To appear in the International Journal of Pattern Recognition and Artificial Intelligence,
special issue on Speech Recognition for different languages, Spring 1994.

Speech-to-Text Conversion in French
J.L. Gauvain, L.F. Lamel, G. Adda, and J. Mariani

LIMSI-CNRS
BP 133
91403 Orsay cedex, FRANCE

Keywords: Speech-to-text conversion, continuous speech recognition, speaker-independent
recognition, vocabulary-independent recognition, phone recognition, hidden Markov models,
language identification,

Abstract

Speech-to-text conversion of French necessitates that both the acoustic level recognition
and language modeling be tailored to the French language. Work in this area was initiated at
LIMSI over 10 years ago. In this paper a summary of the ongoing research in this direction is
presented. Included are studies on distributional properties of French text materials; problems
specific to speech-to-text conversion particular to French; studies in phoneme-to-grapheme
conversion, for continuous, error-free phonemic strings; past work on isolated-word speech-to-
text conversion; and more recent work on continuous-speech speech-to-text conversion. Also
demonstrated is the use of phone recognition for both language and speaker identification.

The continuous speech-to-text conversion for French is based on a speaker-independent,
vocabulary-independent recognizer. In this paper phone recognition and word recognition
results are reported evaluating this recognizer on read speech taken from the BREF corpus.
The recognizer was trained on over 4 hours of speech from 57 speakers, and tested on sentences
from an independent set of 19 speakers. A phone accuracy of 78.7% was obtained using a
set of 35 phones. The word accuracy was 88% for a 1139 word lexicon and 86% for a 2716
word lexicon, with a word pair grammar with respective perplexities of 100 and 160. Using a
bigram grammar word accuracies of 85.5% and 81.7% were obtained with 5K and 20K word
vocabularies, with respective perplexities of 122 and 205.

1 Introduction

At LIMSI, the idea of realizing a voice-activated typewriter with a very large dictionary
was initiated in the late 1970s. The first experiment on this topic concerned the phoneme-
to-grapheme conversion of error-free continuous phoneme strings. Phoneme-to-grapheme
conversion consists of segmenting the phoneme string into words and then generating the
correct orthographic translation of those words. The initial step of segmentation used a
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simple heuristic of choosing the solution with the smallest number of words for a given
sentence[34]. Evaluated on a small text corpus containing 1796 words, using a lexicon of
20,000 baseforms, the error rate in segmentation was suprisingly low, only 20%, with most of
the errors due to liaisons. This first step in the direction of a voice-activated typewriter has
since been followed by more extensive efforts.

This work was extended to convert phoneme strings containing simulated errors[4] and the
methodology was adapted to stenotype-to-grapheme conversion[1] using statistical language
models trained on text corpora. In the framework of the ESPRIT project 860 “Linguistic
Analysis of the European Languages,” LIMSI’s approach to language modeling was compared
with other closely related approaches, on 7 different European languages[6]. The 4-year
project was followed by the ESPRIT Polyglot project, which had the goal of designing speech-
to-text and text-to-speech systems for each of the same 7 languages.

Work in speech recognition at LIMSI also began in the 1970s, continuing to the first French
single-board isolated-word speech recognizer, Moise, and the first single-board connected-
word recognizer, Mozart [19, 14] which was able to recognize a vocabulary of about 100
words. The link between acoustic recognition and language modeling was made simultane-
ously with the development of the Hamlet, 2000-word, speaker-dependent (SD) isolated-word
(IW) dictation system[36], and with the 7000-word, SD IW dictation system developed within
the Amadeus speech recognition project[13]. The recognizer in the Amadeus project was de-
veloped around a specialized DTW chip (¢PCD)[44, 45] that has been designed at LIMSI, in
collaboration with the Bull and the Vecsys companies. Acoustic recognition was first demon-
strated with a chip emulator in March 1987, and a complete dictation system using the chip
itself was demonstrated in spring 1988.

Presently, the primary research efforts in speech recognition are directed at the dictation
task and a dialog project. For both applications, a speaker-independent (Sl), vocabulary-
independent (VI), phone recognizer is being developed, so as to be easily adaptable to various
tasks.

In the dictation task, the BREF corpus [18, 30], described in more detail in Section 5.2,
is used. The immediate goal is to work with read speech material from a large number of
speakers, so as to be able to build base acoustic models which can be augmented and adapted
to specific speakers or tasks. This work also allows many aspects of language modeling
to be addressed under more “semi-controlled conditions,” than those found in spontaneous
dictation. Additionally, it is much easier to collect read-text material than spontaneous
dictations.

An ongoing dialog project is oriented toward Air-Traffic Controller training, in collabo-
ration with the Centre d’Etudes de la Navigation Aérienne. Currently, the student training
sessions are limited by the availability of the human instructor who plays the role of a pilot.
The goal is to replace the instructor by a spoken dialog system. This allows for more avail-
ability of the system, and may force the student to adhere to the pre-defined phraseology, the
learning of which is part of training. The dialog system is built around the Amadeus speech
recognizer and an associated synthesis module.

The remainder of this paper is as follows. First, some of the distributional properties
of French, most of which are gathered from the study of large text corpora, are presented.
In Section 3 some of the problems encountered in speech-to-text conversion are addressed,
highlighting those problems specific to French. Section 4 describes an approach to isolated-
word speech-to-text conversion, and Section 5 presents more recent efforts using continuous
speech. This section includes phonetic and word recognition, as well as some issues in language
modeling.

Int. J. Pat. Rec. & A.lL, 199/ 2



2 Distributional properties of French

In order to be effective in speech-to-text conversion, it is necessary to determine and account
for the distributional properties of the language. For practical reasons, it will probably
remain impossible to obtain text transcriptions of sufficient spoken utterances for analysis
and language modeling. Therefore, large written text corpora serve as a basis for analysis
and modeling the distributional properties of spoken texts. As long as applications such as
text dictation remain of interest, the models thus obtained should be relatively reflective of
the task.

In this section the analysis of a large corpus of text material [18, 30] taken from the French
newspaper Le Monde is presented, along with some comparative data taken from a smaller
text corpus of Senate transcripts. The source text materials consisted of three months of Le
Monde, representing about 5 million words of text and 1.2 million words of Senate trans-
criptions. After cleaning up the newspaper text so as to eliminate incomplete sentences and
to correct formatting errors, 4.2 million words remained. The “lost” text was roughly 50%
header information and 50% textual errors.

The distributional properties of the texts were determined by counting the occurrences
of sentence, word, and subword units. At the sentence level, counts were made of sentence
types and lengths. At the word level, the number of distinct words and their word frequencies
were counted. Subword units counted include syllables, dissyllables, phones, diphones, and
triphones.

2.1 Text Analysis

Each sentence was phoneticized using grapheme-to-phoneme rules[43], and erroneous pronun-
ciations were hand-located! and corrected using an exceptions dictionary. The most common
mispronunciations were foreign words and names, and acronyms. Also, each punctuation
mark was replaced by a silence “phone.” The set of phone labels used in grapheme-to-
phoneme rules is given in Table 1. Although certain speakers of French make the distinction
between the vowel in the words “patte” and “pate”, and the nasal vowels in the words “brin”
and “brun”, they have been collapsed together as the majority of speakers do not reliably
distinguish between them.

2.1.1 Sentence types:

Sentences were classified as declarative, interrogative and exclamative types, or as more com-
plex formulations which included ellipses, parenthetic expressions, and/or quotations. Table
2 shows the distribution of sentences in Le Monde according to type, and shows for each
type the minimum, average, and maximum sentence lengths. Simple sentences contain no
internal punctuation markers other than comma, and no embedded parenthetic expressions
or quotations. Conversely, complex sentences contain at least one of these. For the sentence
lengths, the counts are for split quotations. The final part of the table gives the percent-
age of sentences containing numbers, acronyms, quotations (entire and split into individual
sentences), or parenthetic expressions.

A conceptual problem was found while counting sentence types, a priori, a simple task:
what should be done with end-of-sentence punctuation marks found within parenthetics or

1Si1’lC6 this is such a labor-intensive procedure, corrections were made only for words occurring more than
’
20 times in the text.
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‘ Phone ‘ Erample ‘ Phone ‘ Erample ‘

Vowels Consonants
i lit S sot
e blé z zebre
E sel S chat
y suc Y/ jour
X leur f fou
X petit v vin
Q@ feu m motte
a patte, pate n note
c sol N digne
0 saule | la_
u fou r rond
Nasal Vowels p pont
I brin, brun b Eon
A chant t ton
O bon d don
Semivowels '¢ cou
h lui g gond
oui . silence
j yole

Table 1: The 35 phone symbol set.

quotations? The analysis was performed two ways, ignoring and counting these marks. How-
ever, in sentence selection, it was decided to ignore parenthetic expressions as they are often
too disjoint from the text, and to divide sentences within a long quotation into single, quoted
sentences. This decision was made because sentences containing complex quotations could
be quite long - over 500 sentences were found having more than 100 words each! While 12%
of the quotations were only a single word and another 25% were 2-5 words long, the average
length for a single quotation was 11 words. In contrast, parenthetics were typically short:
over 75% had fewer than 5 words and the average length was 4 words.

