobserved signal. Signal processing based approachesinclude normalization techniques that remove variabil-ity, thereby increasing the system accuracy under mis-matched conditions but often resulting in reduced wordaccuracy under matched conditions, and compensationtechniques which rely on a mismatch model and/orspeech models. Model adaptation is a much more pow-erful approach, especially when the signal processingrelies on a speech model. Therefore when computa-tional resources are not an issue, model adaptation isthe prefered approach to compensate for mismatches.Acoustic model adaptation can be used to compen-yIn our implementation, a word lattice di�ers froma word graph only because it includes word endpointinformation.



6 IEICE TRANS. INFORMATION, VOL. E00{A, NO. 1 JANUARY 1996sate mismatches of various natures due to new acousticenvironments, to new transducers and channels, or toparticular speaker characteristics, such as the voice ofa non-native speaker. The most commonly used tech-niques for acoustic model adaptation are parallel modelcombination (PMC), maximum a posteriori (MAP) es-timation, and transformation methods such as maxi-mum likelihood linear regression (MLLR). PMC is onlyused to account for environmental mismatch due to ad-ditive noise whereas MAP estimation and MLLR aregeneral tools that can be used for speaker adaptationand environmental mismatch.PMC approximates a noise corrupted model bycombining a clean speech model with a noise model [26].For practical reasons, it is generally assumed that thenoise density is Gaussian and that the noise corruptedspeech model has the same structure and number of pa-rameters as the clean speech model { typically a con-tinuous density HMM with Gaussian mixture. Varioustechniques have been proposed to estimate the noisyspeech models, including the log-normal approximationapproach, the numerical integration approach, and thedata driven approach[27]. The log-normal approxima-tion is crude especially for the derivative parameters,and all three approaches require making some approx-imations to estimate derivative parameters other than�rst order di�erences.MAP estimation can be used to incorporate priorknowledge into the CDHMM training process, wherethe prior information consists of prior densities of theHMM parameters [35]. In the case of speaker adapta-tion, MAP estimation may be viewed as a process foradjusting speaker-independent models to form speaker-speci�c ones based on the available prior informationand a small amount of speaker-speci�c adaptation data.The joint prior density for the parameters in a state isusually assumed to be a product of Normal-Gammadensities for the mean and variance parameters of theGaussian mixture components and a Dirichlet densityfor the mixture gain parameters. MAP estimation hasthe same asymptotic properties as ML estimation butwhen independent priors are used for di�erent phonemodels the adaptation rate may be very slow, partic-ularly for large models. It is therefore avantageous torepresent correlations between model parameters in theform of joint prior distributions [88], [99].MLLR is used to estimate a set of transformationmatrices for the HMM Gaussian parameters in orderto maximize the likelihood of the adaptation data [58].This adaptation method was originally used for speakeradaptation, but it can equally be applied to environ-mental mismatch [95]. Since the number of transforma-tion parameters is small, large models can be adaptedwith small amounts of data. To obtain ML asymptoticproperties it is necessary to adjust the number of lineartranformations to the amount of available adaptationdata. This can be done e�ciently by arranging the

mixture components into a tree and dynamically de�n-ing the regression classes [57]. It should be noted thatboth MAP estimation and MLLR adaptation can beused for supervised or unsupervised model adaptation.Model adaptation can evidently also be appliedto the language model. In most LVCSR systems oneor more language models are used, but these LMs areusually static. Various approaches have been taken toadapt the language model based on the observed textso far, including the use of a cache model [47], [82], atrigger model [81], or topic coherence modeling [87].The cache model is based on the idea that words ap-pearing in a dictated document will have an increasedprobability of appearing again in the same document.For short documents the number of words appearing issmall, and as a consequence the bene�t is small. Thetrigger model attempts to overcome this by using ob-served words to increase the probabilities of other wordsthat often co-occur with the trigger word. In topic co-herence modeling, selected keywords