
To appear in the International Journal of Pattern Recognition and Arti�cial Intelligence,special issue on Speech Recognition for di�erent languages, Spring 1994.Speech-to-Text Conversion in FrenchJ.L. Gauvain, L.F. Lamel, G. Adda, and J. MarianiLIMSI-CNRSBP 13391403 Orsay cedex, FRANCEKeywords: Speech-to-text conversion, continuous speech recognition, speaker-independentrecognition, vocabulary-independent recognition, phone recognition, hidden Markov models,language identi�cation,AbstractSpeech-to-text conversion of French necessitates that both the acoustic level recognitionand language modeling be tailored to the French language. Work in this area was initiated atLIMSI over 10 years ago. In this paper a summary of the ongoing research in this direction ispresented. Included are studies on distributional properties of French text materials; problemsspeci�c to speech-to-text conversion particular to French; studies in phoneme-to-graphemeconversion, for continuous, error-free phonemic strings; past work on isolated-word speech-to-text conversion; and more recent work on continuous-speech speech-to-text conversion. Alsodemonstrated is the use of phone recognition for both language and speaker identi�cation.The continuous speech-to-text conversion for French is based on a speaker-independent,vocabulary-independent recognizer. In this paper phone recognition and word recognitionresults are reported evaluating this recognizer on read speech taken from the BREF corpus.The recognizer was trained on over 4 hours of speech from 57 speakers, and tested on sentencesfrom an independent set of 19 speakers. A phone accuracy of 78.7% was obtained using aset of 35 phones. The word accuracy was 88% for a 1139 word lexicon and 86% for a 2716word lexicon, with a word pair grammar with respective perplexities of 100 and 160. Using abigram grammar word accuracies of 85.5% and 81.7% were obtained with 5K and 20K wordvocabularies, with respective perplexities of 122 and 205.1 IntroductionAt LIMSI, the idea of realizing a voice-activated typewriter with a very large dictionarywas initiated in the late 1970s. The �rst experiment on this topic concerned the phoneme-to-grapheme conversion of error-free continuous phoneme strings. Phoneme-to-graphemeconversion consists of segmenting the phoneme string into words and then generating thecorrect orthographic translation of those words. The initial step of segmentation used aInt. J. Pat. Rec. & A.I., 1994 1



simple heuristic of choosing the solution with the smallest number of words for a givensentence[34]. Evaluated on a small text corpus containing 1796 words, using a lexicon of20,000 baseforms, the error rate in segmentation was suprisingly low, only 20%, with most ofthe errors due to liaisons. This �rst step in the direction of a voice-activated typewriter hassince been followed by more extensive e�orts.This work was extended to convert phoneme strings containing simulated errors[4] and themethodology was adapted to stenotype-to-grapheme conversion[1] using statistical languagemodels trained on text corpora. In the framework of the ESPRIT project 860 \LinguisticAnalysis of the European Languages," LIMSI's approach to language modeling was comparedwith other closely related approaches, on 7 di�erent European languages[6]. The 4-yearproject was followed by the ESPRIT Polyglot project, which had the goal of designing speech-to-text and text-to-speech systems for each of the same 7 languages.Work in speech recognition at LIMSI also began in the 1970s, continuing to the �rst Frenchsingle-board isolated-word speech recognizer, Moise, and the �rst single-board connected-word recognizer, Mozart [19, 14] which was able to recognize a vocabulary of about 100words. The link between acoustic recognition and language modeling was made simultane-ously with the development of the Hamlet, 2000-word, speaker-dependent (SD) isolated-word(IW) dictation system[36], and with the 7000-word, SD IW dictation system developed withinthe Amadeus speech recognition project[13]. The recognizer in the Amadeus project was de-veloped around a specialized DTW chip (�PCD)[44, 45] that has been designed at LIMSI, incollaboration with the Bull and the Vecsys companies. Acoustic recognition was �rst demon-strated with a chip emulator in March 1987, and a complete dictation system using the chipitself was demonstrated in spring 1988.Presently, the primary research e�orts in speech recognition are directed at the dictationtask and a dialog project. For both applications, a speaker-independent (SI), vocabulary-independent (VI), phone recognizer is being developed, so as to be easily adaptable to varioustasks.In the dictation task, the BREF corpus [18, 30], described in more detail in Section 5.2,is used. The immediate goal is to work with read speech material from a large number ofspeakers, so as to be able to build base acoustic models which can be augmented and adaptedto speci�c speakers or tasks. This work also allows many aspects of language modelingto be addressed under more \semi-controlled conditions," than those found in spontaneousdictation. Additionally, it is much easier to collect read-text material than spontaneousdictations.An ongoing dialog project is oriented toward Air-Tra�c Controller training, in collabo-ration with the Centre d'Etudes de la Navigation A�erienne. Currently, the student trainingsessions are limited by the availability of the human instructor who plays the role of a pilot.The goal is to replace the instructor by a spoken dialog system. This allows for more avail-ability of the system, and may force the student to adhere to the pre-de�ned phraseology, thelearning of which is part of training. The dialog system is built around the Amadeus speechrecognizer and an associated synthesis module.The remainder of this paper is as follows. First, some of the distributional propertiesof French, most of which are gathered from the study of large text corpora, are presented.In Section 3 some of the problems encountered in speech-to-text conversion are addressed,highlighting those problems speci�c to French. Section 4 describes an approach to isolated-word speech-to-text conversion, and Section 5 presents more recent e�orts using continuousspeech. This section includes phonetic and word recognition, as well as some issues in languagemodeling.Int. J. Pat. Rec. & A.I., 1994 2



2 Distributional properties of FrenchIn order to be e�ective in speech-to-text conversion, it is necessary to determine and accountfor the distributional properties of the language. For practical reasons, it will probablyremain impossible to obtain text transcriptions of su�cient spoken utterances for analysisand language modeling. Therefore, large written text corpora serve as a basis for analysisand modeling the distributional properties of spoken texts. As long as applications such astext dictation remain of interest, the models thus obtained should be relatively re
ective ofthe task.In this section the analysis of a large corpus of text material [18, 30] taken from the Frenchnewspaper Le Monde is presented, along with some comparative data taken from a smallertext corpus of Senate transcripts. The source text materials consisted of three months of LeMonde, representing about 5 million words of text and 1.2 million words of Senate trans-criptions. After cleaning up the newspaper text so as to eliminate incomplete sentences andto correct formatting errors, 4.2 million words remained. The \lost" text was roughly 50%header information and 50% textual errors.The distributional properties of the texts were determined by counting the occurrencesof sentence, word, and subword units. At the sentence level, counts were made of sentencetypes and lengths. At the word level, the number of distinct words and their word frequencieswere counted. Subword units counted include syllables, dissyllables, phones, diphones, andtriphones.2.1 Text AnalysisEach sentence was phoneticized using grapheme-to-phoneme rules[43], and erroneous pronun-ciations were hand-located1 and corrected using an exceptions dictionary. The most commonmispronunciations were foreign words and names, and acronyms. Also, each punctuationmark was replaced by a silence \phone." The set of phone labels used in grapheme-to-phoneme rules is given in Table 1. Although certain speakers of French make the distinctionbetween the vowel in the words \patte" and \pâte", and the nasal vowels in the words \brin"and \brun", they have been collapsed together as the majority of speakers do not reliablydistinguish between them.2.1.1 Sentence types:Sentences were classi�ed as declarative, interrogative and exclamative types, or as more com-plex formulations which included ellipses, parenthetic expressions, and/or quotations. Table2 shows the distribution of sentences in Le Monde according to type, and shows for eachtype the minimum, average, and maximum sentence lengths. Simple sentences contain nointernal punctuation markers other than comma, and no embedded parenthetic expressionsor quotations. Conversely, complex sentences contain at least one of these. For the sentencelengths, the counts are for split quotations. The �nal part of the table gives the percent-age of sentences containing numbers, acronyms, quotations (entire and split into individualsentences), or parenthetic expressions.A conceptual problem was found while counting sentence types, a priori, a simple task:what should be done with end-of-sentence punctuation marks found within parenthetics or1Since this is such a labor-intensive procedure, corrections were made only for words occurring more than20 times in the text.Int. J. Pat. Rec. & A.I., 1994 3