2.1.2 Word and subword units:

Word and subword units were counted in the phonemicized, syllabified text. Punctuation
markers were considered to be non-verbalized, and therefore were not counted as words.
Table 3 summarizes the counts for the different units for the complete text of Le Monde
and the Senat. Counts made on only 10% of the text of Le Monde showed almost identical
distributional properties.

In the 167,359 sentences, there were almost 4.2 million words, with over 90,000 orthograph-
ically distinct. To find the number of phonemic words, the grapheme-to-phoneme mapping
was redone without the liaison rules, so as to avoid the ambiguity in word segmentation intro-
duced by liaison. There were 64,000 phonemically distinct words, almost 30% less than the
number of orthographically distinct words, giving a measure of the number of homophones in
French. In order to know if the percent of homophones was dependent upon the vocabulary
size, the percent homophones in 2000 and 10,000 most common words were determined, and
also found to be roughly 30%. The dissyllable is defined from the midpoint of one vowel to

Int. J. Pat. Rec. & A.lL, 199/ 4



Number of Words
Sentence Type Percent | Ave | Min | Max
Declarative 95 23 1 222
Interrogative 3.8 15 1 191
Exclamatory 1.2 13 1 104
Simple Sentences 57 19 1 191
Complex Sentences 43 33 3 222
Numbers 22 30 1 165
Acronyms 11 - - -
Split Quotations 27 26 2 213
Quotations 22 34 2 >400
Parenthetic 11 35 2 >100

Table 2: Sentence types and lengths.

the midpoint of the next vowel, and therefore contains all the intervening consonants. This
unit has been successfully used for speech recognition and speech synthesis in French[50], in
part because French vowels are acoustically relatively stable over time.

‘ Unit ‘ Le Monde ‘ Senat ‘
#sentences 167,359 64,613
#words (total) 4,244,810 | 1,137,928
#orthographically distinct 92,185 26,807
##phonemically distinct 63,981
#syllables (total) 6,903,017 | 1,956,423
#distinct syllables 9,571
#distinct dissyllables 37,636
#phones (total) 16,416,738 | 4,737,578
#distinct phones 35 35
#distinct diphones 1,160 1,105
#distinct triphones 25,999 17,079

Table 3: Distributional properties of word and subword units.

On the average, there were 2.3 phones/syllable, 3.2 phones/dissyllable (including both
vowels), and 3.7 phones/word. The most common phone was /r/, accounting for 8.0% and
7.9% of all phone occurrences in Le Monde and Senat, respectively. Most of the possible
diphones were found to exist (1160 out of 1225, taking into account the silence “phone”), as
were 60% of the possible triphones. Some of these gaps are truly indicative of the French
language, while others may be due to insufficient data or the grapheme-to-phoneme rules.
However, the number of triphones may actually be elevated, relative to “traditional French”,
since there are so many foreign words (mostly names) in the text source.

Figure 1 shows plots of the frequency of occurrence for the word and subword units in
percentages. Part (a) has curves for words, syllables, and phones, and part (b) has curves for
dissyllables, triphones, diphones, and phones. The units have been separated as such since
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Figure 1: Frequency of occurrence for word and subword units.
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words, syllables, and phones have no constraints internal to the unit itself restricting which
units may follow, whereas the units in part (b) have internal constraints limiting the possible
following units. Phones are shown in both for comparison as the basic unit.

Less than 20% of the distinct words account for over 95% of all word occurrences. In fact,
40% (about 35,000 words) occurred only once in the text, and 60% of the words appeared
at most 3 times. This effect is even more pronounced for syllables, where the roughly 20%
most common syllables account for 98% of all syllable occurrences. Almost 80% of the text is
covered by only the most frequent 232 (20%) diphones. 20% of the triphones and dissyllables
cover over 90% and 95% of the text, respectively.

Figure 2: Percentage of sentences covered as a function of unit.

But perhaps more interesting is the opposite question: given that 40% of the words
only occurred once in the text, how many sentences can be pronounced if these words are
eliminated? The curves shown in Figure 2 illustrate the percentage of sentences covered as a
function of the percentage of word or subword unit. The curve for phones is very gradual -
with 80% of the phones, only 10% of the sentences can be covered. For words, however, over
80% of the sentences are covered using only 60% of the distinct words, effectively eliminating
all of the single occurrence words. The effect is even stronger for syllables: roughly 40% of the
syllables cover over 90% of the sentences. Curves are shown for phones, diphones, triphones,
and dissyllables in Figure 2b.
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2.2 Entropy

In order to assess the relative importance of the word and subword units, the entropy of
corresponding Markov sources were calculated. The probabilities used for each source are
shown in Table 4a, where w;, s;, v;, and a; are respectively a word, syllable, vowel, and phone,
and ¢ is a string of consonants. A memoryless source was used to model the phone, word,
and syllable sources. The diphone and dissyllable models were first order Markov sources,
and the triphone model was a second order Markov source. All probabilities were estimated
using frequency counts on the entire text.

‘ (a) Unit ‘ order 0 ‘ order 1 ‘ order 2 ‘

phonemic words | p(w;)

syllables p(si)

dissyllables p(vi) | plex,vjlvg)

phones pla;)

diphones pla;) plajla;)

triphones pla;) plajla;) | plakla;, a;)

#Distinct | Entropy | Model

(b) Unit units (b/ph) | 1(b/ph)
phonemic words 63,981 2.67 2.46
syllables 9,571 3.61 1.51
dissyllables 37,636 3.55 1.57
phones 35 4.72 0.40
diphones 1,160 3.92 1.21
triphones 25,999 3.40 1.72

Table 4: Markov sources: (a) model probabilities and (b) estimated entropies.

Table 4b summarizes the results of the models in bits/phone. The lowest entropies are
found for the word and triphone sources, indicating that their models store the most infor-
mation. Compared to the memoryless, equally probable 35 phone source, the information
stored in the models is 2.46 and 1.72 b/ph, respectively.

3 Problems in speech-to-text conversion

Phoneme-to-grapheme conversion of French seems to be more difficult than in other lan-
guages, due to the large number of homophones. Starting with a source dictionary of 22,000
baseforms results in a full-form lexicon of about 162,900 graphemic words. Grapheme-to-
phoneme translation of those words produces about 90,000 distinct phonemic forms, indicat-
ing that for a large full-form lexicon, a phonemic word corresponds to, on the average, 1.8
different graphemic words. Table 5 shows some approximate full form counts for a baseform
lexicon of 22,000 words. For comparison, there are roughly 3% homophones in the DARPA
Resource Managment lexicon[42] , less than 2% for the DARPA TIMIT lexicon[31, 11], and
under 5% in the MIT Pocket lexicon[52].

In fact, the main problem arises from verb conjugation. A single verb has on average 40
forms. Among these, there are as many as three different spellings for each pronunciation.
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Another source of homophones is that the mark of plurals (an -s at the end of the word)
for most substantives, most adjectives, and all the past participles, is never pronounced in
isolation, and only sometimes pronounced in fluent speech. Similarly, the mark of the feminine
form (-e at the end of the word) for some substantives, most of the adjectives and the past
participles, is never pronounced.

In addition, there are the more typical “word” homophones, such as the demonstrative
adjective ces (those) and the possessive adjective ses (his), which have the same pronunciation
/se/. Some examples of the different types of homophones are given in Figure 3.

% Words | # Words | # Forms/Word | # Forms
Verbs 14% 3,100 40 124,000
Substantives 56% 12,300 2 24,600
Adjectives 23% 5,100 2.5 12,800
Adverbs and others 7% 1,500 1 1,500
Total 100% 22,000 (avg.) 7.3 162,900

Table 5: Full-forms derived from a dictionary with 22,000 baseforms.

Verbs:
/kas/ casse, casses, cassent (break)
Substantives (Masculine/Feminine):
/ami/ ami (friend (he)), amie (friend (she))
Substantives (Singular/Plural):
/tas/ tasse, tasses (cup, cups)
Adjectives (Masculine/feminine):
/ene/ ainé (older masc.), ainée (older fem.)
Adjectives (Singular/plural):
/grAd/ grande, grandes (big)
Past Participles:
/kase/ cassé, cassés, cassée, cassées (broken)

Figure 3: Examples of common homophones.

Considering now the case of continuous speech, the problem of segmenting the continuous
phoneme string into words seems to be especially difficult in French. In experiments on
a simple sentence containing 9 phonemes, “J’ai mal au pied.” (My foot hurts.), with the
162,900 word full-form lexicon, more than 32,000 possible transcriptions (segmentations and
orthographic translations) were obtained at the lexical level. As shown in Figure 4(a) even
using phonological rules, syntax, and semantics still leaves two acceptable sentences that
require a pragmatic analysis in order to get the right graphemic transcription. Another
example, shown in Figure 4(b), gives the possible analyses of the phrase “un murmure de
mécontentement”. This example illustrates both the complexity of the problem and the power
of the syntactic constraints. Lexical access using a full-form lexicon with over 300,000 entries
yields 340 possible word segmentations. This expands to over 2 million possible phrases when
all the combinations are considered. Syntactic constraints including form agreement reduce
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the set to 6 possibilities, all of which are semantically plausible.