in the processedtext are used to retrieve articles on similar topics withwhich sublanguage models are constructed and used torescore N-best hypotheses. Despite the growing inter-est in adaptive language models, thus far only minimalimprovements have been obtained compared to the useof very large, static n-gram models.7. Assessment Driven Technology Develop-mentThe most widely known evaluation experiments inspeech recognition have been coordinated by NIST (Na-tional Institute for Science and Technology) and spon-sored by the U.S. ARPA program. Through the ob-jective evaluation of di�erent recognition systems, thecommunity has been able to contrast di�erent meth-ods, sharing reliable information among participants.The initial evaluations were carried out on the 1000-word Resource Management (RM) task [69] and onthe 5000-word and 20,000 word Wall Street Journal(WSJ) task [70], [71], and most recently on the unlim-ited vocabulary North American Business News (NAB)task [72] with high quality read speech and in more chal-lenging acoustic conditions with unknown microphonesand background environmental noise (MUM) [73]. Thebaseline tests constrain the acoustic and languagemodel training data, as well as �x the vocabularyand language model so as to permit cross-site compar-isons in acoustic modeling for speech recognition. Non-baseline conditions relax these constraints, allowing theuse of additional acoustic and language model trainingmaterials. The results of the last 5 baseline evalua-tions for speaker-independent LVCSR, held in Septem-ber 1992 (RM), November 1992 (WSJ) and November1993 (WSJ), November 1994 (NAB), and November1995 (MUM) are given Table 2. The commonly usedmetric of \word error" rate is de�ned as: %word error



GAUVAINand LAMEL: LARGEVOCABULARYCONTINUOUS SPEECH RECOGNITION: FROM LABORATORY SYSTEMS TOWARDS REAL-WORLD APPLICATIONS 7Test Test Conditions Vocabulary Word Error (%)Sep92 RM 1k wordpair, closed vocabulary 1k 4.4 - 11.7Nov92 WSJ 5k bg, closed vocabulary 5k 6.9 - 15.020k bg 20k 15.2 - 25.2Nov93 WSJ 20k open tg 20k 11.7 - 19.05k bg 5k 8.7 - 17.75k tg 5k 4.9 - 9.25k tg, local telephone 5k 12.8 - 25.5Nov94 NAB 20k tg, unlimited 20k 10.5 - 22.8unlimited 20 - 65k 7.2 - 17.4unlimited, telephone 40 - 65k 22.5 - 24.6Nov95 MUM unlimited, noise, unknown mic. 65k 13.5 - 55.5unlimited, noise, Sennheiser 65k 6.6 - 20.2Table 2 Results on ARPA sponsored evaluation tests from 1992 to 1995. The tests werecarried out on increasinglymore di�cult tasks and conditions. The lowest and highest worderrors are given for each test.= %substitutions + %insertions + %deletions.Despite the increasing task di�culties, the worderror rates are seen to decrease over time. In 1992, the5k baseline test was carried out in a closed-vocabularycondition, meaning that the commonly used vocabularyincluded all the words in the test data. In contrast,for the open-vocabulary condition the test data are se-lected without ensuring that all lexical items appear inthe known recognition vocabulary. Since the 1994 eval-uation, the test data have been selected without limita-tions on the vocabulary and the use of a common LM isno longer imposed. The �rst table entry for 1994 givesresults with an imposed tg LM and in the second entryno constraints were imposed. An important observationof this benchmark test is that by increasing the sizeof the recognition vocabulary (up to 65k words), theerrors introduced by OOV words are reduced despitethe potential for increased acoustic confusability of thelarger lexicon. In 1994 and 1995 some sites used longerspan language models (4-gram and 5-gram). The com-parative tests with telephone speech in 1993 and 1994had performance levels signi�cantly worse (over twicethe word error rate) than on the clean speech data. In1993 the telephone data was collected with subjects atSRI, over local Palo Alto lines, while in 1994 data werecollected remotely over long distance channels.Several points should be made about the above re-sults. First, it can be seen that typically for a closed-vocabulary test, word errors are quite low - as low as4% with a 1000 word vocabulary and 5% with 5000words. Second, increasing the vocabulary size doesnot harm recognition performance, given a su�cientlanguage model. Third, while the table shows aver-age word error rates, for the same system there canbe a factor of 10 di�erence in the word error rates forthe best and worst speakers. Finally, while the bench-mark tests have been extended to conditions closer tothose of possible applications (telephone, noise condi-tions, multi-microphone, spontaneous dictation), theystill remain in the domain of laboratory systems, withsigni�cant advances needed for real-world usage.