Phone Example Phone ExampleVowels Consonantsi lit s sote bl�e z z�ebreE sel S chaty suc Z jourX leur f foux petit v vin@ feu m mottea patte, pâte n notec sol N digneo saule l lau fou r rondNasal Vowels p pontI brin, brun b bonA chant t tonO bon d donSemivowels k couh lui g gondw oui � silencej yoleTable 1: The 35 phone symbol set.quotations? The analysis was performed two ways, ignoring and counting these marks. How-ever, in sentence selection, it was decided to ignore parenthetic expressions as they are oftentoo disjoint from the text, and to divide sentences within a long quotation into single, quotedsentences. This decision was made because sentences containing complex quotations couldbe quite long - over 500 sentences were found having more than 100 words each! While 12%of the quotations were only a single word and another 25% were 2-5 words long, the averagelength for a single quotation was 11 words. In contrast, parenthetics were typically short:over 75% had fewer than 5 words and the average length was 4 words.2.1.2 Word and subword units:Word and subword units were counted in the phonemicized, syllabi�ed text. Punctuationmarkers were considered to be non-verbalized, and therefore were not counted as words.Table 3 summarizes the counts for the di�erent units for the complete text of Le Mondeand the Senat. Counts made on only 10% of the text of Le Monde showed almost identicaldistributional properties.In the 167,359 sentences, there were almost 4.2 million words, with over 90,000 orthograph-ically distinct. To �nd the number of phonemic words, the grapheme-to-phoneme mappingwas redone without the liaison rules, so as to avoid the ambiguity in word segmentation intro-duced by liaison. There were 64,000 phonemically distinct words, almost 30% less than thenumber of orthographically distinct words, giving a measure of the number of homophones inFrench. In order to know if the percent of homophones was dependent upon the vocabularysize, the percent homophones in 2000 and 10,000 most common words were determined, andalso found to be roughly 30%. The dissyllable is de�ned from the midpoint of one vowel toInt. J. Pat. Rec. & A.I., 1994 4



Number of WordsSentence Type Percent Ave Min MaxDeclarative 95 23 1 222Interrogative 3.8 15 1 191Exclamatory 1.2 13 1 104Simple Sentences 57 19 1 191Complex Sentences 43 33 3 222Numbers 22 30 1 165Acronyms 11 - - -Split Quotations 27 26 2 213Quotations 22 34 2 >400Parenthetic 11 35 2 >100Table 2: Sentence types and lengths.the midpoint of the next vowel, and therefore contains all the intervening consonants. Thisunit has been successfully used for speech recognition and speech synthesis in French[50], inpart because French vowels are acoustically relatively stable over time.Unit Le Monde Senat#sentences 167,359 64,613#words (total) 4,244,810 1,137,928#orthographically distinct 92,185 26,807#phonemically distinct 63,981#syllables (total) 6,903,017 1,956,423#distinct syllables 9,571#distinct dissyllables 37,636#phones (total) 16,416,738 4,737,578#distinct phones 35 35#distinct diphones 1,160 1,105#distinct triphones 25,999 17,079Table 3: Distributional properties of word and subword units.On the average, there were 2.3 phones/syllable, 3.2 phones/dissyllable (including bothvowels), and 3.7 phones/word. The most common phone was /r/, accounting for 8.0% and7.9% of all phone occurrences in Le Monde and Senat, respectively. Most of the possiblediphones were found to exist (1160 out of 1225, taking into account the silence \phone"), aswere 60% of the possible triphones. Some of these gaps are truly indicative of the Frenchlanguage, while others may be due to insu�cient data or the grapheme-to-phoneme rules.However, the number of triphones may actually be elevated, relative to \traditional French",since there are so many foreign words (mostly names) in the text source.Figure 1 shows plots of the frequency of occurrence for the word and subword units inpercentages. Part (a) has curves for words, syllables, and phones, and part (b) has curves fordissyllables, triphones, diphones, and phones. The units have been separated as such sinceInt. J. Pat. Rec. & A.I., 1994 5



Figure 1: Frequency of occurrence for word and subword units.
Int. J. Pat. Rec. & A.I., 1994 6



words, syllables, and phones have no constraints internal to the unit itself restricting whichunits may follow, whereas the units in part (b) have internal constraints limiting the possiblefollowing units. Phones are shown in both for comparison as the basic unit.Less than 20% of the distinct words account for over 95% of all word occurrences. In fact,40% (about 35,000 words) occurred only once in the text, and 60% of the words appearedat most 3 times. This e�ect is even more pronounced for syllables, where the roughly 20%most common syllables account for 98% of all syllable occurrences. Almost 80% of the text iscovered by only the most frequent 232 (20%) diphones. 20% of the triphones and dissyllablescover over 90% and 95% of the text, respectively.

Figure 2: Percentage of sentences covered as a function of unit.But perhaps more interesting is the opposite question: given that 40% of the wordsonly occurred once in the text, how many sentences can be pronounced if these words areeliminated? The curves shown in Figure 2 illustrate the percentage of sentences covered as afunction of the percentage of word or subword unit. The curve for phones is very gradual -with 80% of the phones, only 10% of the sentences can be covered. For words, however, over80% of the sentences are covered using only 60% of the distinct words, e�ectively eliminatingall of the single occurrence words. The e�ect is even stronger for syllables: roughly 40% of thesyllables cover over 90% of the sentences. Curves are shown for phones, diphones, triphones,and dissyllables in Figure 2b.Int. J. Pat. Rec. & A.I., 1994 7



2.2 EntropyIn order to assess the relative importance of the word and subword units, the entropy ofcorresponding Markov sources were calculated. The probabilities used for each source areshown in Table 4a, where wi, si, vi, and ai are respectively a word, syllable, vowel, and phone,and ck is a string of consonants. A memoryless source was used to model the phone, word,and syllable sources. The diphone and dissyllable models were �rst order Markov sources,and the triphone model was a second order Markov source. All probabilities were estimatedusing frequency counts on the entire text.(a) Unit order 0 order 1 order 2phonemic words p(wi)syllables p(si)dissyllables p(vi) p(ck; vjjvi)phones p(ai)diphones p(ai) p(ajjai)triphones p(ai) p(ajjai) p(akjai; aj)#Distinct Entropy Model(b) Unit units (b/ph) I(b/ph)phonemic words 63,981 2.67 2.46syllables 9,571 3.61 1.51dissyllables 37,636 3.55 1.57phones 35 4.72 0.40diphones 1,160 3.92 1.21triphones 25,999 3.40 1.72Table 4: Markov sources: (a) model probabilities and (b) estimated entropies.Table 4b summarizes the results of the models in bits/phone. The lowest entropies arefound for the word and triphone sources, indicating that their models store the most infor-mation. Compared to the memoryless, equally probable 35 phone source, the informationstored in the models is 2.46 and 1.72 b/ph, respectively.3 Problems in speech-to-text conversionPhoneme-to-grapheme conversion of French seems to be more di�cult than in other lan-guages, due to the large number of homophones. Starting with a source dictionary of 22,000baseforms results in a full-form lexicon of about 162,900 graphemic words. Grapheme-to-phoneme translation of those words produces about 90,000 distinct phonemic forms, indicat-ing that for a large full-form lexicon, a phonemic word corresponds to, on the average, 1.8di�erent graphemic words. Table 5 shows some approximate full form counts for a baseformlexicon of 22,000 words. For comparison, there are roughly 3% homophones in the DARPAResource Managment lexicon[42] , less than 2% for the DARPA TIMIT lexicon[31, 11], andunder 5% in the MIT Pocket lexicon[52].In fact, the main problem arises from verb conjugation. A single verb has on average 40forms. Among these, there are as many as three di�erent spellings for each pronunciation.Int. J. Pat. Rec. & A.I., 1994 8