Text string: J’ai mal au pied.
Phonemic string: /Zemalopje/
Possible segmentations at the lexical level:
32,000 possibilities
Geai méale au pied
Geais ma lot pieds
J’hait méat I'eau piller
J’aime allo pillé
J’aimes allo pillé
Jet malles hop y est
Gemme halles hopi et

Possible segmentations with phonology, syntax,
and semantics:
J’al mal au pied. (My foot hurts.)
J’al mal aux pieds (My feet hurt.)

(a)
Text string: un murmure de mécontentement
Phonemic string: /ImyrmyrdxmekOtAtmA/
Lexical access: 340 possible word segmentations
2,419,620 phrases

Syntactic analysis: 6 possible phrases

- un murmure de mécontentement

- un murmure de mécontentes ment

- un murmure de mes contentements

- un mur mir de mécontentement
- un mur miar de mécontentes ment
- un mur miar de mes contentements

(b)

Figure 4: Lexical hypotheses from an error-free phonemic transcription.

In French one must also deal with “liaison”, the links made between words. These are
phonemes that are pronounced at the junctions between two words, but would not be pro-
nounced at the end of the first word, or at the beginning of the second one, if the words
were pronounced in isolation. For example, the word sequence “les amis” (the friends) is
pronounced /lezami/, where the word pronunciations in isolation would be /le/ and /ami/.
Another more complicated form of liaison is the insertion of /t/, in certain inverted verb
forms. Instead of forming the question “A il ...”, the written and spoken form is “A-t-il ...”.
In certain cases this liaison is the only indication to distinguish between the singular and
plural forms of a word. This is true of the phrases “ll aime le pain.” (He likes bread.) and
“lls aiment le pain.” (They like bread).

Another problem is the optional pronunciation of mute-e. For example, the word devenu
can be produced with 2 or 3 syllables: /dxvnu/ or /dxvxnu/. The same phenomena can also
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occur across words: beaucoup de gens may be pronounced as /bokudxZA/ or as /bokudZA/.
This problem of schwa-deletion is also found in English, however the phonemic environments
are somewhat different. Additionally, there are situations where the word-final mute-e is
pronounced. This effect is to some extent context and dialect dependent. Speakers from the
south of France typically enunciate the mute-e, whereas speakers from the Parisian area will
usually leave it out.

A final problem which is mentioned only briefly here is with apostrophe, where the final
vowel of certain words can be deleted when the next word begins with a vowel. In the written
form, this results in words like l"enfant, c’est, n’a, s’amuser .... This problem is discussed in
more detail in Section 4.4.

4 Isolated-Word speech-to-text

In this section our efforts in isolated-word speech-to-text conversion are described. The goal of
this work was to integrate the necessary components of an isolated word, speaker-dependent
Voice Activated Typewriter (VAT) on a stand-alone personal computer[36, 13]. The target
vocabulary size was several thousand words. The language model was given by bigrams and
trigrams of grammatical categories[3, 8], where the probabilities were computed by counting
the occurrences in the training text material. Recognition was a two step process. First, a
fast match to select a small subset of the lexicon, then a detailed, DTW-based word match
was performed that gives the list of word-candidates with their recognition score. On average,
the fast match returned about 2% of the lexical entries.

Two systems were developed, both using specialized hardware for signal processing. The
first, having a vocabulary of 2,500 words ran on an IBM PC workstation. The second ran
also on a IBM PC, but took advantage of the (uPCD) custom VLSI search processor[44]
to perform DTW operations. This processor was been designed to be used in applications
using pattern matching operations (Speech and Character Recognition, Stereovision, Scene
Analysis, Operational Research...). The processor is fully programmable and can support
isolated-word and connected-word recognition algorithms using DTW or HMM approaches.
Using the DTW approach, it can perform recognition with a full search on a vocabulary
of 1,000 words in isolation, or 300 words spoken continuously, in real time. By adding
a fast-match algorithm also supported by the processor, it allows real-time recognition of
a vocabulary of 7,000 words in isolation. The vocabulary size can easily be extended by
multiplying the number of such processors. A single IBM PC board can hold up to 16
processors.

4.1 Language Modeling

In this early work two small applications were explored. The first was related to dictating
a research report in the field of speech technology in French. The training data consisted
of an existing 20 page research report containing about 15,000 words. There were on the
order of 2500 distinct graphemic forms and 2000 phonemic forms. The second application
was oriented to dictation of more general French. The vocabulary was defined by a French
textbook for foreigners, “Le Mot et L’lIdée,” containing about 40,000 words of text. There
were 6,700 distinct graphemic forms and 5,100 distinct phonemic forms in the text.

For these applications it was decided to pronounce all punctuation markers as a word,
and to speak numbers as digit strings, unless they were included in a word. Considering the
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peculiarities of French presented in the previous section, it was decided
apostrophe as a word, and to leave unsaid the liaisons between words.

to pronounce the

Label Grammatical Class FEzxample
PONC punctuation ,
NM noun masculine animal
NMP noun masculine plural animaux
NF noun feminine fleur
NFP noun feminine plural fleurs
AM article masculine le
AF article feminine la
AP article plural les
INF verb infinitive chanter
VPP verb past participle perdu
AJM adjective masculine beau
AJMP adjective masculine plural beaux
AJF adjective feminine belle
AJMF adjective feminine plural  belles
PN pronoun je
PO possessive me
NUM number dix
NPR proper name Daniel

Table 6: Some of the grammatical classes used in the general dictation task.

In order to provide constraints, sets of grammatical categories were defined. For the gen-
eral French dictation task a set of 59 grammatical classes were used. Some of these classes
are given in Table 6. The nouns and adjectives have been subdivided into four classes to
handle the masculine/feminine and singular/plural distinctions. For the research report dic-
tation an extended set of 160 grammatical classes were defined. These classes, which were
closely related to the categories used by other authors[8], were obtained from 55 basic cate-
gories, by adding gender or number information, such as the classes “substantive masculine
singular” or “article feminine singular”. The grammar takes into account the fact that an
apostrophe must be followed by a word beginning by a vowel, as well as other rules such as
that the possessive adjective “mon” cannot be followed by a feminine word beginning with a
consonant.

Language model training for the general dictation task consisted of building n-gram gram-
mars for the grammatical classes on the entire text book. In contrast, an incremental training
method was used for report dictation. In this scheme, each successive page of the text report
was analyzed using the language model built from the previous pages (for the first page, it
started from scratch). Each word in the text was looked up in the lexicon. If it was found,
its phonemic representation and grammatical category were specified. If not, its phonemic
representation was obtained by grapheme-to-phoneme conversion, and its grammatical cate-
gory was inferred inductively using a stochastic syntactic parsing method. The result of this
analysis was a “verticalized” text[6], where each graphemic word of the text was followed
by its phonemic translation, its grammatical category, and the type of inference (lexical or
syntactic) used to get the information. This page of text was then manually corrected, and
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used to update the lexicon and the syntax, that was then used to process the next page.

4.2 Acoustic Training

The training speech data were recorded in a relatively quiet office environment. During
the training phase, all the words of the phonemic vocabulary were pronounced once. In
the hardware implementation, the speech signal was filtered at 4.8 kHz, and sampled at 10
kHz. Eight Mel-frequency scale cepstral components were computed every 12.5 ms. A non-
linear time compression algorithm[19, 23] was used to compress the steady-state portions of
the signal. In order to reduce the size of the reference templates, vector quantization was
applied.

4.3 Evaluation

The system has been tested on the vocabulary of the textbook in French for foreigners.
It has 5,127 phonemic words, corresponding to 6,700 graphemic words. On a 1000-word
text dictated by one speaker, a phonemic word recognition rate of 91% was obtained. This
increased to 99% correct phonemic word recognition using the language model. Recognition
of the graphemic words was 92.5%, with 75 errors. All tests were made on text data that
were used for building the language model. The average recognition time for a word was 480
ms.

An example dictation output for this application is given in Figure 5. The example text
was dictated in one continuous session and corresponds to a page in the book. In general
the errors made by the system were confusions with another acoustically similar word. The
word “hommes” is seen to be consistently misrecognized as “pommes”, suggesting that the
model for this word was poor. The constraints provided by the language model could not
differentiate amongst “il reste” and “ils restent” or “quelque éleve” and “quelques éleves”,
both of which are homophones when spoken in isolation. Apparently the singular form was
more common in the training data, and therefore was selected here. These word pairs are
even homophones in continuous speech, and cannot be disambiguated without additional
semantic information, as given by the “les enfants” in the preceding sentence. The confusion
between “fonds” (business) and “fond” (rear) also cannot be eliminated without semantic
information.

An example dictation output for the report application is given in Figure 6 for the phrase
“se sont portés vers les probleme relatifs” (have been conducted on the problems related).
The hypothesized list of candidates for each word are shown as a list. The recognized words
are shown in bold face.

