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ABSTRACT

The development of natural spoken language dialog sys-
tems requires expertise in multiple domains, including
speech recognition, natural spoken language understand-
ing and generation, dialog managment and speech synthe-
sis. In this paper I report on our experience at LIMSI in the
design, development and evaluation of spoken language di-
alog systems for information retrieval tasks. Drawing upon
our experience in this area, I attempt to highlight some as-
pects of the design process, such as the use of general and
task-specific knowledge sources, the need for an iterative
development cycle, and some of the difficulties related to
evaluation of development progress.

1. INTRODUCTION

At LIMSI we have experience in developing several spoken
language dialog systems for information retrieval tasks[5,
11, 16, 19, 1]. Our recent activities in this area have been
mainly in the context of European projects, such as ESPRIT

MASK, Language Engineering RAILTEL and ARISE, Tide
HOME-AOM, Esprit LTR Concerted Action DISC, and a
French language action launched by the AUPELF-UREF.
In this paper I provide an overview of our spoken lan-
guage dialog system, describing the main components as
well as some modifications for specific tasks. Most of the
examples will be drawn from our train travel information
systems for the MASK and ARISE projects. The spoken
language system integrates a speaker-independent continu-
ous speech recognizer (based on HMM with statistical lan-
guage models), a semantic analyzer (based on a caseframe
grammar) and a dialog manager. The dialog manager is the
central controller of the entire system as it manages contex-
tual understanding, the dialog history, information retrieval
and response generation. The dialog management aspect of
the system has become more important as we have gained
experience with spoken language dialog systems.
In our view, spoken language systems should provide a nat-
ural, user-friendly interface with the computer, allowing
easy access to the stored information. Our goal is to obtain
high dialog success rates with a very open dialog structure,

where the user is free to ask any question or to provide any
information at any point in time. Our basic dialog strat-
egy (described in [3]) has been significantly modified as
a result of user trials (described in [16] and [19]) in order
to adhere to some generic dialog guidelines. To improve
performance within this open dialog strategy, we make use
of implicit confirmation (using the caller’s wording to the
extent possible) and change to a more constrained dialog
level when the dialog is not going well.

Our first experience with a spoken language dialog system
(SLDS) was developing a French version[5, 2] of ATIS (Air
Travel Information Service) a designated common task for
data collection and evaluation within the ARPA Speech
and Natural Language Program[23]. This work was initial-
ized in collaboration with the MIT-LCS Spoken Language
Systems Group, and the natural language understanding
(NLU) component of the MIT ATIS system[24] was ported
to French[5]. The SLDS was ported to a train travel infor-
mation retrieval task in the context of the ESPRIT Multi-
modal Multimedia Service Kiosk (MASK) project, aiming
to develop an innovative, user-friendly prototype informa-
tion kiosk combining tactile and vocal input[11, 7, 18]. The
MASK interface has a self-presentation illustrating the use
of the kiosk and explaining the different types of transac-
tions available; an intuitive interface with easy switching
between tasks (such as information or ticketing); a facial
image of a clerk to let the user know what the system is
doing; and a two-level help facility with fixed time-outs.

The same basic SLDS technology was adapted to a pro-
totype telephone service in the context of the LE-MLAP

RAILTEL (Railway Telephone Information Service)[3, 16]
and LE-3 ARISE (Automatic Railway Information Sys-
tems for Europe) projects[19]. In the ARISE system for
main intercity connections Callers are able to obtain in-
formation taken from the French Railways (SNCF) static
timetables and additional information about services of-
fered on the trains, fares and fare-related restrictions and
reductions. A prototype French/English service for the
high speed trains between Paris and London is also un-
der development. In the context of the AUPELF-UREF ac-
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tion B2, different dialog strategies are being explored with
the PARIS-SITI spoken dialog system providing tourist
information[4, 8].