8. Towards MultilingualitySpeech recognition in multiple languages is essentialin Europe, where the national language(s) are closelylinked to the national cultures and identities. Even inthe United States, a \monolingual" country, there issuch a large immigrant population that there is increas-ing interest in multilingual speech recognition. It is thusof interest to assess the applicability of commonly usedspeech recognition techniques for di�erent languages,and the issues involved in porting a speech recognizerto a new language.To build a recognizer in a new language, the �rststep is obtaining the necessary acoustic and languagemodel training data, and a pronunciation lexicon. Sys-tem parameters or components which are dependent onthe language (such as the phone set, the need for pro-nunciation alternatives or phonological rules) evidentlymust be changed. Other language dependent factorsare related to the acoustic confusability of the wordsin the language (such as homophone, monophone, andcompound word rates) and the word coverage of agiven size recognition vocabulary. These factors willin
uence the size of the recognition vocabulary andthe choice of acoustic units (context-independent orcontext-dependent), as well as the choice of languagemodel (bigram, trigram, class-n-grams).Taking into account language speci�cities can im-prove recognition performance. For example, in Ger-man, glottalized segments are good indicators of mor-pheme boundaries, a characteristic which, when ac-counted for in the lexicon and the acoustic models, hasled to better recognition [3]. While word-initial glottal-ization also occurs in other languages such as English,its occurrence is less systematic and therefore more dif-�cult to model.At the lexical level, a given size lexicon will havedi�erent coverage across languages. Highly in
ectedlanguages require a larger lexicon to adequately repre-sent the language. For example, comparing the num-ber of distinct words in newspaper text corpora for En-



8 IEICE TRANS. INFORMATION, VOL. E00{A, NO. 1 JANUARY 1996glish, French, German and Italian, the German corpuscontains over twice as many distinct words as French,which has more than Italian and English [51].y Thelarger number of distinct words stems mainly from thenumber and gender agreement in nouns, adjectives andpast participles, and the high number of di�erent verbforms. While in English there is only one form for thede�nite article the, in French there are 3 forms le, la, les(masculine singular, feminine singular, plural), and inGerman are found singular forms der, die, das (male,female, neuter) and the plural form die. Declensioncase distinction adds 3 additional forms des, dem, dento the nominative form der. As a consequence, to ob-tain a lexical coverage of 95%, an English lexicon needonly contain 5000 words, compared to 20,000 for Frenchand Italian, and 65,000 for German.Homophone rates di�er across languages. A com-parative study of French and English showed that, givena perfect phonemic transcription, 23% of words in theWSJ training texts are ambiguous, whereas 75% of thewords in the Le Monde training texts have an ambigu-ous phonemic transcription [31]. Another di�culty spe-ci�c to French is that most of the phonemes are alsowords (we refer to these as \monophone" words), andoften have several graphemic forms (the phoneme /"/can stand for ai, aie, aies, ait, aient, hais, hait, haie,haies, es, est and /s/ can stand for s', c' ). Thesewords that are short and frequent can easily be in-serted and deleted by the recognizer, having the re-sult that any out-of-vocabulary word (OOV) can be re-placed by a sequence of highly probable phonemes. Anextreme example is the OOV \s'�epanousissait" whichwas recognized as the word sequence \c'est pas nousoui c'est" [23].The LRE Sqale (Speech recognizer Quality As-sessment for Linguistic Engineering) project aimed toassess language-dependent issues in multilingual recog-nizer evaluation [89]. In the project the ARPA evalu-ation paradigm was used to assess the performance ofthe same system on comparable tasks in di�erent lan-guages (American English, British English, French andGerman) to determine cross-lingual di�erences, as wellas di�erent systems on the same data so as to comparedi�erent methods. Table 3 summarizes the experimen-tal conditions and results of the evaluation, in whichthe test data were selected so as to control the OOVrate. This exercise demonstrated that the same recog-nition technology and evaluation methodolgy could besuccessfully adapted to these 4 languages.yThe newspaper text corpora compared are the WallStreet Journal (English, 37M words) [2], Le Monde (French,38M words) [31], Frankfurter Rundschau (German, 36M) [1],and Il Sole 24 Ore (Italian, 26M words) [24], where the totalnumber of words of text material are given in parentheses.