For this task, most of the recognition errors were made on 1 or 2-syllable words. As the
shortest words, which seem to be the most difficult to recognize, are also the most frequent
ones, it is expected that word recognition rates on text dictation are worse than error rates
reported on word lists. However, since these short words are very common, they are also
well represented in the language model. Therefore the language model can greatly help in
correcting the “acoustic” recognition errors made on these short words. A related effect was
that the recognition rate did not vary when the size of the lexicon was increased from 1500
words to 2000 words. This may be due to the incremental approach used to build the lexicon:
since the shortest, most error-prone words are rapidly included in the lexicon, extending the
lexicon tends to add longer, less confusable words.
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L’ activité corporelle.

1. Les pommes (hommes) et les animaux peuvent remuer, se mouvoir, se
donner du mouvement. Les pommes (hommes) sont capables de faire des
gestes de la téte et de la main. Si on ignore un mot étranger, on peut se
taire (faire) comprendre par des signes.

2. Monsieur Leclerc est fort, il a de la force il est robuste. André Caron fait
des courses de dix ou quinze kilometres, il est résistant. Madame Leclerc
coud; elle est adroite; si elle était maladroite, le travail serait mal fait. La
robe va bien; Madame Leclerc est habile; la fillette veut coudre aussi; elle
a encore des gestes gauches.

3. Cette (Cet) ame (homme) a (a) une jambe plus courte que l'autre; il est
boiteux; il boite de la jambe gauche; un accident I’as (a) rendu infirme. Les
mutilés ont perdu un bas (bras), une jambe ou un oeil dans un accident.

4. Le maitre arrive. Les enfants se levent. Il (ils) reste (restent) debout. Le
maitre Guy: (crie) “assis”. Dans le fonds (fond), quelque (quelques) éleve
(éléves) n’ ont pas entendu. Le maitre répete: “asseyez vous” ... “acier
(assied) toi, Daniel”.

Figure 5: An example of a dictated text. The errors are underlined and followed by the
correct wording inside parentheses.

Correct Sentence: se sont portés vers les problemes relatifs
Recognized Sentence:

se sont portés air les programme relatifs
ce son porter  faire  lié problémes relatif
ceux sons portées heure <clé  probleme
CEE soit vers clés
seul  sans mes

ont

(have been conducted on the problems related ...)

Figure 6: Sample output for the report dictation task. Although the top candidate string
contains two errors, they are corrected by the language model.
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Liaison:
Word string  Phoneme string
des /de/ (some)
amis Jami/ (friends)
des amis /dezami/ (some friends)
bon /bO/ (good)
bon ami /bcnami/ (good friend)
petit ami /pxtitami/ (boy friend)
petits amis /pxtizami/ (boy friends)
Apostrophe:
Word string  Written form  Phoneme string
le ami I’ami /lami/ (the friend)
de ami d’ami /dami/ (from a friend)

Figure 7: Examples of liaison and apostrophe in French.

4.4 Discussion

Although isolated-word dictation helps to constrain the recognition task by removing the
problem of finding the word boundaries, other problems are introduced. For example, it is
not evident what to do about the liaison often made at word junctures. One possibility is
to not pronounce the liaison at all, however, the resulting speech sounds very unnatural.
Another option is to pronounce the liaison at the beginning of the following word, but this
increases the size of the vocabulary, as all the possible liaisons at the beginning of the word
must be allowed. A third possibility is to pronounce the liaison as a separate word, thus
saying three words instead of two. This pronounciation of the liaison in isolation is very
difficult since it is so unnatural. Another approach has been to dictate with isolated syllables
instead of isolated words[38]. While this provides a more natural way to pronounce the liaison
at the start of a syllable, the resulting task is still unnatural for the speaker.

A similar problem arises in that the vowel at the end of some words can be omitted when
the next word begins with a vowel. In the resulting orthographic form, the vowel is replaced
with an apostrophe, and the space separating the words is removed. The word sequence “le
ami” thus becomes “’ami”. In pronouncing these words there are several options: The first
one is to say the first word as if had not been modified, followed by the second word. The
second option, which is to pronounce the words together as one word, has the unfortunate
effect of greatly enlarging the size of the vocabulary. A third option is to say a sequence of
three words, verbalizing the word “apostrophe” in the middle of the two other words. Some
examples of these problems are given in Figure 7.

The problems associated with how to pronounce the liaisons and apostrophes in isolated
word dictation emphasize the need for continuous dictation in French. While continuous
dictation avoids these problems on the part of the speaker, they still remain for the recognizer,
and increase its complexity.
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5 Continuous-speech speech-to-text conversion

Our current efforts focus on speech-to-text conversion of continuously spoken sentences, from
any speaker, for very large vocabularies (eventually, unlimited). This is a large departure
from the approach taken in the previous section, where the task was speaker-dependent,
isolated-word, and for smaller size vocabularies. Because of the ambitiousness of the task,
the system should be both independent of the speaker and the vocabulary. To this extent,
a phone-based approach is being used, where phone-like units are trained with data from a
large number of speakers. In the next subsection some early work in phoneme-to-grapheme
conversion from text is described. After a presentation of the corpus used for this work, the
remainder of this section is devoted to current projects in phonetic and word recognition.

5.1 Phoneme-to-grapheme conversion from text

In light of the problems encountered in phoneme-to-grapheme conversion for continuous error-
free phoneme strings, the use of a natural language syntactic parser[2] was explored. This
work made use of a full-form dictionary containing almost 162,900 forms, derived from a
22,000 word base-form dictionary. Each graphemic word was converted into its phonemic form
by using the automatic grapheme-to-phoneme conversion software designed at LIMSI[43].
The dictionary also includes other information such as the grammatical category of each
word, its gender and number for the substantives and adjectives, the mode, time, person,
group, transitivity, and root for the verb.

A positional syntax specified by a 3D frequential matrix giving the frequency of the suc-
cession of three grammatical categories was used[2]. (This kind of model is now commonly
known as a trigram language model.) On the basis of linguistic knowledge and experimenta-
tion 150 grammatical categories were chosen.

The phoneme-to-grapheme conversion was tested on a 1800 word text, where the phonetic
representation for each word was obtained using the same grapheme-to-phoneme conversion
software as was used to represent the lexicon. Liaisons were not taken into account, though
the punctuation markers were retained. All possible segmentations of the phonemic string
were filtered by the trigram model. When several possibilities remained, the one with the
smallest number of words was kept. The error rate was less than 5% on the 1,800 word test.
The most common errors were:

e singular/plural errors (36%), some of them being impossible to distinguish:
plans/plan d’exécution (maps/map for execution)
demande/demandes de permis (request/requests for permission)

e homophones (17%):
plan/plant (map/plant) heures/heurts (hours/collisions)
ere/air/erre/here/aire (era/air/wanders/wretch/area)

e syntax parsing errors (17%):
les baisses ont équipé / les baies sont équipées (the falls have equiped / the windows
are equiped)
et celles situées / et sels situés (and those situated / and salts situated)

¢ number for posterior adjectives (13%):
périmetre de protection des monuments historique/historiques (area of protection of
historical/historical monuments)
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Further work in phoneme-to-grapheme conversion was done as part of the ESPRIT project
291/860 on the Linguistic Analysis of the European Languages. An important part of the
project was the building of a language model for 7 different languages (Italian, French, Dutch,
Spanish, Greek, and German). A statistical approach was taken using bigram and trigram
models on grammatical categories, similar to that developed at LIMSI.

The main results of this project were to provide statistics on phoneme clusters, grapheme-
to-phoneme and phoneme-to-grapheme conversion software, language models and syntactic
parsers. These elements were integrated using a blackboard structure and an attempt was
made to assess the “quality” or “difficulty” of each language[6, 51].

On this last issue, some interesting results have been found in a study of phoneme-to-
grapheme conversion for a lexicon of about 10,000 entries. One measure was the number
of context-dependent rewrite rules necessary for phoneme-to-grapheme conversion. Table
7 shows that for Italian, a set of 67 rules is able to transcribe the phonemic form into
the graphemic form with only 0.5% of the generated graphemic words not existing in the
language, and 0.5% graphemic words unable to be transcribed. In contrast, for French, 98%
of the words generated by a set of 586 rules do not exist in the vocabulary, and 30% of the
vocabulary words are missing in the resulting graphemic cohorts. While this result is clearly
highly dependent on the quality of the rules, it seems obvious that the Italian language will
require less linguistic processing than the French language in order to translate a phonemic
string.

# Graphemic words/ | % Over % Under
Language | # Rules phonemic words generation | generation
Dutch 289 6 90 20
English 530 10 90 6
French 586 250 98 30
German 551 400 99 10
Greek 394 100 100 2.5
Italian 67 1 0.5 0.5
Spanish 845 1 7 6

Table 7: Phoneme-to-grapheme translation for 7 European languages.