2. SYSTEM OVERVIEW
An overview of the spoken language system architecture is
shown in Figure 1. The main components for spoken lan-
guage understanding are the speech recognizer, the seman-
tic analyzer, and the dialog manager, which controls the
information retrieval component including database access
and response generation. For the MASK system which also
allows tactile input, there are the multimedia interface and
the touch screen. The speech recognizer is a medium vo-
cabulary (� 2000 words), real-time, speaker-independent,
continuous speech recognizer which transforms the acous-
tic signal into the most probable word sequence. The rec-
ognizer output is passed to the semantic analyzer which ex-
tracts the meaning of the spoken query using a caseframe
analysis [2]. Semantic interpretation is carried out in two
steps, first a literal understanding of the query, and then
its reinterpretation in the context of the ongoing dialog.
The mixed-initiative dialog manager, which has the goal
of providing information to the user, ensures communica-
tion between the user and the DBMS. The dialog manager
maintains both the dialog and generation histories. The
generation component outputs a natural language response
based on the dialog state, the caller’s query, and the infor-
mation returned from database access. Information can be
returned to the user in the form of synthesized speech or vi-
sually if a display is available. Natural-sounding utterances
are synthesized by concatenation of variable-sized speech
units stored in the form of a dictionary[15].
The ability to interrupt the system (a barge-in capability)
is often considered to be important for usability. Adding
this capacity required modifications to several modules.
Firstly, recording and speech recognition must be active at
all times, even when the system is synthesizing a response.
Software-based echo cancellation, applied to the recorded
signal using the known synthesized signal, is used to sup-
press the system response. If speech is detected, or if there
is a tactile input, synthesis is stopped. There are dialog
situations in which barge-in is disabled to ensure that the
caller hears the entire message.

3. DATA COLLECTION
For SLSs it is necessary to collect application-specific data,
which is useful for accurate modeling at different levels
(acoustic, lexical, syntactic and semantic). Data collection
is an important research area and represents a significant
portion of the work in developing a spoken language sys-
tem. The use of additional acoustic and language model
training data has been shown to almost systematically im-
prove performance in continuous speech recognition[13].
Similarly, progress in spoken language dialog systems is
closely linked to the availability of spoken language cor-
pora. Acquiring sufficient amounts of text training data is

MASK #Subjects #Queries #Words #Distinct
Jun95 146 9.6k 69.6k 1180
Dec95 313 18.7k 150.8k 1690
May96 392 26.6k 205.4k 2060
Jun97 478 50.6k 351.2k 2560

ARISE #Calls #Queries #Words #Distinct
Aug97 2787 36.4k 179.7k 2529
Dec97 6130 84.5k 412.3k 3677
Mar98 6545 88.4k 436.3k 3764
Oct98 10262 149.1k 663.3k 4610

Table 1: Data collection for the MASK and ARISEsystems. Word
fragments are not counted.

0

20

40

60

80

100

0 10 20 30 40 50

C
um

ul
at

iv
e 

Le
xi

ca
l C

ov
er

ag
e

Percent of vocabulary

L’ATIS

MASK

Figure 2: Percentage of transcription covered as a function of the
percentage of words.

more challenging than obtaining acoustic data. With 10k
queries relatively robust acoustic models can be trained,
but these queries contain only on the order of 100k words,
which probably yield an incomplete coverage of the task
(ie. they are not sufficient for word list development) and
are insufficient for trainingn-gram language models.
It is common practice to use a WOz setup or a bootstrap
system to collect an initial corpus. The bootstrap system is
often based on prior work: acoustic models or training data
may be taken from a different task; an initial vocabulary
can be obtained by considering the task and introspection;
and a simple language model can be estimated on a set of
typed queries. These queries can also be used to develop
an initial set of rules for the semantic analyzer. Our expe-
rience is that as the system improves, subjects speak more
easily and use longer and more varied sentences. This leads
to the occurrence of more new words and new formulations
in the queries. Table 1 summarizes the cummulative data
collected for MASK and ARISE with different system ver-
sions. The number of distinct words found in the corpora
is relatively small compared to the total number of words.
The lexical coverage as a function of word frequency is
shown in Figure 2 for MASK andL’ATIS data.

4. SPEECH RECOGNIZER

The speech recognizer is a software-only system that runs
in real-time on a standard RISC processor. Some of the
design issues in developing a speech recognizer for an
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Figure 1: Spoken language system architecture.