9. Towards Usable SystemsIn adapting a state-of-the-art speech recognizer devel-oped in a laboratory for real-world use, all aspects of thespeech recognizer must be reconsidered from signal cap-ture to adaptive acoustic and language models. Givenapplication constraints, standard laboratory develop-ment procedures may need to be revised. At LIMSIwe have recently faced this challenge in the contextof the ESPRIT Mask (Multimodal-Multimedia Auto-mated Service Kiosk) project, aimed at providing ac-cess to rail travel information [28]. The speech recogni-tion requirements for the Mask information kiosk are:speaker-independence; real-time spontaneous, contin-uous speech recognition; a recognition vocabulary in-cluding 600 station/city names; and robustness as theexpected background noise level for the Mask kiosklocated in a Parisian train station is on the order of63dBA SPL. In this section we address issues relatedto signal capture and real-time decoding in non-idealenvironmental conditions. Issues related to recognitionof spontaneous speech are discussed in the next section.In order to better simulate the acoustic conditionsof the �nal kiosk, a data collection kiosk has been builtaccording to the physical speci�cations supplied by er-gonomics experts. This data collection kiosk, shown inFigure 1, is being used to carry out laboratory exper-iments and to record data under more realistic condi-tions, by placing the users in conditions closer to that ofreal use. The touch screen (1) is located so as to acco-modate a wide variety of user sizes. In order to accountfor the di�erent customer heights and positions whenusing the kiosk, 3 PCC (Phase Coherent Cardioid) mi-crophones have been positioned around the screen cav-ity on the top (2), left (3) and right (4) of the screen.Based on the SNR of each channel, the output of one ofthe three microphones is selected. Beam forming wasconsidered but found to not be e�cient for the kioskcon�guration, since the distance between the speakerand the closest microphone is less than the distance be-tween microphones. A fourth channel is used to capturethe signal played over the loudspeaker, coming from themessage synthesizer or from video soundtracks, in orderto compensate for the acoustic feedback on the micro-phones.In order to simulate the environmental condi-tions of the kiosk, measurements were carried out ina Parisian train station to estimate the expected midworking day background noise. Laboratory subjectsare recorded in both quiet and noisy conditions, so asto model potentially di�erent user behaviors. A touch-to-talk mechanism is used to get a rough estimate of thequery endpoints, as well as to avoid processing queriesnot directed to the system. The system response signalis cancelled only until the user's speech is detected, andthe response signal is stopped as soon as possible afterthe touch is detected.



GAUVAINand LAMEL: LARGEVOCABULARYCONTINUOUS SPEECH RECOGNITION: FROM LABORATORY SYSTEMS TOWARDS REAL-WORLD APPLICATIONS 9Training # Vocabulary OOV WordLanguage Corpus Participants Size rate Error (%)AmEng WSJ0 4 20k 1.43 12.9 { 14.7BritEng WSJCAM0 3 20k 1.66 13.8 { 15.4French BREF-80 3 20k 1.70 15.1 { 16.1German Phondat/FR 3 64k 1.85 16.1 { 19.7Table 3 Results in % word error of the Sqale evaluation for speech recognition in fourlanguages (American English, British English, French and German) with 20k/64k trigramLMs.