5.2 Database

For continuous speech recognition a portion of the BREF corpus is used. BREF is a large
read-speech corpus, containing over 100 hours of speech material, from 120 speakers. The
text materials were selected verbatim from the French newspaper Le Monde, so as to pro-
vide a large vocabulary (over 20,000 words) and a wide range of phonetic environments[18].
Containing 1115 distinct diphones and over 17,500 triphones, BREF can be used to train
vocabulary-independent (VI) phonetic models. Hon and Lee[20] concluded that for VI recog-
nition, the coverage of triphones is crucial. Separate text materials, with similar distribu-
tional properties were selected for training, development test, and evaluation purposes. The
selected texts consist of 18 “all phoneme” sentences, and approximately 840 paragraphs,
3300 short sentences (average 12.4 words/sentence), and 3800 longer sentences (average 21
words/sentence). The “all phoneme” sentences contain all 35 phones given in Table 1. More
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details of the distributional properties of the selected text subsets can be found in [18].

Each of 80 speakers read approximately 10,000 words (about 650 sentences) of text, and an
additional 40 speakers each read about half that amount. The speakers, chosen from a subject
pool of over 250 persons in the Paris area, were paid for their participation. Potential speakers
were given a short reading test, containing selected sentences from Le Monde representative
of the type of material to be recorded[30] and those judged to be incapable of the task were
not used as subjects. The recordings were made in stereo in a sound-isolated room, and were
monitored to assure the contents. Thus far, 80 training, 20 test, and 20 evaluation speakers
have been recorded. There are 55 male and 65 female speakers. The speakers’ ages range
from 18 to 73 years, with 75% between the ages of 20 and 40 years. More details about the
BREF corpus can be found in [30].

In these experiments approximately 4 hours and 20 minutes of speech material are used
for training. This represents 2770 sentences from 57 speakers (28 male, 29 female). The test
data consisted of 109 sentences from 19 speakers (10 male, 9 female). The test text material
is distinct from the training texts, and the test speech data contain 7635 phone segments.

Phonemic transcriptions of these utterances were automatically generated and verified[15].
The procedure for providing a time-aligned broad phonetic transcription for an utterance has
two steps. First, a text-to-phoneme module[43] generates the phone sequence from the text
prompt. Since the automatic phone sequence generation can not always accurately predict
what the speaker said, the transcriptions must be verified. The most common errors in
translation occur with foreign words and names, and acronyms. Other mispredictions arise
in the reading of dates: for example the year “1972” may be spoken as “mille neuf cent
soixante-douze” or as “dix neuf cent soixante-douze.” In the second step, the phone sequence
is aligned with the speech signal using Viterbi segmentation.

5.3 Phone Recognition

In this section some experiments with phone recognition are described. Evaluating pho-
netic recognition is important for several reasons. Primarily, the demands of vocabulary-
independent, speaker-independent continuous speech recognition require an approach based
on subword, often, phone-like units. Clearly, the better these phone models (or acoustic
models) are, the better the performance of the entire system will be. Only considering
word recognition performance, particularly when word-based grammars are used, can mask
problems that stem from the acoustic level. Phone recognition is also useful in determining
pronunciation errors in the lexicon and alternate pronunciations that need to be included in
the lexicon. Finally, phone recognition is shown to be effective for language identification
and for speaker identification[25, 26, 27].

5.3.1 System Description

The baseline phone recognizer uses a set of 35 context-independent (CI) phone models. Each
model is a 3-state left-to-right HMM with Gaussian mixture observation densities. The
covariance matrices of all the Gaussians components are diagonal. The 16 kHz speech was
downsampled by 2 and a 26-dimensional feature vector was computed every 10 ms. The
feature vector is composed of 13 cepstrum coefficients and 13 differential cepstrum coefflicients.
Duration is modeled with a gamma distribution per phone model. As proposed by Rabiner
et al.[46], the HMM and duration parameters are estimated separately and combined in the
recognition process for the Viterbi search. Maximum likelihood estimators were used for the
HMM parameters[21] and moment estimators for the gamma distributions.
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‘ Condition ‘ Corr. ‘ Subs. ‘ Del. ‘ Ins. ‘ Ace. ‘

0-gram 64.0 23.7 | 123 | 3.0 | 61.0
1-gram 66.4 22.0 | 11.6 | 3.0 | 63.4
2-gram 70.2 20.3 94 | 3.1 | 67.1

Table 8: Phone recognition results for 35 CI models.

For CI models, the overall Markov chain is simply obtained by allowing all possible connec-
tions between the 35 phone HMMs (i.e. 1225 connections). For the transition probabilities
either constant (1/35), 1-gram, or 2-gram probabilities were used. The resulting ergodic
HMM has 103 states and about 170,000 parameters.

In the case of context-dependent (CD) models, the phone HMMs are connected through
null states representing all the possible diphones. These null states, which do not emit any
observation, are used to merge all the transitions corresponding to the same diphone, thus
reducing the number of connections to a more manageable value. (The fourth order (n?)
becomes a cubic form). With 428 CD models, the resulting HMM includes 1294 non-null
states and has about 1,070,00 parameters.

5.3.2 Evaluation

Table 8 gives recognition results using 35 CI phone models with 16 mixture components.
Silence segments were not included in the computation of the phone accuracy. Results are
given for different phone language models with a duration model. The improvement obtained
by including the duration model is relatively small, on the order of 0.3% to 0.8%, probably
in part due to the wide variation in phone durations across contexts and speakers. Each
additional order in the language model adds about 3% to the phone accuracy. The best
phone accuracy is 67.1% with the 2-gram language model.

‘ Condition ‘ Corr. ‘ Subs. ‘ Del. ‘ Ins. ‘ Ace. ‘

0-gram 753 | 17.8 | 6.9 | 4.1 | 71.2
l-gram 76.0 | 175 | 6.4 | 4.2 | 71.9
2-gram 778 | 165 | 5.7 | 3.6 | 74.2
8kHz, 32¢, AA | 81.7 | 13.7 | 4.6 | 3.0 | 78.7

Table 9: Phone recognition results for 428 CD models.

Table 9 gives recognition results using a set of 428 CD phone models[49] with 16 mixture
components. The modeled contexts were automatically selected based on their frequencies
in the training data. This model set is essentially composed of right-context phone models,
with only one-fourth of the models being triphone models. Less than 2% of the triphones
found in the training data can be modeled in full. In choosing to model right contexts over
left contexts, a preference is given to modeling anticipatory coarticulation over perservatory
coarticulation.

The phone accuracy with a phone bigram is 74.2%. The use of CD models reduces the
errors by 22% (comparing the CI and CD models with the phone bigram), which is less than
the 27% error reduction reported by Lee and Hon[32] for English. There are several factors
that may account for this difference. Most importantly, Lee and Hon[32] compare 1450 right-
CD models to 39 CI models, whereas in this study only 428 contexts were modeled. In
addition, the baseline recognition accuracy reported by Lee and Hon is 53.3% with a bigram
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language model, compared to our baseline phone accuracy of 67.1%. In these experiments
using as many as 2100 CD models did not significantly reduce the error rate.

The use of a different signal analysis (8kHz MFCC), and additional parameters (32 Gaus-
sians per mixture, the second derivative of the cepstrum (AA)) and sex-dependent models
improves the phone accuracy to 78.7% as shown in the last entry in the table[28].

5.3.3 Error Analysis

| Confusion pair | % Subs. |

e+ E 4.2
E—e 3.8
a— E 4.2
E—a 1.8
n—m 1.8
v —i 1.8

Table 10: The most common substitutions with 428 models.

The most recognition errors occurred for the phones: /E/ 8.1%, /a/ 7.6%, /e/ 7.2%,
Jc/ 4.9%, /t/ 4.3%,and /x/ 4.2%, accounting for almost 40% of the substitution errors. Of
these phones only /c/ and /E/ have high phone error rates of about 40%. Table 10 shows
the most frequent substitutions made by the recognizer. The two most common confusions
are reciprocal confusions between /e/ and /E/ and between /E/ and /a/. Together these
account for 13% of the confusions. Many speakers do not make a clear distinction between
the phones /E/ and /e/ when they occur word-internally, which may account for their high
confusability. The high number of errors for /a/ are probably due to the large amount of
variability of /a/ observed in different contexts.

14% of the insertions are /r/, followed by 11% for /1/. These two phones also are deleted
the most: 13% of the deletions are /I/ and 11% /r/. Although /1/ and /r/ account for many
of the insertion and deletion errors, the overall error rate for these phones are relatively
low, 11% and 7%, respectively. Improved performance on these phones may be achieved by
modeling more contexts and by improving their duration models.

5.3.4 Language Identification

Another application for which phonetic recognition is used is language identification, which
could be a component of a multilingual speech-to-text system. The basic idea is to process
in parallel the unknown incoming speech by different sets of phone models for each of the
languages under consideration, and to choose the language associated with the model set
providing the highest likelihood. The language-dependent models are trained from similar-
style corpora, BREF for French and WSJO0 for English, both containing read newspaper texts
and similar size vocabularies[18, 30, 41]. A set of SI CI phone models were built for each
language, with 35 models for French and 46 models for English.[16, 29] Each phone model
has 32 gaussians per mixture, and no duration model. In order to minimize influences due to
the use of different microphones and recording conditions a 4 kHz bandwidth is used. The
training data for French were 2770 BREF sentences from 57 speakers and for English the
WSJ0 SI-84 data containing 7240 sentences from 84 speakers.