SLDS are discussed in [10] and [12]. Statistical mod-
els are used at the acoustic and word levels. Acoustic
modeling makes use of continuous density hidden Markov
model (HMM) with Gaussian mixture. Speaker indepen-
dence is achieved by using acoustic models which have
been trained on speech data from a large number of repre-
sentative speakers, covering a wide variety of accents and
voice qualities. Context-dependent phone models can be
used to account for allophonic variation observed in differ-
ent contextual environments. The word recognition graph
is built by putting together word models according to the
grammar in one large HMM. A pronunciation graph is as-
sociated with each word so as to allow for alternate pro-
nunciations, including optional phones. Our recognition
lexicon is represented phonemically. Specific phone sym-
bols and acoustic models can be used to model non-speech
events such as silence, breath noise and hesitations.

N-gram backoff language models[14] are estimated on the
orthographic transcriptions of the training set of spoken
queries, with word classes for cities, dates and numbers
providing more robust estimates of then-gram probabili-
ties. It is fairly common practice to use compound words
for common word sequences that are subject to strong re-
duction and coarticulation in spontaneous speech.

For dictation tasks, it is relatively easy to select a recog-
nition vocabulary as text data are generally available. In
contrast, for SLDSs generally only very limited (if any)
transcribed data available for lexical and language mod-
eling. The word list is usually designed usinga priori
task-specific knowledge and completed by task-specific
collected and transcribed data. For example, the recogni-
tion vocabulary of the MASK and ARISE systems contains
about 2000 words, including 600 station names selected to
cover the French Railway commercial needs, other task-

specific words (dates, times), and all words occurring at
least twice in the training data. For spontaneous speech, it
is important that the lexicon include pseudo words for hes-
itations “ehr”, and extraneous filler words. Breath noise is
also often modeled as a separate lexical item.

In order to reduce the number of understanding errors due
to speech recognition, a confidence score is associated with
each hypothesized word. If this score is below an em-
pirically determined threshold, the hypothesized word is
marked as uncertain. These uncertain words can be ig-
nored by the understanding component or used by the dia-
log manager to start clarification subdialogs. On average,
rejection tends to lead to a longer dialog, since some cor-
rect words are ignored. However with the use of rejection,
the overall dialog success rate is improved. Station names
can be optionally spelled so as to support improved recog-
nition performance with a large number of cities, as this
is critical for the task. In our current implementation the
speech recognizer outputs the best word sequence with a
confidence score. It is also able to provide a word lattice.

5. SEMANTIC ANALYSIS

The text string output by the recognizer is passed to the
semantic analyzer. This component first carries out literal
understanding of the recognizer output, and then reinter-
prets the query in the context of the ongoing dialog. In
literal understanding, the semantic analyzer applies a case-
frame grammar to determine the meaning of the query, and
builds an appropriate semantic frame representation[2].
Keywords are used to select an appropriate case structure
for the sentence without attempting to carry out a com-
plete syntactic analysis. The major work in developing
this component is in defining the concepts that are mean-
ingful for the task and the appropriate keywords. The



concepts needed to carry out the main ticketing task (for
both MASK and ARISE) concern train times, connections,
fares and reservations (including reductions and other con-
straints). Other concepts are used to handle general in-
formation available about reductions and services. The
concepts have been determined usinga priori information
about the task and have been completed by an analysis of
the queries in the training corpora.
Contextual understanding consists of reinterpreting the ut-
terance in the context of the ongoing dialog, taking into
account common sense and task domain knowledge. The
semantic frame resulting from the literal understanding is
reinterpreted using default value rules, and qualitative val-
ues are transformed into quantitative ones. For example, if
the departure month has not been specified“I would like to
leave on the 4th”, the current month is taken by default (or
the next month if the 4th has already past). The semantic
frame corresponding to the current utterance is then com-
pleted using the dialog state and history in order to take into
account all the information previously given by the user, as
well as the questions posed by the system.
Although the understanding component of our current
SLDSs make use of the caseframe grammar, at LIMSI we
have been exploring the use of statistical approaches for
this component[22]. The attraction of statistical methods
stems from their success in speech recognition, and their
ability to model unseen formulations, with human interven-
tion being limited to labeling (or correcting labels). Known
disadvantages are that stochastic models require large train-
ing corpora in order to reliably estimate model parameters,
and that being estimated on training data, common events
are better modeled than rare ones. Also, generalizations
that can be made relatively easily by humans may not be
automatically learned.