23 45 1Fig. 1 The LIMSI Mask data collection kiosk, (1) touchscreen, (2), (3) and (4) are microphones, and (5) loudspeaker.An important aspect of real-time speech recog-nition is the design of a fast search algorithm thatmaintains high recognition accuracy. Even though theMask task is less ambitious than our laboratory 65ksystem, decoding is still not trivial, particularly in thepresence of noise which slows down the decoder. Sincean immediate response is required, not too much timecan be spent in multipass decoding. Recognizer opti-mization is trickier given the constraint of real-time de-coding, as performance may be more dependent uponother factors (such as the pruning level) than on theaccuracy of the acoustic models. For laboratory sys-tems our experience has been that improving modelaccuracy both improves recognition performance, andleads to better decoding due to more e�cient pruning.However, if the decoding strategy remains the same,the trade o� between accuracy and speed is dependentupon the total number of model parameters. Severaltechniques have been combined to achieve the Maskgoals: a lexicon tree, multipass decoding, distributed

LM weights, Gaussian shortlists and gender dependent(GD) acoustic models.The network used in the bigram pass is built insuch a way that the word tails (the last phone or lastfew phones of the word) are shared between the lexicontree and the linear representation of the words, so asto minimize the number of interword connections. Evi-dently single phoneme words are represented only once.Bigram decoding with CI phone models is realized inreal-time (RT), where real time is de�ned as taking 1sto process a 1s utterance. The language model weightsare distributed over the phone graph so as to allow theuse of a reduced pruning threshold, enabling both fasterand more accurate search. When a trigram LM is used,a second decoding pass is carried out using a word graphgenerated with the bigram. The result of the �rst de-coding pass is used to guide the search of the secondpass, enabling the use of a dynamic pruning threshold.This second pass uses more accurate acoustic and lan-guage models and can be carried out in about 20% ofCPU time of the �rst pass.For small and medium vocabulary tasks, the statelikelihood computation can represent a signi�cant por-tion of the overall computation. One way to speed upthis computation is to reduce the number of Gaussiansneeding to be considered to compute the likelihood fora state by preparing a Gaussian short list for eachHMM state and each region of the quanti�ed featurespace [12]. Doing so, only a fraction of the Gaussiansof each mixture is considered during decoding. Thisapproach allows us to reduce the average number ofexamined Gaussians per mixture from 12 to 4 withoutany loss in accuracy.One easy way to improve the accuracy of the rec-ognizer is to use GD acoustic models. By building twoseparate networks and carrying out frame-synchronousdecoding on the two networks in parallel, recognitionaccuracy can be improved without increasing the de-coding time since after only a few frames the networkcorresponding to the speaker's gender is under consid-eration [52]. The small overhead of searching the 2networks at the start of the sentence is largely compen-sated by more e�cient pruning due to the use of moreaccurate models.To deal with noisy conditions, the data-drivenmodel adaptation scheme used in the LIMSI Nov95



10 IEICE TRANS. INFORMATION, VOL. E00{A, NO. 1 JANUARY 1996NAB system [34] is applied. Related to model com-bination schemes [26], [27], adaptation is based on thefollowingmodel of the observed signal y given the inputsignal x: y = (x+ n) � h, where n is the additive noiseand h the convolutional noise. Compensation is per-formed iteratively, where re�ned estimates of n and hare obtained before each decoding process. To adapt todi�erent conditions at di�erent times of day, noise es-timation and compenstation can be performed at regu-lar intervals or inbetween customer sessions. In order toperform the speech analysis in real-time, sentence-basedcepstral mean removal is approximated by removing themean of the previously observed frames, where the cep-strum mean is updated at each frame with a �rst order�lter (1 - 0.995z�1).10. Towards Natural Speech and Speech Un-derstandingThe capabilities of speech recognition systems in multi-ple languages reported here have all been obtained us-ing read-speech, recorded in laboratory conditions. Toapproach more closely future speech recognition appli-cations, it is necessary to be able to recognize