Language identification accuracies are given in Table 11 with phonotactic constraints
provided by a phone bigram. Language identification error rates are given for the 4 test
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corpora, WSJ and TIMIT for English[41, 11], and BREF and BDSONS for French[18, 30, 7],
as a function of the duration of the speech signal. Approximately 100ms of silence are included
at the beginning and end of each utterance (the initial and final silences were automatically
removed based on HMM segmentation), so as to be able to compare language identification
as a function of duration without biases due to long initial silences. The test data for WSJ0
consist of 100 sentences, the first 10 sentences for each of the 10 speakers (5m/5f) in the Feb92-
sibKnvp (speaker-independent, 5K, non-verbalized punctuation) test data. For TIMIT, the
192 sentences in the “coretest” set containing 8 sentences from each of 24 speakers (16m/8f)
were used. The BREF test data consist of 130 sentences from 20 speakers (10m/10f) and for
BDSONS the data are comprised of 121 sentences from 11 speakers (5m/6f).

Test # of Error rate vs. Duration
Corpus sents | 0.4s | 0.8s | 1.2s | 1.6s | 2.0s | 2.4s
wSJ 100 | 5.0 | 3.0 | 1.0 | 2.0 | 1.0 | 1.0
TIMIT 192 | 94 | 5.7 | 26 | 221 | 05 | O
BREF 130 | 85 | 1.5 | 0.8 | 0 0.8 1 0.8
BDSONS'| 121 | 74 | 25 | 25 | 1.7 | 0.8 | O
Overall 543 | 7.9 | 35 | 1.8 | 1.5 | 0.7 | 0.4

Table 11: Language identification error rates as a function of duration and language with
phonotactic constraints provided by a phone bigram. (The duration includes 100ms of si-
lence.)

The overall French/English language identification error is less than 1% with 2s of speech.
It can be seen in Table 11 that while WSJ sentences are more easily identified as English
for short durations, errors persist longer in these sentences than for TIMIT. In contrast for
French, BDSONS data are better identified than BREF with 400ms of signal, perhaps because
the sentences are phonetically balanced. For longer durations, BREF is slightly better identi-
fied than BDSONS. Bearing in mind that the corpora were recorded under similar conditions,
the performance demonstrated here shows that accurate task-independent, cross-corpus lan-
guage identification can be achieved. Extensions of this work will include identification of
other European languages.

5.3.5 Speaker Identification

The same approach has also been used for text-independent speaker identification[16, 29].
In this case a set of phone models were built for each speaker, and the unknown speech
was recognized by all of the speakers models in parallel. The base acoustic models were the
35 CI BREF models, built using the training data from the 57 training speakers. These
models were adapted to each of 65 speakers (including 8 new speakers) using only 8 of the
training sentences, and 2 sentences were used for identification test. Using only one sentence
per speaker for identification, there is one error, giving an identification accuracy of 99.2%.
When 2 sentences are used all speakers are correctly identified.

Experiments for English used a set of 40 SI CI models trained on the 462 training speakers
in the TIMIT corpus[11] as seed models to estimate 31-phone model sets for each of the 168
test speakers in TIMIT. Using 8 sentences (2 SA, 3 SX, and 3 SI) for adaptation resulted
in 98.5% correct speaker identification using one sentence for identification and 100% iden-
tification if the likelihood over two sentences was used. Recently, high speaker identification
rates using subsets of 100 to all 462 speakers from TIMIT have been reported[5, 40, 48].
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A simple reduction in computation is gained by first determining the sex of the speaker
by running in parallel SI male and female models. In experiments with this approach no
cross-sex errors have ever occurred with the SI male/female models or with any of the SD
models. Further computational reductions during recognition can be obtained by speaker
clustering.

5.4 Word Recognition

Two types of implementation are usually considered to recognize words based on phone
models. In the first solution, which can be called integrated approach, an HMM is generated
for each word by concatenating the phone models according to the phone transcriptions.
The word models are put together to represent the entire lexicon with one large HMM. The
recognition process is then performed for example by using the Viterbi decoding algorithm.
The second solution uses the output of the phone recognizer as an intermediary level of coding
such that the lexical decoding is derived only from this output. Phonological rules may be
included in the lexical decoding, or alternatively may be represented directly in the lexical
entries. The phone recognizer output is usually a phone trellis including phone hypotheses
for each of the associated speech segments and their corresponding likelihoods. If the first
approach appears to offer a more optimal solution to the decoding problem by avoiding an
intermediary coding, the second approach greatly reduces the computional requirements of
the acoustic level which is independent of the lexicon size and allows lexical and language
models to be developed and evaluated without interaction with the acoustic level.

The recognizer used in the experiments described in this section uses the integrated ap-
proach, a time-synchronous graph-search strategy. This one level implementation includes
intra- and inter-word context-dependent (CD) phone models, intra- and inter-word phonolog-
ical rules, phone duration models, gender-dependent models, and can be used with different
types of language models including word-pair and bigram grammars[25, 17]. For this evalu-
ation, liaison is represented in the lexicon as alternate pronunciations. Since this simplistic
approach is not practical for large lexicons, other approaches, such as the use of phonological
rules are being investigated to allow optional liaison. Phonological rules were shown to be
effective in reducing the error rate for the DARPA Resource Management Task[25]. This
latter solution has the advantage that it is not necessary to expand the lexical pronunciations
which can have the undesired side-effect of overgeneralization. The environments in which
liaison, and other such events, are allowed are specified by the phonological rules, which are
used both for training and recognition.

5.4.1 System Description

For all the experiments the same set of 428 CD phone models already used for the phone
recognition experiments are used. For the no-grammar case a phone tree is built from the
lexicon in order to reduce the graph size. For the 10K lexicon the average number of phone
nodes per word goes from 6.4 to 2.0 by using such a tree instead of a linear representation of
each word, i.e. a 69% graph size reduction. For the word-pair and bigram grammars, a phone
graph is first built by linking the word phone transcriptions according to the grammar, then,
as for the no-grammar case, the phone graph is converted to a large HMM by replacing each
phone node by the appropriate set of phone models and establishing the proper connections
with the neighboring phones. A bigram-backoff[22] language model estimated on the text
material from Le Monde is used for lexicons containing 5K and 20K words. In all cases, CD
phone models are used for word juncture phones as well as for intra-word phones.
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As an example, for the 3K lexicon, the average number of instanciations of each phone
model is 98 for the no-grammar case and 96 for the word-pair grammar. Considering the
differences in the network representation, these numbers are surprisingly similar. The memory
used with the word-pair grammar is 24 Mb, compared to 17 Mb for the no-grammar case.
Most of the difference is due to the interword connections for the word-pair grammar.

5.5 Evaluation

‘ Lexicon ‘ Corr. ‘ Subs. ‘ Del. ‘ Ins. ‘ Ace. ‘

1K 73.4 20.9 5.8 | 4.2 | 69.2
3K 66.5 27.5 6.0 | 5.3 | 61.2
5K 61.4 32.0 6.6 | 5.9 | 55.6
10K 55.4 36.9 7.7 ] 6.4 | 49.0

Table 12: VI word recognition results (no grammar).

Vocabulary-independent word recognition experiments were run using four different lexi-
cons. The smaller lexicon (1K lexicon) contains 1139 orthographic words, only those words
found in the test sentences. The 3K lexicon contains all the words found in the training and
test sentences, a total of 2716 words. The 5K and 10K lexicons include all the words in the
test data complemented with the most common words in the original text. These two lexicons
contain respectively 4863 and 10511 words. Alternate pronunciations increase the number of
phonemic forms in the lexicon by about 10%. The word recognition results with no grammar
are given in Table 12. Since no grammar is used, single word homophone confusions are not
counted as errors.

As discussed in Section 3, homophones present a large problem for French. If the homo-
phone errors are included the phone accuracies drop by about 10%. A lexical study with
300,000 words found that there can be over 30 words with the same pronunciation. In the Le
Monde text corpus of 4.2 million words, there were 92,185 orthographically distinct words,
but only 63,981 phonemically distinct words, giving a homophone rate of about 30%. In the
1K and 3K lexicons the homophone rate is lower, on the order of 15%. The “worst-case”
homophone in the 3K lexicon is for the phonemic word /sA/, which may correspond to any
of the 7 following orthographic words: 100, cent, cents, s’en, sang, sans, sent.

While the large number of word homophones in French presents its problems, more compli-
cated homophone problems exist, where sequences of words form homophones. The example
in Figure 8 shows some of the homophones for the phonetic sequence /parle/ for the words
in the 3K lexicon. These multiple word homophones account for a few percent of the errors
in Table 12. In fluent speech, the problems are more complicated as illustrated by Figure
9. While nominally the phonetic transcription of the word “adolescence” is /adclEsAs/, the
realized pronunciation is /adxIEsAs/, having the given homophones.