6. DIALOG MANAGEMENT
Dialog management is very challenging in the context of
natural, mixed-initiative systems where the user is free to
change the direction of the dialog at essentially any point
in time. In order to be closer to a real dialog situation, rep-
resentatives from LIMSI and VECSYS visited the Douai
SNCF Information Service to observe how the human-
human dialogs are performed and what strategies are used
by the human operators.
The main objectives of the dialog strategy are:
1) To never let the user get lost.The user must always be
informed of what the system has understood. This is of par-
ticular importance as most users are unfamiliar with talking
to a machine.
2) To answer directly to user questions.The system re-
sponses should be as accurate as possible and provide im-
mediate feedback of what was understood.
3) To give to the user the opportunity, at each step, to cor-
rect the system.This capability is needed to be able to cor-
rect for recognition errors, but also to let the user correct

what s/he said or to have a change of mind.
4) To avoid misunderstanding.Even though users are able
to correct the system at any moment, we have observed that
they tend to not do so. It is therefore important to minimize
recognition errors, as users can not be expected to correct
the system. This is our motivation for rejecting unreliable
hypotheses.
For MASK the interaction of the multimedia interface and
the spoken language system is via the dialog manager. The
multimedia interface interprets tactile commands and gen-
erates a semantic frame compatible with the SLDS. The
dialog manager integrates the tactile information into the
current dialog context and controls database access. The
high-level decisions are taken by the dialog manager based
on the context and the state of the interface, and low-level
presentation decisions are taken directly by the multimedia
interface. An important difference in dialog strategies is
offered by the input modes. The tactile strategy is a com-
mand driven dialog, where the user must input specific in-
formation in order to move on to the next step. Vocal input
allows a real mixed-initiative dialog between the user and
the system, where the user can guide the interaction or be
guided by the system via the help messages.
After contextual understanding, the dialog manager either
uses the semantic frame to generate an SQL-like request to
the database management system or prompts the user to fill
in missing information. If the result of contextual under-
standing is void, or if it is in contradiction with the dialog
context, the system can ask the user to repeat (either di-
rectly “I’m sorry, I did not get that, can you please repeat
it?” or indirectly “Excuse me?”). For MASK and ARISE

the user is required to specify four key items before ac-
cessing the database (a static copy of the SNCF database:
the departure and arrival stations, the date and approximate
time of travel. The day and time can be specified exactly
(March 14th) or in a relative manner, such asnext Monday,
early morning, late tomorrow afternoon. Interpretative and
history management rules are applied prior to generation of
the DBMS request. These rules are used to determine if the
query contains new information, and if so, if this informa-
tion is contradictory with what the system has previously
understood. If a contradiction is detected, the dialog man-
ager may choose to keep the original information, replace
it with the new information, or enter into a confirmation or
clarification subdialog. Post-processing rules, which take
into account the dialog history and the content of the most
recent query, are used to interpret the returned information
prior to presentation to the user.
Constraint relaxation is used in retrieving timetable infor-
mation in order to provide a more cooperative dialogue and
response. For example, if no train satisfies the user’s re-
quest, the system relaxes constraints on the departure time
in order to find the closest train before or after the specified
time. In this case it is important that the system response is
justified by informing the user that the proposed train is the