Another source of homophones is that the mark of plurals (an -s at the end of the word)for most substantives, most adjectives, and all the past participles, is never pronounced inisolation, and only sometimes pronounced in 
uent speech. Similarly, the mark of the feminineform (-e at the end of the word) for some substantives, most of the adjectives and the pastparticiples, is never pronounced.In addition, there are the more typical \word" homophones, such as the demonstrativeadjective ces (those) and the possessive adjective ses (his), which have the same pronunciation/se/. Some examples of the di�erent types of homophones are given in Figure 3.% Words # Words # Forms/Word # FormsVerbs 14% 3,100 40 124,000Substantives 56% 12,300 2 24,600Adjectives 23% 5,100 2.5 12,800Adverbs and others 7% 1,500 1 1,500Total 100% 22,000 (avg.) 7.3 162,900Table 5: Full-forms derived from a dictionary with 22,000 baseforms.Verbs:/kas/ casse, casses, cassent (break)Substantives (Masculine/Feminine):/ami/ ami (friend (he)), amie (friend (she))Substantives (Singular/Plural):/tas/ tasse, tasses (cup, cups)Adjectives (Masculine/feminine):/ene/ â�n�e (older masc.), â�n�ee (older fem.)Adjectives (Singular/plural):/grAd/ grande, grandes (big)Past Participles:/kase/ cass�e, cass�es, cass�ee, cass�ees (broken)Figure 3: Examples of common homophones.Considering now the case of continuous speech, the problem of segmenting the continuousphoneme string into words seems to be especially di�cult in French. In experiments ona simple sentence containing 9 phonemes, \J'ai mal au pied." (My foot hurts.), with the162,900 word full-form lexicon, more than 32,000 possible transcriptions (segmentations andorthographic translations) were obtained at the lexical level. As shown in Figure 4(a) evenusing phonological rules, syntax, and semantics still leaves two acceptable sentences thatrequire a pragmatic analysis in order to get the right graphemic transcription. Anotherexample, shown in Figure 4(b), gives the possible analyses of the phrase \un murmure dem�econtentement". This example illustrates both the complexity of the problem and the powerof the syntactic constraints. Lexical access using a full-form lexicon with over 300,000 entriesyields 340 possible word segmentations. This expands to over 2 million possible phrases whenall the combinations are considered. Syntactic constraints including form agreement reduceInt. J. Pat. Rec. & A.I., 1994 9



the set to 6 possibilities, all of which are semantically plausible.Text string: J'ai mal au pied.Phonemic string: /Zemalopje/Possible segmentations at the lexical level:32,000 possibilitiesGeai mâle au piedGeais ma lot piedsJ'hait mât l'eau pillerJ'aime allo pill�eJ'aimes allo pill�eJet malles hop y estGemme halles hopi et....Possible segmentations with phonology, syntax,and semantics: J'ai mal au pied. (My foot hurts.)J'ai mal aux pieds (My feet hurt.)(a)Text string: un murmure de m�econtentementPhonemic string: /ImyrmyrdxmekOtAtmA/Lexical access: 340 possible word segmentations2,419,620 phrasesSyntactic analysis: 6 possible phrases- un murmure de m�econtentement- un murmure de m�econtentes ment- un murmure de mes contentements- un mur mûr de m�econtentement- un mur mûr de m�econtentes ment- un mur mûr de mes contentements(b)Figure 4: Lexical hypotheses from an error-free phonemic transcription.In French one must also deal with \liaison", the links made between words. These arephonemes that are pronounced at the junctions between two words, but would not be pro-nounced at the end of the �rst word, or at the beginning of the second one, if the wordswere pronounced in isolation. For example, the word sequence \les amis" (the friends) ispronounced /lezami/, where the word pronunciations in isolation would be /le/ and /ami/.Another more complicated form of liaison is the insertion of /t/, in certain inverted verbforms. Instead of forming the question \A il ...", the written and spoken form is \A-t-il ...".In certain cases this liaison is the only indication to distinguish between the singular andplural forms of a word. This is true of the phrases \Il aime le pain." (He likes bread.) and\Ils aiment le pain." (They like bread).Another problem is the optional pronunciation of mute-e. For example, the word devenucan be produced with 2 or 3 syllables: /dxvnu/ or /dxvxnu/. The same phenomena can alsoInt. J. Pat. Rec. & A.I., 1994 10



occur across words: beaucoup de gens may be pronounced as /bokudxZA/ or as /bokudZA/.This problem of schwa-deletion is also found in English, however the phonemic environmentsare somewhat di�erent. Additionally, there are situations where the word-�nal mute-e ispronounced. This e�ect is to some extent context and dialect dependent. Speakers from thesouth of France typically enunciate the mute-e, whereas speakers from the Parisian area willusually leave it out.A �nal problem which is mentioned only brie
y here is with apostrophe, where the �nalvowel of certain words can be deleted when the next word begins with a vowel. In the writtenform, this results in words like l'enfant, c'est, n'a, s'amuser .... This problem is discussed inmore detail in Section 4.4.4 Isolated-Word speech-to-textIn this section our e�orts in isolated-word speech-to-text conversion are described. The goal ofthis work was to integrate the necessary components of an isolated word, speaker-dependentVoice Activated Typewriter (VAT) on a stand-alone personal computer[36, 13]. The targetvocabulary size was several thousand words. The language model was given by bigrams andtrigrams of grammatical categories[3, 8], where the probabilities were computed by countingthe occurrences in the training text material. Recognition was a two step process. First, afast match to select a small subset of the lexicon, then a detailed, DTW-based word matchwas performed that gives the list of word-candidates with their recognition score. On average,the fast match returned about 2% of the lexical entries.Two systems were developed, both using specialized hardware for signal processing. The�rst, having a vocabulary of 2,500 words ran on an IBM PC workstation. The second ranalso on a IBM PC, but took advantage of the (�PCD) custom VLSI search processor[44]to perform DTW operations. This processor was been designed to be used in applicationsusing pattern matching operations (Speech and Character Recognition, Stereovision, SceneAnalysis, Operational Research...). The processor is fully programmable and can supportisolated-word and connected-word recognition algorithms using DTW or HMM approaches.Using the DTW approach, it can perform recognition with a full search on a vocabularyof 1,000 words in isolation, or 300 words spoken continuously, in real time. By addinga fast-match algorithm also supported by the processor, it allows real-time recognition ofa vocabulary of 7,000 words in isolation. The vocabulary size can easily be extended bymultiplying the number of such processors. A single IBM PC board can hold up to 16processors.4.1 Language ModelingIn this early work two small applications were explored. The �rst was related to dictatinga research report in the �eld of speech technology in French. The training data consistedof an existing 20 page research report containing about 15,000 words. There were on theorder of 2500 distinct graphemic forms and 2000 phonemic forms. The second applicationwas oriented to dictation of more general French. The vocabulary was de�ned by a Frenchtextbook for foreigners, \Le Mot et L'Id�ee,"containing about 40,000 words of text. Therewere 6,700 distinct graphemic forms and 5,100 distinct phonemic forms in the text.For these applications it was decided to pronounce all punctuation markers as a word,and to speak numbers as digit strings, unless they were included in a word. Considering theInt. J. Pat. Rec. & A.I., 1994 11