‘ Lezicon ‘ Perp. ‘ Corr. ‘ Subs. ‘ Del. ‘ Ins. ‘ Acc. ‘

1K 100 90.1 8.5 1.4 | 2.2 | 87.9
3K 160 88.2 10.2 1.5 | 2.2 | 86.1

Table 13: Word recognition results with a word-pair grammar.
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Phonetic transcription: /parle/
Word candidates: parler

parlé

parlée

par les

part les

parle es

parlent es

parle et

parlent et

Figure 8: An example of a multiple word homophone.

Phonetic transcription: /adx1Es A s/
Word candidates: adolescence
a de les sans

a de l'essence

Figure 9: An example of a homophone caused by vowel reduction.

Word recognition results using a word-pair grammar derived on the entire 4.2 million
word text of Le Monde are given in Table 13 for the 1K and 3K lexicons. Since a grammar
is used homophones are counted as errors. The use of the word-pair grammar reduces the
perplexities to 100 for the 1K lexicon and 160 for the 3K lexicon, and reduces the error rate
by almost 60%. In addition, the drop in performance observed by increasing the lexicon
size is smaller than for the no grammar case, as is expected given that the perplexity is not
proportional to the size of the lexicon.

Two vocabularies have been used for recognition experiments with bigram-backoff lan-
guage model, containing only the 5,000 and 20,000 most common words in the Le Monde
texts. The test data consist of 100 sentences for each vocabulary size, with perplexities of
122 for the 5K sentences and 205 for the 20K sentences. These are not the same test data as
used in the no-grammar and word-pair grammar conditions since the test texts were selected
so that all the words were found in the respective lexicons. Word recognition results using
the same 428 CD models and the bigram-backoft language model are shown in Table 14. The
acoustic processing and feature vector are the same as used for the improved performance
phone recognizer. The word error is 14.5% for the 5K lexicon and 18.3% for the 20K lexicon.
More details of the experimental conditions and results can be found in [17].

6 Summary

In this paper an overview of the research at LIMSI in the area of speech-to-text conversion
has been given. Research projects in this domain have been pursued since the 1970’s. The
projects include phoneme-to-grapheme conversion of ideal and errorful strings, isolated-word
speech recognition, and continuous speech recognition. Throughout problems that are specific
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Lezicon | Perp. | Corr. | Subs. | Del. | Ins. | Acc.
5K 122 87.1 10.3 | 2.6 | 1.7 | 85.5
20K 205 84.6 12.8 | 2.6 | 2.9 | 81.7

Table 14: Word recognition results on the BREF80 corpus with a probabilistic grammar
(2-grams) estimated on Le Monde text data. (5K: 5000 word lexicon, 20K: 20,000 word
lexicon).

to French have been highlighted.

Speech-to-text conversion of French presents difficulties different from those found in
English. One major problem is dealing with the large number of homophones. Lexical studies
indicate a single-word homophone rate of about 30%[18, 15]. Comparative homophone rates
for English are roughly 3% for DARPA Resource Managment lexicon[42] and less than 2%
for the DARPA TIMIT lexicon[31, 11]. The main problem comes from the conjugation of
verbs, and markers for plural (s) and feminine (e) at the end of some classes of words (past
participles, some adjectives, etc.) which are not pronounced.

In part due to the high homophone rate, the segmentation of even error-free continuous
phoneme strings into words seems to be especially difficult in French. For example, the simple
sentence containing 9 phonemes, “J’ai mal au pied.” (My foot hurts.), has more than 32,000
possible transcriptions at the lexical level with a 162,900 word full-form lexicon. Even using
phonological rules, syntax, and semantics two sentences remained which require a pragmatic
analysis to determine the correct graphemic transcription.

Liaison is another problem that must be dealt with. This word-juncture event is never
pronounced in isolation and is optionally pronounced in continuous speech. How to pronounce
the liaison is a problem particular to isolated word dictation, that is solved in continuous
speech. The problem is even more complicated in that sometimes this optional liaison is the
only indication to distinguish between the singular and plural forms of a word or phrase. Being
optional, liaison increases the number of inter-word connections. The formalism demonstrated
in the framework of the RM task[25] is being used to handle this problem. This formalism
uses phonological rules to account for alternate pronunciations and to handle cross-word
coarticulation.

Another problem which can be handled similarly with the use of phonological rules is
the optional pronunciation of mute-e: Certain words may be pronounced with either 2 or 3
syllables; the schwa in short function words may be completely deleted; and the final usually
silent mute-e at ends of words may be pronounced. Another problem concerns the apostrophe,
where the final vowel of certain words can be deleted when the next word begins with a vowel.

Our most recent work focuses on developing phone-based speech recognizers that are
task, speaker and vocabulary independent so as to be easily adapted to various applications.
The recognizer described here was evaluated at both the phone and word levels. A set of
428 context-dependent models were trained on speech taken from 57 speakers in the BREF
corpus. These were tested on 109 sentences taken from a new 19 speakers. The resulting
phone accuracy was 78.7%, with phonotactic constraints given by a phone bigram. The
phone recognition results are encouraging and are somewhat superior to those reported for
English[32, 47, 28]. This may be simply because French has a smaller number of phonemes,
or that the phonemes are less variable due to context.

It is our opinion that it is important to evaluate the quality of the acoustic models, and

Int. J. Pat. Rec. & A.lL, 199/ 25



that phone recognition provides a relevant means for doing so. This has the added benefit
that the recognized phone string can be used to understand errors in word recognition, and
problems with the lexical representation. Phone recognition has also been found to be pow-
erful for language identification and speaker identification. The approach is straight forward.
Multiple model sets are run in parallel, and the language (or speaker) is identified as that
language (or speaker) associated with the model having the highest likelihood. Experiments
in language identification show that with 2s of speech the language is correctly identified as
English or French with 99% accuracy. Speaker identification experiments with TIMIT have
a speaker-identification rate of 98.5%, comparing each speaker to models from all 168 test
speakers using 1 utterance per speaker, and 100% correct if two utterances are used.

Word recognition for BREF was evaluated on lexicons ranging from 1000 to 20,000 words,
for the no-grammar case, with a word-pair grammar, and with a bigram-backofl grammar.
For the no-grammar case the word accuracy was 69.2% with the 1K lexicon and dropped to
49% with the 10K lexicon. With a word-pair grammar the word accuracy was 87.9% and
86.1% respectively for the 1K and 3K grammars. The word accuracies on a different set of
test sentences was 85.5% for the 5K vocabulary and 81.7% for the 20K vocabulary.

References

[1] G. Adda (1987), Reconnaissance de Grands Vocabulaires: Une étude Syntazique et Lex-
tcale, These de Docteur-Ingénieur, Université Paris XI, December, 1987.

[2] A. Andreewski, J.P. Binquet, F. Debili, C. Fluhr, Y. Hlal, J.S. Liénard, J. Mariani, B.
Pouderoux (1979), “Les dictionnaires en forme compléte, et leur utilisation dans la trans-
formation lexicale et syntaxique de chaines phonétiques correctes,” 10emes “Journées
d’Ftudes sur la Parole” du “Groupement des Acousticiens de Langue Francaise,” Greno-
ble, May 1979, pp. 285-294 .

[3] L.R. Bahl, R. Bakis, P.S. Cohen, F. Jelinek, B.L. Lewis, R.L. Mercer (1978), “Recogni-
tion of a Continuously Read Natural Corpus,” Proc. IEEF ICASSP-78, Tulsa, AZ, April
1978, pp. 422-425.

[4] D. Bellilty and A. Lund (1984), “Conversion phonémes-graphémes de suites phonétiques
entachées d’erreurs,” LIMSI internal report, July, 1984.

[5] Y. Bennani (1992), “Speaker Identification through a Modular Connectionist Architec-
ture: Evaluation on the TIMIT Database,” Proc. ICSLP-92, Banff, Canada, Vol. 1, pp.
607-610.

[6] L. Boves, M. Refice et al. (1987), “The Linguistic Processor in a Multi-Lingual Text-
to-Speech and Speech -to -Text System,” Furopean Conference on Speech Technology,
Edinburgh, September 1987, pp. 385-388.

[7] R. Carré, R. Descout, M. Eskénazi, J. Mariani, M. Rossi, “The French language database:
defining, planning, and recording a large database,” ICASSP-8/.

[8] A.M. Derouault (1985), Modélisation d’une langue naturelle pour la désambiguation des
chaines phonétiques, These de Doctorat d’Etat, Univ. Paris VII, April 1985.

Int. J. Pat. Rec. & A.lL, 199/ 26



[9] V. Digalakis, M. Ostendorf, J.R. Rohkicek (1990), “Fast Search Algorithms for Con-
nected Phone Recognition Using the Stochastic Segment Model,” Proc. DARPA Speech
and Natural Language Workshop, Hidden Valley, June 1990, pp. 173-178.

[10] W.M. Fisher, G.R. Doddington, and K.M. Goudie-Marshall, “The DARPA Speech
Recognition Research Database: Specifications and Status,” Proc. DARPA Speech
Recog. Workshop, 1986.

[11] J.S. Garofolo, L.F. Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, and N.L. Dahlgren
(1993), “The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus CDROM”
(printed documentation for NIST Speech Disc 1-1.1), NTIS order number PB91-100354.