closest match to their request. If not, the user may assume
that the system has made a mistake.
The dialog strategy has undergone (and is still undergoing)
significant changes as we gather more experience with a
wider range of users. For example, in our initial RAIL -
TEL system[3] we decided to return information for up to
3 trains. If more trains satisfied the user’s request, the sys-
tem returned the number of trains in the time period and
the departure times of the first and last train. In the cur-
rent ARISE system, only one train is proposed, that which
is closest to the request. If the user specifies a time range
(e.g., early morning), the train closest to the middle of the
specified time is returned. The user is able to ask for a dif-
ferent train (the preceding/following one, an earlier/later
train, the first/last train, a direct train, etc). For the tele-
phone system we have found this approach effective in re-
ducing the overall dialog duration (This is similar to what a
human agent does). In contrast, for the information kiosk,
it is easy to display a list of trains and let the user choose
one of them.
However, it is evident that no one single dialog strategy will
satisfy all users, as different users need differ amounts of
guidance, and there will be differences in performance of
the speech recognizer and semantic analyzer across users.
In order to improve performance, a two-level dialog strat-
egy has been implemented for ARISE where a system-
directed dialog is entered if a problem is detected in ob-
taining departure and arrival station names or the date
of travel[19]. When the constrained dialog is active, the
speech recognizer makes use of a dialog state dependent
language model. A constrained dialog can be initiated
by the system if the user does not respond to the sys-
tem prompt for one of the four basic items (timeout), or
in cases where the information received by the system is
contradictory with what was previously understood. Such
constrained dialogs apply only to the departure and arrival
cities, and the travel date. For example, if the system un-
derstood a change in the departure or arrival city, one of the
following strategies is used depending upon the state of the
dialog: the system may choose to ignore the information;
it can ask for an explicit confirmation of the new city; or
it can ask the user to repeat the information. If the caller
changes one of these items during the confirmation request,
implicit confirmation is used in the following prompt. The
directiveness of the prompt increases if the user does not
supply the requested information, suggesting for example
that the caller spell the city name.
The generation component converts a generation semantic
frame into a natural language response. The form of the
natural language response depends on the dialog context,
and whether or not the same information was already pre-
sented to the user. We aim to give a direct response to the
caller, highlighting the new information and directly inte-
grating the information given in the user’s request. This
immediate feedback allows the user to know what the sys-

Aspect Measures

Speech recognizer word error, content word error,
confidence measures

Semantic analyzer semantic frame error, slot error
Dialog response
System global measures (success, #turns,

time, waiting time...)
Subjective questionnaires

Table 2: Some assessment metrics for spoken language dialog
systems.

tem has understood[19]. If the user does not change the
information items, they are considered as implicitly con-
firmed. Careful attention has been paid to construction of
sentences that contain the appropriate information and to
the generation of natural-sounding utterances[3]. We try to
use short responses, so as to keep the caller in tighter con-
tact with the system, and to make for a more natural dialog.

7. EVALUATION

While there are commonly used measures and method-
ologies for evaluating speech recognizers, the evaluation
of spoken language systems is considerably more compli-
cated due to the interactive nature and the human percep-
tion of the performance. It is therefore important to assess
not only the individual system components, but the overall
system performance using objective and subjective mea-
sures. Evaluation plays an integral role in system develop-
ment, which we consider as an ongoing activity. Different
types of evaluation can be used, each with their particular
strengths and costs. In general, it is advantagous when the
evaluation can be carried out automatically, which requires
labeling of the test data. This type of evaluation can be
applied to individual system components, particularly the
speech recognizer and the semantic understanding compo-
nent. A multilevel error analysis can be used to distinguish
between errors due to a particular component and those
propagating from preceding stages[16]. Table 2 summa-
rizes the evaluation aspects and measures discussed in this
paper. When experimenting with new user interfaces[20]
and dialog strategies, it is often useful to carry out an in-
formal assessment of system performance and capabilities
and how these are perceived by users.
An important concern is obtaining realistic user trials.
These are obviously needed to properly evaluate the pro-
totype or potential service, but can be risky if done too pre-
maturely. Being a research laboratory we are not develop-
ing commercial systems and as a consequence usually do
not often have access to the final user. However, we would
like our user trials to be as realistic as possible. As a con-
sequence, we recruit subjects on ongoing basis to provide
data for system development and evaluation. For the MASK

project over 600 users were recruited to test different ver-
sions of the system, both at our laboratory at a Parisian train
station. In addition to this data, periodic evaluations were