peculiarities of French presented in the previous section, it was decided to pronounce theapostrophe as a word, and to leave unsaid the liaisons between words.Label Grammatical Class ExamplePONC punctuation ,NM noun masculine animalNMP noun masculine plural animauxNF noun feminine 
eurNFP noun feminine plural 
eursAM article masculine leAF article feminine laAP article plural lesINF verb in�nitive chanterVPP verb past participle perduAJM adjective masculine beauAJMP adjective masculine plural beauxAJF adjective feminine belleAJMF adjective feminine plural bellesPN pronoun jePO possessive meNUM number dixNPR proper name DanielTable 6: Some of the grammatical classes used in the general dictation task.In order to provide constraints, sets of grammatical categories were de�ned. For the gen-eral French dictation task a set of 59 grammatical classes were used. Some of these classesare given in Table 6. The nouns and adjectives have been subdivided into four classes tohandle the masculine/feminine and singular/plural distinctions. For the research report dic-tation an extended set of 160 grammatical classes were de�ned. These classes, which wereclosely related to the categories used by other authors[8], were obtained from 55 basic cate-gories, by adding gender or number information, such as the classes \substantive masculinesingular" or \article feminine singular". The grammar takes into account the fact that anapostrophe must be followed by a word beginning by a vowel, as well as other rules such asthat the possessive adjective \mon" cannot be followed by a feminine word beginning with aconsonant.Language model training for the general dictation task consisted of building n-gram gram-mars for the grammatical classes on the entire text book. In contrast, an incremental trainingmethod was used for report dictation. In this scheme, each successive page of the text reportwas analyzed using the language model built from the previous pages (for the �rst page, itstarted from scratch). Each word in the text was looked up in the lexicon. If it was found,its phonemic representation and grammatical category were speci�ed. If not, its phonemicrepresentation was obtained by grapheme-to-phoneme conversion, and its grammatical cate-gory was inferred inductively using a stochastic syntactic parsing method. The result of thisanalysis was a \verticalized" text[6], where each graphemic word of the text was followedby its phonemic translation, its grammatical category, and the type of inference (lexical orsyntactic) used to get the information. This page of text was then manually corrected, andInt. J. Pat. Rec. & A.I., 1994 12



used to update the lexicon and the syntax, that was then used to process the next page.4.2 Acoustic TrainingThe training speech data were recorded in a relatively quiet o�ce environment. Duringthe training phase, all the words of the phonemic vocabulary were pronounced once. Inthe hardware implementation, the speech signal was �ltered at 4.8 kHz, and sampled at 10kHz. Eight Mel-frequency scale cepstral components were computed every 12.5 ms. A non-linear time compression algorithm[19, 23] was used to compress the steady-state portions ofthe signal. In order to reduce the size of the reference templates, vector quantization wasapplied.4.3 EvaluationThe system has been tested on the vocabulary of the textbook in French for foreigners.It has 5,127 phonemic words, corresponding to 6,700 graphemic words. On a 1000-wordtext dictated by one speaker, a phonemic word recognition rate of 91% was obtained. Thisincreased to 99% correct phonemic word recognition using the language model. Recognitionof the graphemic words was 92.5%, with 75 errors. All tests were made on text data thatwere used for building the language model. The average recognition time for a word was 480ms.An example dictation output for this application is given in Figure 5. The example textwas dictated in one continuous session and corresponds to a page in the book. In generalthe errors made by the system were confusions with another acoustically similar word. Theword \hommes" is seen to be consistently misrecognized as \pommes", suggesting that themodel for this word was poor. The constraints provided by the language model could notdi�erentiate amongst \il reste" and \ils restent" or \quelque �el�eve" and \quelques �el�eves",both of which are homophones when spoken in isolation. Apparently the singular form wasmore common in the training data, and therefore was selected here. These word pairs areeven homophones in continuous speech, and cannot be disambiguated without additionalsemantic information, as given by the \les enfants" in the preceding sentence. The confusionbetween \fonds" (business) and \fond" (rear) also cannot be eliminated without semanticinformation.An example dictation output for the report application is given in Figure 6 for the phrase\se sont port�es vers les probl�eme relatifs" (have been conducted on the problems related).The hypothesized list of candidates for each word are shown as a list. The recognized wordsare shown in bold face.For this task, most of the recognition errors were made on 1 or 2-syllable words. As theshortest words, which seem to be the most di�cult to recognize, are also the most frequentones, it is expected that word recognition rates on text dictation are worse than error ratesreported on word lists. However, since these short words are very common, they are alsowell represented in the language model. Therefore the language model can greatly help incorrecting the \acoustic" recognition errors made on these short words. A related e�ect wasthat the recognition rate did not vary when the size of the lexicon was increased from 1500words to 2000 words. This may be due to the incremental approach used to build the lexicon:since the shortest, most error-prone words are rapidly included in the lexicon, extending thelexicon tends to add longer, less confusable words.Int. J. Pat. Rec. & A.I., 1994 13



L' activit�e corporelle.1. Les pommes (hommes) et les animaux peuvent remuer, se mouvoir, sedonner du mouvement. Les pommes (hommes) sont capables de faire desgestes de la tête et de la main. Si on ignore un mot �etranger, on peut setaire (faire) comprendre par des signes.2. Monsieur Leclerc est fort, il a de la force il est robuste. Andr�e Caron faitdes courses de dix ou quinze kilom�etres, il est r�esistant. Madame Leclerccoud; elle est adroite; si elle �etait maladroite, le travail serait mal fait. Larobe va bien; Madame Leclerc est habile; la �llette veut coudre aussi; ellea encore des gestes gauches.3. Cette (Cet) âme (homme) �a (a) une jambe plus courte que l'autre; il estboiteux; il boite de la jambe gauche; un accident l'as (a) rendu in�rme. Lesmutil�es ont perdu un bas (bras), une jambe ou un oeil dans un accident.4. Le mâ�tre arrive. Les enfants se l�event. Il (ils) reste (restent) debout. Lemâ�tre Guy: (crie) \assis". Dans le fonds (fond), quelque (quelques) �el�eve(�el�eves) n' ont pas entendu. Le mâ�tre r�ep�ete: \asseyez vous" ... \acier(assied) toi, Daniel".Figure 5: An example of a dictated text. The errors are underlined and followed by thecorrect wording inside parentheses.Correct Sentence: se sont port�es vers les probl�emes relatifsRecognized Sentence:se sont port�es air les programme relatifsce son porter faire li�e probl�emes relatifceux sons port�ees heure cl�e probl�emeCEE soit vers cl�esseul sans ... mes... ont ......(have been conducted on the problems related ...)Figure 6: Sample output for the report dictation task. Although the top candidate stringcontains two errors, they are corrected by the language model.Int. J. Pat. Rec. & A.I., 1994 14