[12] J.L. Gauvain (1986), “A Syllable-Based Isolated Word Recognition Experiment,” Proc.
IFEFE ICASSP-86, Tokyo, Japan, April 1986, pp. 57-60.

[13] J.L. Gauvain (1990), “Le systéme de reconnaisance AMADEUS: Principe et algo-
rithmes,” LIMSI internal report, June 1990.

[14] J.L. Gauvain and J.J. Gangolf (1983), “Terminal integrates speech recognition and text-
to-speech synthesis”, Speech Technology, Sept-Oct 1983.

[15] J.L. Gauvain and L.F. Lamel (1992), “Speaker-Independent Phone Recognition Using
BREF,” Proc. DARPA Speech and Natural Language Workshop, Arden House, NY, Feb.
1992.

[16] J.L. Gauvain, L. Lamel, “Identification of Non-Linguistic Speech Features ,” ARPA
Workshop on Human Language Technology, Plainsboro, NJ, March, 1993.

[17] J.L. Gauvain, L.F. Lamel, G. Adda, M. Adda-Decker, “ Speaker-Independent Continuous
Speech Dictation,” Proc. FUROSPEFECH-93, Berlin, Germany, Sept. 1993.

[18] J.-L. Gauvain, L.F. Lamel, M. Eskénazi (1990), “Design Considerations and Text Selec-
tion for BREF, a large French read-speech corpus,” Proc. ICSLP-90, Kobe, Japan, Nov.
1990, pp. 1097-2000.

[19] J.L. Gauvain and J. Mariani (1982), “A Method for Connected Word Recognition and
Word Spotting on a Microprocessor”, Proc. IEEE ICASSP-82, Paris, France, May 1982,
pp- 891-894.

[20] H.-W. Hon and K.-F. Lee (1990),“On Vocabulary-Independent Speech Modeling,” Proc.
[EEE ICASSP-90, pp. T25-728.

[21] B. H. Juang (1985), “Maximum-Likelihood Estimation for Mixture Multivariate Stochas-
tic Observations of Markov Chains”, ATET Technical Journal, Vol. 64, No. 6, July-
August 1985.

[22] S.M. Katz, “Estimation of Probabilities from Sparse Data for the Language Model Com-
ponent of a Speech Recognizer,” IEEE Trans. ASSP, 35(3), 1987.

(23] M.H. Kuhn and H.H. Tomaschewski (1983), “Improvements in Isolated Word Recogni-
tion,” IFEF Trans. on ASSP, Vol. 31, N. 1, February 1983, pp. 157-167.

Int. J. Pat. Rec. & A.lL, 199/ 27



[24] L.F. Lamel and J.-L. Gauvain (1992), “Experiments on Speaker-Independent Phone
Recognition Using BREF,” Proc. IEFE ICASSP-92, San Francisco, CA, Vol. 51, pp.
557-560.

[25] L.F. Lamel and J.-L. Gauvain (1992), “Large-Vocabulary Speech Recognition at LIMSI,”
presented at the final review of the DARPA Artificial Neural Network Technology
(ANNT) Speech Program, Stanford, CA, Sept. 21-22.

[26] L.F. Lamel and J.-L. Gauvain (1992), “Multi-lingual Speech Recognition at LIMSI,”
Presented at the 1st International Workshop of Speech Translation, Warden, Germany,
Oct. 18-20.

[27] L.F. Lamel and J.-L. Gauvain (1993), “Cross-Lingual Experiments with Phone Recog-
nition,” Proc. IFEF ICASSP-93, Minneapolis, MN.

[28] L.F. Lamel, J.L. Gauvain, “High Performance Speaker-Independent Phone Recognition
Using CDHMM,” Proc. EUROSPEECH-93, Berlin, Germany, Sept. 1993.

[29] L. Lamel, J.L. Gauvain, “ldentifying Non-Linguistic Speech Features,” Proc.
FEUROSPFEECH-93, Berlin, Germany, Sept. 1993.

[30] L.F. Lamel, J.-L.. Gauvain, M. Eskénazi (1991), “BREF, a Large Vocabulary Spoken
Corpus for French,” Proc. FUROSPEFCH-91, Genoa, Italy, pp. 505-508.

[31] L.F. Lamel, R.H. Kassel, and S. Seneff, “Speech Database Development: Design and
analysis of the acoustic-phonetic corpus,” Proc. DARPA Speech Recognition Workshop,
1986.

[32] K.-F. Lee, H.-W. Hon (1989), “Speaker-Independent Phone Recognition Using Hidden
Markov Models,” Proc. IEEFE Trans. ASSP, Vol. 37, No. 11, pp. 1641-19809.

[33] S.E. Levinson, M.Y. Liberman,A. Ljolje, L.G. Miller (1989), “Speaker Independent Pho-
netic Transcription of Fluent Speech for Large Vocabulary Speech Recognition,” Proc.
IFEFE ICASSP-89, Glascow, Scotland, May 1989, pp. 441-444.

[34] J. Mariani (1977), Contribution a la Reconnaissance de la Parole Continue utilisant la
notion de Spectre Différentiel, These de Docteur-Ingénieur, Université Paris VI.

[35] J. Mariani (1981), “Reconnaissance de parole continue par diphonémes,” Séminaire du
“Groupement des Acousticiens de Langue Frangaise:” “Processus d’encodage et de dé-
codage phonétique,” Toulouse, September, 1981.

[36] J. Mariani (1987), “HAMLET: A Prototype of a Voice-Activated Typewriter,” Proc.
Furopean Conference on Speech Technology, Edinburgh, September, 1987.

[37] B. Merialdo, A.-M. Derouault, S. Soudoplatoff (1986), “Phoneme Classification using
Markov Models,” Proc. IEEFE ICASSP-86, Tokyo, Japan, April 1986, pp. 2759-2762.

[38] B. Merialdo (1987), “Speech Recognition with Very Large Vocabulary,” Proc. IEEFE
ICASSP-87, Dallas, TX, pp. 364-367.

[39] B. Merialdo (1988), “Phonetic Recognition Using Hidden Markov Models and Maximum
Mutual Information Training,” Proc. IFEE ICASSP-88, New York, NY, pp. 111-114.

Int. J. Pat. Rec. & A.lL, 199/ 28



[40] C. Montacié and J.L. Le Floch (1992), “AR-Vector Models for Free-Text Speaker Recog-
nition,” Proc. ICSLP-92, Banff, Canada, Vol. 1, pp. 611-614

[41] D. Paul and J. Baker (1992), “The Design for the Wall Street Journal-based CSR Cor-
pus,” Proc. DARPA Speech and Natural Language Workshop, Arden House, Feb. 1992,
pp. 357-362.

[42] P. Price, W.M. Fisher, J. Bernstein, and D.S. Pallett (1988), “T'he DARPA 1000-
word Resource Management Database for Continuous Speech Recognition,” Proc. IEEFE

ICASSP-88, New York, NY, pp. 651-654.

[43] B. Prouts (1980),Contribution a la synthése de la parole a partir du texte: Transcrip-
tion graphéme-phonéme en temps réel sur microprocesseur, Theése de docteur-ingénieur,
Université Paris XI, November, 1980.

[44] G. Quénot, J.L. Gauvain, J.J. Gangolf, J. Mariani (1986), “A dynamic time warp VLSI
processor for continuous speech recognition”, Proc. IFEF ICASSP-86, Tokyo, Japan,
April 1986, pp. 1549-1552.

[45] G.M. Quénot, J.L. Gauvain, J.J. Gangolf, and J. Mariani (1989), “A Dynamic Program-
ming Processor for Speech Recognition”, IFEF J. of Solid-State Clircuits, Vol. 24, No.
2,1 April 1989, pp. 349-357.

[46] L.R. Rabiner, B.H. Juang, S.E. Levinson, M.M. Sondhi (1985), “Recognition of Iso-
lated Digits Using Hidden Markov Models with Continuous Mixture Densities,” AT&T
Technical Journal, 64(6), pp. 1211-1233, July-Aug. 1985.

[47] T. Robinson and F. Fallside (1991), “A recurrent error propogation network speech
recognition system,” Computer Speech and Language, Vol. 5, pp. 259-274.

[48] M. Savic, J. Sorenson (1992), “Phoneme Based Speaker Verification,” Proc. IEEFE
ICASSP-92, San Francisco, CA, Vol. 11, pp. 165-168.

[49] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, J. Makhoul (1985), “Context-
dependent modeling for acoustic-phonetic recognition of continuous speech,” Proc. IEFEF
ICASSP-85, Tampa, FL ,pp. 1205-1208.

[50] H. Singer and J.L. Gauvain, (1988) “Connected speech recognition using dissyllable
segmentation,” Fall meeting of the Acoust. Soc. of Japan.

[51] V. Vittorelli (1987), “Linguistic Analysis of the European Languages,” ESPRIT’87
Achievements and Impact, North-Holland, 1987, pp. 1358-1366.

[52] M. Webster (1964), Pocket Dictionary, computer readable form.

Int. J. Pat. Rec. & A.lL, 199/ 29