naturallyspoken utterances. It is well-known that spontaneousspeech does not respect written grammar, and has com-mon phenomena such as hesitations, �ller words, falsestarts, repetitions and repairs. The speaking style isoften more relaxed than read speech, and more phono-logical modi�cations are observed in which word real-izations can di�er from their canonical lexical represen-tation. For a wide range of applications it is also likelythat the system will need to understand the linguisticcontent of the utterance, not only to simply transcribeit into words. For many tasks a dialog component willbe necessary, which can also be used to reduce the taskperplexity by using di�erent language models in di�er-ent dialog states. A dialog component in turn requiresa response generation component, optionally with vo-cal output. Although in this paper we address only thespeech recognition aspects of spoken language under-standing systems, we acknowledge the important rolesof the dialogmanagementand response generation com-ponents in system design and development.Recognition of spontaneous speech implies severalconsequences for the recognizer, including identifyingavailable information sources which can be used tobring up an initial system. In contrast to a dictationapplication where it is relatively straight-forward to se-lect a recognition vocabulary from large written cor-pora, for speci�c tasks, a priori even the vocabularysize is not known, and there usually are no application-speci�c training data (acoustic or textual) available. Acommonly adopted approach for data collection is tostart with an initial system (that may involve a Wizardof Oz con�guration to replace non-existant system com-ponents) and to collect a set of data which can be used

to start an iterative development cycle. The recogni-tion vocabulary and language model are initially basedon the designers' expectations and task domain knowl-edge, and augmented according to the collected corpus.The capacity to easily add new words is thus essential.The most e�ective manner of obtaining representa-tive speech data is with preliminary versions of a com-plete system. It has been observed that as the systemimproves, subjects speak more easily and use longer andmore varied sentences [55]. They are also more likely toperceive that errors are their own fault, rather than thesystem's. As a result they continue to speak relativelynaturally to the system, enabling the collection of morerepresentative spontaneous speech.Di�erent approaches have been taken for interfac-ing between the speech recognizer and the natural lan-guage (NL) understanding component. In most systemsa bottom up approach is taken, where the output of therecognizer is passed to the NL component. The recog-nizer output can be the best word string, an N-best listof word strings, or a word lattice. In the latter cases,the NL component can be used to �lter the recognizeroutput.The most widely known work in this area arethe ARPA Atis task[78] and the ESPRIT Sundialproject[77]. More recent projects are the ESPRITMask project [28] and the Language Engineering Mul-tilingual Action Plan (LE-MLAP) projects RailTeland Mais. The range of results obtained for di�erentsites in the ARPA Atis benchmark tests [71], [72] areshown in Table 4. The performance of the best sys-tem is seen to have signi�cantly improved from 1993to 1994.y The word error rates of the best system arequite low, and the spoken language system (SLS) under-standing error based on the spoken input is not muchlarger than the NL understanding error obtained us-ing the orthographic transcription of the query. Theperformance of the l'Atis system[11], a French Atissystem developed at LIMSI, is within the same rangeof the Atis systems. For the Mask system, reducingthe word error from 15% in to 10%, led to a 29% re-duction in SLS error to 15%. The current Mask NLunderstanding error is 7%. We expect that further im-provements in recognition performance will reduce thedi�erence in NL and SLS understanding error rates, aswas observed for the ARPA Atis task.For spoken language applications, global evalua-tion measures and subjective user ratings are likelyto be more important than word error and query un-derstanding rates. An important need for such ap-plications is the capability to reject out of domainqueries. Our strategy is to estimate the a posteri-ori sentence probability for the recognizer hypothesis,yAlthough benchmark SLS tests were carried out priorto 1993, the scoring used a weighted error which makes itdi�cult to compare with these results.