Liaison:Word string Phoneme stringdes /de/ (some)amis /ami/ (friends)des amis /dezami/ (some friends)bon /bO/ (good)bon ami /bcnami/ (good friend)petit ami /pxtitami/ (boy friend)petits amis /pxtizami/ (boy friends)Apostrophe:Word string Written form Phoneme stringle ami l'ami /lami/ (the friend)de ami d'ami /dami/ (from a friend)Figure 7: Examples of liaison and apostrophe in French.4.4 DiscussionAlthough isolated-word dictation helps to constrain the recognition task by removing theproblem of �nding the word boundaries, other problems are introduced. For example, it isnot evident what to do about the liaison often made at word junctures. One possibility isto not pronounce the liaison at all, however, the resulting speech sounds very unnatural.Another option is to pronounce the liaison at the beginning of the following word, but thisincreases the size of the vocabulary, as all the possible liaisons at the beginning of the wordmust be allowed. A third possibility is to pronounce the liaison as a separate word, thussaying three words instead of two. This pronounciation of the liaison in isolation is verydi�cult since it is so unnatural. Another approach has been to dictate with isolated syllablesinstead of isolated words[38]. While this provides a more natural way to pronounce the liaisonat the start of a syllable, the resulting task is still unnatural for the speaker.A similar problem arises in that the vowel at the end of some words can be omitted whenthe next word begins with a vowel. In the resulting orthographic form, the vowel is replacedwith an apostrophe, and the space separating the words is removed. The word sequence \leami" thus becomes \l'ami". In pronouncing these words there are several options: The �rstone is to say the �rst word as if had not been modi�ed, followed by the second word. Thesecond option, which is to pronounce the words together as one word, has the unfortunatee�ect of greatly enlarging the size of the vocabulary. A third option is to say a sequence ofthree words, verbalizing the word \apostrophe" in the middle of the two other words. Someexamples of these problems are given in Figure 7.The problems associated with how to pronounce the liaisons and apostrophes in isolatedword dictation emphasize the need for continuous dictation in French. While continuousdictation avoids these problems on the part of the speaker, they still remain for the recognizer,and increase its complexity.Int. J. Pat. Rec. & A.I., 1994 15



5 Continuous-speech speech-to-text conversionOur current e�orts focus on speech-to-text conversion of continuously spoken sentences, fromany speaker, for very large vocabularies (eventually, unlimited). This is a large departurefrom the approach taken in the previous section, where the task was speaker-dependent,isolated-word, and for smaller size vocabularies. Because of the ambitiousness of the task,the system should be both independent of the speaker and the vocabulary. To this extent,a phone-based approach is being used, where phone-like units are trained with data from alarge number of speakers. In the next subsection some early work in phoneme-to-graphemeconversion from text is described. After a presentation of the corpus used for this work, theremainder of this section is devoted to current projects in phonetic and word recognition.5.1 Phoneme-to-grapheme conversion from textIn light of the problems encountered in phoneme-to-grapheme conversion for continuous error-free phoneme strings, the use of a natural language syntactic parser[2] was explored. Thiswork made use of a full-form dictionary containing almost 162,900 forms, derived from a22,000 word base-form dictionary. Each graphemic word was converted into its phonemic formby using the automatic grapheme-to-phoneme conversion software designed at LIMSI[43].The dictionary also includes other information such as the grammatical category of eachword, its gender and number for the substantives and adjectives, the mode, time, person,group, transitivity, and root for the verb.A positional syntax speci�ed by a 3D frequential matrix giving the frequency of the suc-cession of three grammatical categories was used[2]. (This kind of model is now commonlyknown as a trigram language model.) On the basis of linguistic knowledge and experimenta-tion 150 grammatical categories were chosen.The phoneme-to-grapheme conversion was tested on a 1800 word text, where the phoneticrepresentation for each word was obtained using the same grapheme-to-phoneme conversionsoftware as was used to represent the lexicon. Liaisons were not taken into account, thoughthe punctuation markers were retained. All possible segmentations of the phonemic stringwere �ltered by the trigram model. When several possibilities remained, the one with thesmallest number of words was kept. The error rate was less than 5% on the 1,800 word test.The most common errors were:� singular/plural errors (36%), some of them being impossible to distinguish:plans/plan d'ex�ecution (maps/map for execution)demande/demandes de permis (request/requests for permission)� homophones (17%):plan/plant (map/plant) heures/heurts (hours/collisions)�ere/air/erre/h�ere/aire (era/air/wanders/wretch/area)� syntax parsing errors (17%):les baisses ont �equip�e / les baies sont �equip�ees (the falls have equiped / the windowsare equiped)et celles situ�ees / et sels situ�es (and those situated / and salts situated)� number for posterior adjectives (13%):p�erim�etre de protection des monuments historique/historiques (area of protection ofhistorical/historical monuments)Int. J. Pat. Rec. & A.I., 1994 16



Further work in phoneme-to-grapheme conversion was done as part of the ESPRIT project291/860 on the Linguistic Analysis of the European Languages. An important part of theproject was the building of a language model for 7 di�erent languages (Italian, French, Dutch,Spanish, Greek, and German). A statistical approach was taken using bigram and trigrammodels on grammatical categories, similar to that developed at LIMSI.The main results of this project were to provide statistics on phoneme clusters, grapheme-to-phoneme and phoneme-to-grapheme conversion software, language models and syntacticparsers. These elements were integrated using a blackboard structure and an attempt wasmade to assess the \quality" or \di�culty" of each language[6, 51].On this last issue, some interesting results have been found in a study of phoneme-to-grapheme conversion for a lexicon of about 10,000 entries. One measure was the numberof context-dependent rewrite rules necessary for phoneme-to-grapheme conversion. Table7 shows that for Italian, a set of 67 rules is able to transcribe the phonemic form intothe graphemic form with only 0.5% of the generated graphemic words not existing in thelanguage, and 0.5% graphemic words unable to be transcribed. In contrast, for French, 98%of the words generated by a set of 586 rules do not exist in the vocabulary, and 30% of thevocabulary words are missing in the resulting graphemic cohorts. While this result is clearlyhighly dependent on the quality of the rules, it seems obvious that the Italian language willrequire less linguistic processing than the French language in order to translate a phonemicstring. # Graphemic words/ % Over % UnderLanguage # Rules phonemic words generation generationDutch 289 6 90 20English 530 10 90 6French 586 250 98 30German 551 400 99 10Greek 394 100 100 2.5Italian 67 1 0.5 0.5Spanish 845 1 7 6Table 7: Phoneme-to-grapheme translation for 7 European languages.5.2 DatabaseFor continuous speech recognition a portion of the BREF corpus is used. BREF is a largeread-speech corpus, containing over 100 hours of speech material, from 120 speakers. Thetext materials were selected verbatim from the French newspaper Le Monde, so as to pro-vide a large vocabulary (over 20,000 words) and a wide range of phonetic environments[18].Containing 1115 distinct diphones and over 17,500 triphones, BREF can be used to trainvocabulary-independent (VI) phonetic models. Hon and Lee[20] concluded that for VI recog-nition, the coverage of triphones is crucial. Separate text materials, with similar distribu-tional properties were selected for training, development test, and evaluation purposes. Theselected texts consist of 18 \all phoneme" sentences, and approximately 840 paragraphs,3300 short sentences (average 12.4 words/sentence), and 3800 longer sentences (average 21words/sentence). The \all phoneme" sentences contain all 35 phones given in Table 1. MoreInt. J. Pat. Rec. & A.I., 1994 17