carried out by UCL and SNCF with different system ver-
sions, prior to the final evaluation with 200 subjects[18].
For ARISE we have recorded over 10000 calls, with a total
of 149k queries. Three rounds of evaluation were carried
by the SNCF to assess usability and performance of differ-
ent versions of the system.
For the SNCF tests, subjects were recruited by a hostess at
a Parisian train station. The subjects were asked to test a
new, experimental automatic ticket kiosk (MASK) or tele-
phone service (ARISE), and were given a gift certificate for
their participation. Subjects carried out 3 or 4 scenarios,
and completed a short questionnaire after each call and es-
timated the completion time. After the final scenarios sub-
jects completed a more in depth questionnaire, which asked
general questions about the subject and their computer ex-
perience and travel habits, in addition to specific questions
about different aspects of the prototype system.

7.1. Component Assessment
While from the viewpoint of the user, only the global per-
formance measures are important, it is important for the
system developers to look closely at the different sources of
errors within each component of the complete system. In
our evaluation work we have focused on the speech recog-
nizer, semantic analyzer, and dialog manager components,
and have not paid much attention to the information re-
trieval or synthesis components.
Evaluation of the speech recognizers and speech synthe-
sizers have been the subject of numerous, long term activ-
ities. While there are well known tests to assess speech
synthesizers, these have not been widely used in the con-
text of SLDSs. Most systems make use of available text-
to-speech systems or use synthesis by concatenation. The
former has the advantage of being able to pronounce any
text, at the cost of naturalness. Synthesis by concatenation
requires that all speech units are prerecorded, and changing
the prompt usually requires carrying out new recordings.
For speech recognition, the most commonly used metric is
the word error rate:100 � #Substitutions+ #Insertions+ #Deletions

Total Number of Reference Words

For read speech, the reference text is known, i.e. words are
“defined” (given an agreed upon tokenization). For spon-
taneous speech it can be difficult to agree on the reference
string. Contractions are common (what’s / what is, he’s / he
is / he has, dunno / I don’t know / I do not know, as are hes-
itations/fillers(uhm, hmmm, uh-huh), non-speech events
(breath, sniffles, cough, throat clearing), and word frag-
ments and mispronunciations(fr-, *district) . While these
can also be found in read speech, they are much less com-
mon than in spontaneous speech. Related activities which
have been investigated are the relevance of measures, scor-
ing of word fragments, and phonological scoring[9], and
the use of confidence measures[6]. In some cases rela-

Task Vocabulary Size (words) Word Error

ATIS �1500 (11/46 cities) 2-14% laboratory data
MASK �2000 (600 stations) 7% laboratory data

13% kiosk
ARISE �2000 (600-1000 stations) 10-20% telephone

Table 3: Some indicative word error rates for SLDSs.

Error dep-city arr-city dep-time arr-time dep-date

#slots 78 80 216 95 86
Reco 5.2% 4.2% 18.5% 8.2% 29.6%
Und 3.6% 4.4% 7.0% 0.5% 6.0%

Table 4: Recognition and understanding error rates on semantic
slots for the MASK system.

tively low word errors have been reported for speech rec-
ognizers of information retrieval systems, particularly for
the ARPA ATIS task. Some indicative word error rates are
shown in Table 3. However, these numbers can be mis-
leading as the word error measures all differences between
the exact orthographic of the query and the recognizer out-
put. Many recognition errors (such as masculine/feminine
forms, or plurals) are not important for understanding. As
can be observed for the MASK word error rates, there is of-
ten a substantial degradation in performance when moving
from laboratory recruited subjects to more representative
user populations.