GAUVAINand LAMEL: LARGEVOCABULARYCONTINUOUS SPEECH RECOGNITION: FROM LABORATORY SYSTEMS TOWARDS REAL-WORLD APPLICATIONS 11SPREC NL SLSTest Word Error (%) Error (%) Error (%)Atis'93 3.3 - 9.0 9.3 - 43.1 13.2 - 46.8Atis'94 1.9 - 14.1 5.9 - 41.7 8.6 - 55.3L'Atis Jan'95 6.0 11.0 12.0Table 4 Range of spoken language system results for theAtistask. Speaker-independent speech recognition results (SPREC)are given in terms of word error. Natural language (NL) andSpoken Language System (SLS) results are in unweighted error,which is the sum of #(no answer) + #(wrong answer). Resultsare given for queries of type A+D (A answerablewithout context,D answerable with context).i.e. Pr(wjx), by modeling the talker as a source ofphones with phonotactic constraints provided by phonebigrams. We approximate Pr(wjx) by Pr('wjx) 'f(xj'w) Pr('w)=max' f(xj') Pr('), where 'w is therecognized phone transcription corresponding to therecognizer hypothesis w. Pr('wjx) is then compared toa �xed threshold to decide whether to accept or rejectthe query. This procedure requires only a small amountof additional computation if you use simple models anda tight prunning threshold.11. Summary and PerspectivesIn this paper we have provided an overview of the state-of-the-art in laboratory speaker-independent, large vo-cabulary continuous speech recognition systems, anddiscussed some of the issues involved in adapting suchtechnology to the requirements of real-world applica-tions. Much of the recent progress made over the last 5-10 years in LVCSR has been made possible by the avail-ability of large corpora for training and testing speechrecognition and understanding technology. However,despite our experience as a community, constructingcorpora that are representative, complete, and yet atthe same time not too big, is an open research area. Itis extremely hard to even demonstrate the e�ects of dif-ferent corpus design strategies. Yet at the same time,the performance of all recognition systems is acknowl-edged to be quite dependent on the training data.For dictation tasks, it is relatively easy to obtaintext data for training language models. After process-ing of the texts to clean them and to transform themto be closer to observed reading styles, a task vocab-ulary can be selected and language models trained. Asubset of texts can be selected to ensure good phoneticcoverage and used as prompts to obtain spoken data.Obtaining representative data for spontaneous speech ismuch more di�cult and expensive. It is di�cult, if notimpossible, to control the content of the speech data,be it at the semantic, lexical or phonetic level, or thespeaking style. The Switchboard corpus [38] contains arich set of telephone conversations on a variety of top-ics. Even with the detailed orthographic transcriptions,language modeling for this task remains a challenge.

For LVCSR, we attempt to obtain speaker-independence by recording speech from many di�erentspeakers, hoping to cover the speaker population. Opin-ions di�er as to the number of speakers needed: somefavor more data from a fewer number of speakers, whileothers favor less data per speaker from more speakers.In order to have models that are relatively task indepen-dent, it is important to cover many di�erent phoneticcontexts in the training corpus. More generally speak-ing, we do not know how to design and train accuratetask-independent models that can be used for variousapplications without the need for additional data col-lection.While rapid progress has been made in LVCSR,there are many factors that are observed to in
uencethe speech recognition performance, and many out-standing problems. Some of these unsolved problemsare inter-speaker variability, speaking rate, and lexi-cal and language modeling. Regarding inter-speakervariability, even todays best systems have a huge dif-ference in performance (sometimes as much as a fac-tor of 30) between the word error of the best speaker(1-2%) and the word error of the worst speaker (25-30%). These performance di�erences are often relatedto di�erences in speaking rate - speakers that are muchfaster or slower than the norm tend to have much higherword error rates. Di�erences in speaking rate a�ect notonly the acoustic level, but also the phonological leveland maybe even the word level. At the lexical level, itshould be possible to choose among pronunciation vari-ants according to observed pronunciations for the givenspeaker. A person who pronounces a word in a givenmanner is likely to say derived forms, and other similarwords with a similar form. Similarly, at the cross-wordlevel, di�erent speakers make use of di�erent phono-logical rules. For most speakers, the choice of rules issystematic, yet no system that we know of is able tomake use of this consistency. More generally, today'ssystems do not easily adapt to new accents, be theydi�erent dialects or speech of non-native speakers. Ashumans we usually are able to do this rather quickly.Concerning language modeling, the n-gram lan-guage models which are reasonably successful for dic-tation in English, are less e�cient for more highly in-
ected languages (such as French and German). Higherorder n-grams or class-based n-grams may be moreappropriate for such languages. E�orts in adaptinvelanguage modeling are enticing, but still have not re-sulted in signi�cant performance improvements. Therecertainly remains room for a lot of research in thisarea, particularly in language modeling for spontaneousspeech, where models trained on written texts are sureto be less e�ective. Perhaps the ultimate question ishow far can we go in recognizing speech without under-standing it? We do not know this limit.
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