details of the distributional properties of the selected text subsets can be found in [18].Each of 80 speakers read approximately 10,000 words (about 650 sentences) of text, and anadditional 40 speakers each read about half that amount. The speakers, chosen from a subjectpool of over 250 persons in the Paris area, were paid for their participation. Potential speakerswere given a short reading test, containing selected sentences from Le Monde representativeof the type of material to be recorded[30] and those judged to be incapable of the task werenot used as subjects. The recordings were made in stereo in a sound-isolated room, and weremonitored to assure the contents. Thus far, 80 training, 20 test, and 20 evaluation speakershave been recorded. There are 55 male and 65 female speakers. The speakers' ages rangefrom 18 to 73 years, with 75% between the ages of 20 and 40 years. More details about theBREF corpus can be found in [30].In these experiments approximately 4 hours and 20 minutes of speech material are usedfor training. This represents 2770 sentences from 57 speakers (28 male, 29 female). The testdata consisted of 109 sentences from 19 speakers (10 male, 9 female). The test text materialis distinct from the training texts, and the test speech data contain 7635 phone segments.Phonemic transcriptions of these utterances were automatically generated and veri�ed[15].The procedure for providing a time-aligned broad phonetic transcription for an utterance hastwo steps. First, a text-to-phoneme module[43] generates the phone sequence from the textprompt. Since the automatic phone sequence generation can not always accurately predictwhat the speaker said, the transcriptions must be veri�ed. The most common errors intranslation occur with foreign words and names, and acronyms. Other mispredictions arisein the reading of dates: for example the year \1972" may be spoken as \mille neuf centsoixante-douze" or as \dix neuf cent soixante-douze." In the second step, the phone sequenceis aligned with the speech signal using Viterbi segmentation.5.3 Phone RecognitionIn this section some experiments with phone recognition are described. Evaluating pho-netic recognition is important for several reasons. Primarily, the demands of vocabulary-independent, speaker-independent continuous speech recognition require an approach basedon subword, often, phone-like units. Clearly, the better these phone models (or acousticmodels) are, the better the performance of the entire system will be. Only consideringword recognition performance, particularly when word-based grammars are used, can maskproblems that stem from the acoustic level. Phone recognition is also useful in determiningpronunciation errors in the lexicon and alternate pronunciations that need to be included inthe lexicon. Finally, phone recognition is shown to be e�ective for language identi�cationand for speaker identi�cation[25, 26, 27].5.3.1 System DescriptionThe baseline phone recognizer uses a set of 35 context-independent (CI) phone models. Eachmodel is a 3-state left-to-right HMM with Gaussian mixture observation densities. Thecovariance matrices of all the Gaussians components are diagonal. The 16 kHz speech wasdownsampled by 2 and a 26-dimensional feature vector was computed every 10 ms. Thefeature vector is composed of 13 cepstrum coe�cients and 13 di�erential cepstrum coe�cients.Duration is modeled with a gamma distribution per phone model. As proposed by Rabineret al.[46], the HMM and duration parameters are estimated separately and combined in therecognition process for the Viterbi search. Maximum likelihood estimators were used for theHMM parameters[21] and moment estimators for the gamma distributions.Int. J. Pat. Rec. & A.I., 1994 18



Condition Corr. Subs. Del. Ins. Acc.0-gram 64.0 23.7 12.3 3.0 61.01-gram 66.4 22.0 11.6 3.0 63.42-gram 70.2 20.3 9.4 3.1 67.1Table 8: Phone recognition results for 35 CI models.For CI models, the overall Markov chain is simply obtained by allowing all possible connec-tions between the 35 phone HMMs (i.e. 1225 connections). For the transition probabilitieseither constant (1/35), 1-gram, or 2-gram probabilities were used. The resulting ergodicHMM has 103 states and about 170,000 parameters.In the case of context-dependent (CD) models, the phone HMMs are connected throughnull states representing all the possible diphones. These null states, which do not emit anyobservation, are used to merge all the transitions corresponding to the same diphone, thusreducing the number of connections to a more manageable value. (The fourth order (n4)becomes a cubic form). With 428 CD models, the resulting HMM includes 1294 non-nullstates and has about 1,070,00 parameters.5.3.2 EvaluationTable 8 gives recognition results using 35 CI phone models with 16 mixture components.Silence segments were not included in the computation of the phone accuracy. Results aregiven for di�erent phone language models with a duration model. The improvement obtainedby including the duration model is relatively small, on the order of 0.3% to 0.8%, probablyin part due to the wide variation in phone durations across contexts and speakers. Eachadditional order in the language model adds about 3% to the phone accuracy. The bestphone accuracy is 67.1% with the 2-gram language model.Condition Corr. Subs. Del. Ins. Acc.0-gram 75.3 17.8 6.9 4.1 71.21-gram 76.0 17.5 6.4 4.2 71.92-gram 77.8 16.5 5.7 3.6 74.28kHz, 32g, �� 81.7 13.7 4.6 3.0 78.7Table 9: Phone recognition results for 428 CD models.Table 9 gives recognition results using a set of 428 CD phone models[49] with 16 mixturecomponents. The modeled contexts were automatically selected based on their frequenciesin the training data. This model set is essentially composed of right-context phone models,with only one-fourth of the models being triphone models. Less than 2% of the triphonesfound in the training data can be modeled in full. In choosing to model right contexts overleft contexts, a preference is given to modeling anticipatory coarticulation over perservatorycoarticulation.The phone accuracy with a phone bigram is 74.2%. The use of CD models reduces theerrors by 22% (comparing the CI and CD models with the phone bigram), which is less thanthe 27% error reduction reported by Lee and Hon[32] for English. There are several factorsthat may account for this di�erence. Most importantly, Lee and Hon[32] compare 1450 right-CD models to 39 CI models, whereas in this study only 428 contexts were modeled. Inaddition, the baseline recognition accuracy reported by Lee and Hon is 53.3% with a bigramInt. J. Pat. Rec. & A.I., 1994 19



language model, compared to our baseline phone accuracy of 67.1%. In these experimentsusing as many as 2100 CD models did not signi�cantly reduce the error rate.The use of a di�erent signal analysis (8kHz MFCC), and additional parameters (32 Gaus-sians per mixture, the second derivative of the cepstrum (��)) and sex-dependent modelsimproves the phone accuracy to 78.7% as shown in the last entry in the table[28].5.3.3 Error Analysis Confusion pair % Subs.e ! E 4.2E ! e 3.8a ! E 4.2E ! a 1.8n ! m 1.8y ! i 1.8Table 10: The most common substitutions with 428 models.The most recognition errors occurred for the phones: /E/ 8.1%, /a/ 7.6%, /e/ 7.2%,/c/ 4.9%, /t/ 4.3%,and /x/ 4.2%, accounting for almost 40% of the substitution errors. Ofthese phones only /c/ and /E/ have high phone error rates of about 40%. Table 10 showsthe most frequent substitutions made by the recognizer. The two most common confusionsare reciprocal confusions between /e/ and /E/ and between /E/ and /a/. Together theseaccount for 13% of the confusions. Many speakers do not make a clear distinction betweenthe phones /E/ and /e/ when they occur word-internally, which may account for their highconfusability. The high number of errors for /a/ are probably due to the large amount ofvariability of /a/ observed in di�erent contexts.14% of the insertions are /r/, followed by 11% for /l/. These two phones also are deletedthe most: 13% of the deletions are /l/ and 11% /r/. Although /l/ and /r/ account for manyof the insertion and deletion errors, the overall error rate for these phones are relativelylow, 11% and 7%, respectively. Improved performance on these phones may be achieved bymodeling more contexts and by improving their duration models.5.3.4 Language Identi�cationAnother application for which phonetic recognition is used is language identi�cation, whichcould be a component of a multilingual speech-to-text system. The basic idea is to processin parallel the unknown incoming speech by di�erent sets of phone models for each of thelanguages under consideration, and to choose the language associated with the model setproviding the highest likelihood. The language-dependent models are trained from similar-style corpora, BREF for French and WSJ0 for English, both containing read newspaper textsand similar size vocabularies[18, 30, 41]. A set of SI CI phone models were built for eachlanguage, with 35 models for French and 46 models for English.[16, 29] Each phone modelhas 32 gaussians per mixture, and no duration model. In order to minimize in
uences due tothe use of di�erent microphones and recording conditions a 4 kHz bandwidth is used. Thetraining data for French were 2770 BREF sentences from 57 speakers and for English theWSJ0 SI-84 data containing 7240 sentences from 84 speakers.Language identi�cation accuracies are given in Table 11 with phonotactic constraintsprovided by a phone bigram. Language identi�cation error rates are given for the 4 testInt. J. Pat. Rec. & A.I., 1994 20