Methodologies have been proposed to evaluate the seman-
tic analysis[23, 21]. This evaluation can be carried out on
the speech recognizer output, or on typed versions of the
exact transcriptions of spoken queries including all spon-
taneous speech effects, such as hesitations or repetitions,
(so as to evaluate this component without intrusion of er-
rors made by the speech recognizer). In order to evaluate
the semantic analysis component, we make use of semi-
automatic method which compares the resulting semantic
frame to a reference semantic frame. For each slot which
is incorrectly instanciated, the error source, recognition or
understanding, is marked. It is then straightforward to com-
pute the incorrect slot instanciation rate (recognition orun-
derstanding) for the semantic frame by simply dividing the
number slot errors by the total number of slots. We can
consider the slot error rate to correspond to the word er-
ror rate on content words, and the semantic frame error
to the sentence error. Recognition and understanding slot
error rates on a set of 368 MASK transactions are shown
in Table 4 for thedeparture-city, arrival-city, departure-
time, arrival-timeanddeparture-date. The error rates cor-
respond to the number of erroneous slots divided by the to-
tal number of slots for each type. The average query recog-
nition error on this data was 16.2% and the understand-
ing error 5.4%, illustrating that recognition errors do not
necessarily entail understanding errors. Similarly, not all
understanding errors are important for dialog success, for
example, interpreting the time period as “around 10 pm”



instead of “after 10 pm” may not affect the information ob-
tained from the database, and therefore has no effect on the
dialog. It has been our observation that such minor under-
standing errors pass unobserved by the user, whereas more
important understanding errors will lead to longer dialogs,
as the user tries to correct the error.

We assess the dialog to determine if it was successful by
looking at the system responses. Knowing both the correct
transcription of the spoken query, the recognizer hypothesis
and the semantic frame, we can determine the error source.
The dialog error is calculated as the ratio of incorrect re-
sponses and the total number of system responses. The di-
alog error in obtaining timetable information was 16% on
58 calls recorded with the ARISE system during a two-day
test period last June[19]. Reservations, which require spec-
ifying the class of travel, seating preference and reduction,
had a failure rate of 11%. A higher error rate (30%) was
obtained for diverse questions, due in part to functionality
limitations. Since knowing when a dialog has finished is
a difficult task, we analyzed how the dialogs ended. 12%
of the dialogs ended without a closing formality (ie. the
caller hung up) without saying goodbye. Such abrupt end-
ings can occur when a caller got the desired information,
or because the user was frustrated. We also analyzed the
use of barge-in on the same data. Users interrupted the sys-
tem in 72% (42) of the calls, speaking during 13% (122
of 958) system responses. When barge-in was observed
during a call, it was used on average to interrupt 3 sys-
tem responses. Barge-in was observed in a variety of con-
texts, but was most (40% of the interruptions) often used
to respond to questions before they were finished. For ex-
ample, when the system is uncertain about a station name,
the caller is prompted to say and optionally spell the city
name. (Give your departure city and spell it if you like. For
example, Paris, P A R I S.) 25% of the barge-ins seemed
to be inadvertant. The caller was seeminly engrossed in
their thoughts, talking to the system and unaware that the
system was responding. In contrast to our expectations,
barge-in was only rarely used (6% of the cases) to correct
the system, and usually to change the date of travel.

7.2. Global Performance Assessment
Global evalation measures concern the entire user interac-
tion, and include both objective and subjective measures,
as well as external observations. Some objective measures
are the transaction completion and success rates, the total
duration of the interaction, the waiting time, the number of
dialog turns, the number of repetitions, corrections and in-
terruptions. In the case of failure, ie. the user obtained the
wrong information, or did not receive any information, the
stage of failure may be noted. Subjective user assessemnt
usually addressess qualitative criteria such as the ease of
use, perceived speed, and perceived reliability. The effec-
tiveness of speech can be compared and combined with
other modalities, such as touch screen or keypad for input
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unsuccessful callers
successful callers

Figure 3: RAILTEL usability profile: results for successful and
unsuccessful callers. Q1: ease-of-use, Q2: confusing, Q3:friend-
liness, Q4: complex, Q5: use again, Q6: reliability, Q7: control,
Q8: concentration, Q9: efficiency, Q10: fluster, Q11: too fast,
Q12: stress, Q13: prefer human service, Q14: complicated, Q15:
enjoyable, Q16: needs improvement, Q17: politeness, Q18: in-
formation obtained, Q19: faster than human, Q20: understood

Ease-of-use
1. Is it easy to speak to the system?
2. Is the system easy to understand?
3. Does the system respond fast enough?
Reliability
4. Are you confident in the information given by the system?
5. Did you get the information you wanted?
6. Are you satisfied with the information?
Friendliness
7. Did the system recognize what you said?
8. Did the system understand what you said?
9. If you were not understood, was it easy to reformulate your
question?