corpora, WSJ and TIMIT for English[41, 11], and BREF and BDSONS for French[18, 30, 7],as a function of the duration of the speech signal. Approximately 100ms of silence are includedat the beginning and end of each utterance (the initial and �nal silences were automaticallyremoved based on HMM segmentation), so as to be able to compare language identi�cationas a function of duration without biases due to long initial silences. The test data for WSJ0consist of 100 sentences, the �rst 10 sentences for each of the 10 speakers (5m/5f) in the Feb92-si5Knvp (speaker-independent, 5K, non-verbalized punctuation) test data. For TIMIT, the192 sentences in the \coretest" set containing 8 sentences from each of 24 speakers (16m/8f)were used. The BREF test data consist of 130 sentences from 20 speakers (10m/10f) and forBDSONS the data are comprised of 121 sentences from 11 speakers (5m/6f).Test # of Error rate vs. DurationCorpus sents 0.4s 0.8s 1.2s 1.6s 2.0s 2.4sWSJ 100 5.0 3.0 1.0 2.0 1.0 1.0TIMIT 192 9.4 5.7 2.6 2.1 0.5 0BREF 130 8.5 1.5 0.8 0 0.8 0.8BDSONS 121 7.4 2.5 2.5 1.7 0.8 0Overall 543 7.9 3.5 1.8 1.5 0.7 0.4Table 11: Language identi�cation error rates as a function of duration and language withphonotactic constraints provided by a phone bigram. (The duration includes 100ms of si-lence.)The overall French/English language identi�cation error is less than 1% with 2s of speech.It can be seen in Table 11 that while WSJ sentences are more easily identi�ed as Englishfor short durations, errors persist longer in these sentences than for TIMIT. In contrast forFrench, BDSONS data are better identi�ed than BREF with 400ms of signal, perhaps becausethe sentences are phonetically balanced. For longer durations, BREF is slightly better identi-�ed than BDSONS. Bearing in mind that the corpora were recorded under similar conditions,the performance demonstrated here shows that accurate task-independent, cross-corpus lan-guage identi�cation can be achieved. Extensions of this work will include identi�cation ofother European languages.5.3.5 Speaker Identi�cationThe same approach has also been used for text-independent speaker identi�cation[16, 29].In this case a set of phone models were built for each speaker, and the unknown speechwas recognized by all of the speakers models in parallel. The base acoustic models were the35 CI BREF models, built using the training data from the 57 training speakers. Thesemodels were adapted to each of 65 speakers (including 8 new speakers) using only 8 of thetraining sentences, and 2 sentences were used for identi�cation test. Using only one sentenceper speaker for identi�cation, there is one error, giving an identi�cation accuracy of 99.2%.When 2 sentences are used all speakers are correctly identi�ed.Experiments for English used a set of 40 SI CI models trained on the 462 training speakersin the TIMIT corpus[11] as seed models to estimate 31-phone model sets for each of the 168test speakers in TIMIT. Using 8 sentences (2 SA, 3 SX, and 3 SI) for adaptation resultedin 98.5% correct speaker identi�cation using one sentence for identi�cation and 100% iden-ti�cation if the likelihood over two sentences was used. Recently, high speaker identi�cationrates using subsets of 100 to all 462 speakers from TIMIT have been reported[5, 40, 48].Int. J. Pat. Rec. & A.I., 1994 21



A simple reduction in computation is gained by �rst determining the sex of the speakerby running in parallel SI male and female models. In experiments with this approach nocross-sex errors have ever occurred with the SI male/female models or with any of the SDmodels. Further computational reductions during recognition can be obtained by speakerclustering.5.4 Word RecognitionTwo types of implementation are usually considered to recognize words based on phonemodels. In the �rst solution, which can be called integrated approach, an HMM is generatedfor each word by concatenating the phone models according to the phone transcriptions.The word models are put together to represent the entire lexicon with one large HMM. Therecognition process is then performed for example by using the Viterbi decoding algorithm.The second solution uses the output of the phone recognizer as an intermediary level of codingsuch that the lexical decoding is derived only from this output. Phonological rules may beincluded in the lexical decoding, or alternatively may be represented directly in the lexicalentries. The phone recognizer output is usually a phone trellis including phone hypothesesfor each of the associated speech segments and their corresponding likelihoods. If the �rstapproach appears to o�er a more optimal solution to the decoding problem by avoiding anintermediary coding, the second approach greatly reduces the computional requirements ofthe acoustic level which is independent of the lexicon size and allows lexical and languagemodels to be developed and evaluated without interaction with the acoustic level.The recognizer used in the experiments described in this section uses the integrated ap-proach, a time-synchronous graph-search strategy. This one level implementation includesintra- and inter-word context-dependent (CD) phone models, intra- and inter-word phonolog-ical rules, phone duration models, gender-dependent models, and can be used with di�erenttypes of language models including word-pair and bigram grammars[25, 17]. For this evalu-ation, liaison is represented in the lexicon as alternate pronunciations. Since this simplisticapproach is not practical for large lexicons, other approaches, such as the use of phonologicalrules are being investigated to allow optional liaison. Phonological rules were shown to bee�ective in reducing the error rate for the DARPA Resource Management Task[25]. Thislatter solution has the advantage that it is not necessary to expand the lexical pronunciationswhich can have the undesired side-e�ect of overgeneralization. The environments in whichliaison, and other such events, are allowed are speci�ed by the phonological rules, which areused both for training and recognition.5.4.1 System DescriptionFor all the experiments the same set of 428 CD phone models already used for the phonerecognition experiments are used. For the no-grammar case a phone tree is built from thelexicon in order to reduce the graph size. For the 10K lexicon the average number of phonenodes per word goes from 6.4 to 2.0 by using such a tree instead of a linear representation ofeach word, i.e. a 69% graph size reduction. For the word-pair and bigram grammars, a phonegraph is �rst built by linking the word phone transcriptions according to the grammar, then,as for the no-grammar case, the phone graph is converted to a large HMM by replacing eachphone node by the appropriate set of phone models and establishing the proper connectionswith the neighboring phones. A bigram-backo�[22] language model estimated on the textmaterial from Le Monde is used for lexicons containing 5K and 20K words. In all cases, CDphone models are used for word juncture phones as well as for intra-word phones.Int. J. Pat. Rec. & A.I., 1994 22



As an example, for the 3K lexicon, the average number of instanciations of each phonemodel is 98 for the no-grammar case and 96 for the word-pair grammar. Considering thedi�erences in the network representation, these numbers are surprisingly similar. The memoryused with the word-pair grammar is 24 Mb, compared to 17 Mb for the no-grammar case.Most of the di�erence is due to the interword connections for the word-pair grammar.5.5 Evaluation Lexicon Corr. Subs. Del. Ins. Acc.1K 73.4 20.9 5.8 4.2 69.23K 66.5 27.5 6.0 5.3 61.25K 61.4 32.0 6.6 5.9 55.610K 55.4 36.9 7.7 6.4 49.0Table 12: VI word recognition results (no grammar).Vocabulary-independent word recognition experiments were run using four di�erent lexi-cons. The smaller lexicon (1K lexicon) contains 1139 orthographic words, only those wordsfound in the test sentences. The 3K lexicon contains all the words found in the training andtest sentences, a total of 2716 words. The 5K and 10K lexicons include all the words in thetest data complemented with the most common words in the original text. These two lexiconscontain respectively 4863 and 10511 words. Alternate pronunciations increase the number ofphonemic forms in the lexicon by about 10%. The word recognition results with no grammarare given in Table 12. Since no grammar is used, single word homophone confusions are notcounted as errors.As discussed in Section 3, homophones present a large problem for French. If the homo-phone errors are included the phone accuracies drop by about 10%. A lexical study with300,000 words found that there can be over 30 words with the same pronunciation. In the LeMonde text corpus of 4.2 million words, there were 92,185 orthographically distinct words,but only 63,981 phonemically distinct words, giving a homophone rate of about 30%. In the1K and 3K lexicons the homophone rate is lower, on the order of 15%. The \worst-case"homophone in the 3K lexicon is for the phonemic word /sA/, which may correspond to anyof the 7 following orthographic words: 100, cent, cents, s'en, sang, sans, sent.While the large number of word homophones in French presents its problems, more compli-cated homophone problems exist, where sequences of words form homophones. The examplein Figure 8 shows some of the homophones for the phonetic sequence /parle/ for the wordsin the 3K lexicon. These multiple word homophones account for a few percent of the errorsin Table 12. In 
uent speech, the problems are more complicated as illustrated by Figure9. While nominally the phonetic transcription of the word \adolescence" is /adclEsAs/, therealized pronunciation is /adxlEsAs/, having the given homophones.Lexicon Perp. Corr. Subs. Del. Ins. Acc.1K 100 90.1 8.5 1.4 2.2 87.93K 160 88.2 10.2 1.5 2.2 86.1Table 13: Word recognition results with a word-pair grammar.Int. J. Pat. Rec. & A.I., 1994 23



Phonetic transcription: /p a r l e/Word candidates: parlerparl�eparl�eepar lespart lesparle esparlent esparle etparlent etFigure 8: An example of a multiple word homophone.Phonetic transcription: /a d x l E s A s/Word candidates: adolescencea de les sansa de l'essenceFigure 9: An example of a homophone caused by vowel reduction.Word recognition results using a word-pair grammar derived on the entire 4.2 millionword text of Le Monde are given in Table 13 for the 1K and 3K lexicons. Since a grammaris used homophones are counted as errors. The use of the word-pair grammar reduces theperplexities to 100 for the 1K lexicon and 160 for the 3K lexicon, and reduces the error rateby almost 60%. In addition, the drop in performance observed by increasing the lexiconsize is smaller than for the no grammar case, as is expected given that the perplexity is notproportional to the size of the lexicon.Two vocabularies have been used for recognition experiments with bigram-backo� lan-guage model, containing only the 5,000 and 20,000 most common words in the Le Mondetexts. The test data consist of 100 sentences for each vocabulary size, with perplexities of122 for the 5K sentences and 205 for the 20K sentences. These are not the same test data asused in the no-grammar and word-pair grammar conditions since the test texts were selectedso that all the words were found in the respective lexicons. Word recognition results usingthe same 428 CD models and the bigram-backo� language model are shown in Table 14. Theacoustic processing and feature vector are the same as used for the improved performancephone recognizer. The word error is 14.5% for the 5K lexicon and 18.3% for the 20K lexicon.More details of the experimental conditions and results can be found in [17].6 SummaryIn this paper an overview of the research at LIMSI in the area of speech-to-text conversionhas been given. Research projects in this domain have been pursued since the 1970's. Theprojects include phoneme-to-grapheme conversion of ideal and errorful strings, isolated-wordspeech recognition, and continuous speech recognition. Throughout problems that are speci�cInt. J. Pat. Rec. & A.I., 1994 24



Lexicon Perp. Corr. Subs. Del. Ins. Acc.5K 122 87.1 10.3 2.6 1.7 85.520K 205 84.6 12.8 2.6 2.9 81.7Table 14: Word recognition results on the BREF80 corpus with a probabilistic grammar(2-grams) estimated on Le Monde text data. (5K: 5000 word lexicon, 20K: 20,000 wordlexicon).to French have been highlighted.Speech-to-text conversion of French presents di�culties di�erent from those found inEnglish. One major problem is dealing with the large number of homophones. Lexical studiesindicate a single-word homophone rate of about 30%[18, 15]. Comparative homophone ratesfor English are roughly 3% for DARPA Resource Managment lexicon[42] and less than 2%for the DARPA TIMIT lexicon[31, 11]. The main problem comes from the conjugation ofverbs, and markers for plural (s) and feminine (e) at the end of some classes of words (pastparticiples, some adjectives, etc.) which are not pronounced.In part due to the high homophone rate, the segmentation of even error-free continuousphoneme strings into words seems to be especially di�cult in French. For example, the simplesentence containing 9 phonemes, \J'ai mal au pied." (My foot hurts.), has more than 32,000possible transcriptions at the lexical level with a 162,900 word full-form lexicon. Even usingphonological rules, syntax, and semantics two sentences remained which require a pragmaticanalysis to determine the correct graphemic transcription.Liaison is another problem that must be dealt with. This word-juncture event is neverpronounced in isolation and is optionally pronounced in continuous speech. How to pronouncethe liaison is a problem particular to isolated word dictation, that is solved in continuousspeech. The problem is even more complicated in that sometimes this optional liaison is theonly indication to distinguish between the singular and plural forms of a word or phrase. Beingoptional, liaison increases the number of inter-word connections. The formalism demonstratedin the framework of the RM task[25] is being used to handle this problem. This formalismuses phonological rules to account for alternate pronunciations and to handle cross-wordcoarticulation.Another problem which can be handled similarly with the use of phonological rules isthe optional pronunciation of mute-e: Certain words may be pronounced with either 2 or 3syllables; the schwa in short function words may be completely deleted; and the �nal usuallysilent mute-e at ends of words may be pronounced. Another problem concerns the apostrophe,where the �nal vowel of certain words can be deleted when the next word begins with a vowel.Our most recent work focuses on developing phone-based speech recognizers that aretask, speaker and vocabulary independent so as to be easily adapted to various applications.The recognizer described here was evaluated at both the phone and word levels. A set of428 context-dependent models were trained on speech taken from 57 speakers in the BREFcorpus. These were tested on 109 sentences taken from a new 19 speakers. The resultingphone accuracy was 78.7%, with phonotactic constraints given by a phone bigram. Thephone recognition results are encouraging and are somewhat superior to those reported forEnglish[32, 47, 28]. This may be simply because French has a smaller number of phonemes,or that the phonemes are less variable due to context.It is our opinion that it is important to evaluate the quality of the acoustic models, andInt. J. Pat. Rec. & A.I., 1994 25
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