Figure 4: MASK questionnaire.

and a visual display for output.

In the RAILTEL project a common questionnaire was de-
signed and used to assess the usability of the three pro-
totypes. The questionnaire contained 20 statements, with
which users were asked if they agreed (on a scale of 1 to 5).
For example, the statement Q1 is “I found the system easy
to use.” and the statement Q13 is “The system was faster
than a human.” Figure 3 shows the user assessements of the
LIMSI system as a function of the success of the call[16].
We can see that there is very little difference in ratings for
successful and unsuccessful callers. This may be an unde-
sired side-effect of the evaluation process, in that the sub-
jects who participated are carrying out a scenario, and do
not really care about the returned information. They there-
fore may assess the system in a different manner than a real
user. This point highlights the importance of continual, on-
going evaluation with more and more realistic users.

User questionnaires can be relatively short, addressing the
user’s perception of the transaction and system, or quite de-
tailed. A questionnaire we used with MASK subjects (Fig-
ure 4) addressed three main issues: ease-of-use, reliability
and friendliness[11]. For ARISEwe now use a simple ques-



The ARISE service is easy to use.
I got the information I wanted.
The system seemed to understand me.
I understood the system.
I found the responses too long.

Figure 5: ARISEquestionnaire.

tionnaire, shown in Figure 5, which is completed after each
call. In addition, the subjects are asked to write down what
they asked for and what information the system returned to
them. In this way we are able to verify whether or not the
system really gave the desired information.

8. DISCUSSION & PERSPECTIVES
Enabling efficient, yet user-friendly interaction for access
to stored information by is quite difficult. Most existing
services are directive, restricting what the caller can ask
at any given point in the dialog, and limiting the form
of the request. Some laboratory prototypes allow a more
open, user-initiated dialog, but performance is generally
lower than what can be obtained with more restricted dia-
log stuctures. Developing and evaluating spoken language
dialog systems is complicated due to the interactive nature
and the human perception of the performance. It is also
time-consuming as much of the analysis must be carried
out manually. It is important to assess not only the indi-
vidual system components, but the overall system perfor-
mance using objective and subjective measures.
SLDSs must recognize spontaneous speech, which is usu-
ally produced by the talker who is speaking while com-
posing the message. Spontaneous speech is known to have
variations in speaking rate, speech disfluencies (hesitations,
restarts, incomplete words or fragments, repeated words)
and rearranging of word sequences or “incorrect” syntactic
structures[25]. Subsequent system modules must be able
to deal with both the structures of spontaneous speech and
recognition errors. By associating confidence scores with
each hypothesized word the semantic analyzer and dialog
modules can choose to ignore uncertain items, that could
be misrecognitions. Although such rejection may lead to
a longer dialog, since some correct words are ignored, the
overall dialog success rate can be improved.
From the dialog perspective, it is important that the user is
aware of what the system has or has not understood. Close
communication is thus essential for dialog success. This
coupling can be obtained by using immediate feedback of
what was understood, combined with implicit confirma-
tion. Explicit confirmation may be used when the system
is uncertain or has understood contradictory information.
Considering the overall system development, human fac-
tors should be taken into account early in the design phase,
and in successive modifications. The MASK propotype
kiosk was developed after analysis of the technological re-
quirements in the context of users and the tasks they per-
form in carrying out travel enquiries[20]. Our prelimi-

nary analysis of a barge-in capability for the ARISE sys-
tem (whicha priori was considered to be very important
for usability, at least for directive systems) indicates that it
is not heavily used, and is not used in the manner we had
anticipated (i.e., to correct misrecognized items). This may
be partially due to the experimental conditions, as callers
do not really need the information they are asking for, and
therefore may not notice (or care about) the errors.

An important issue that was highlighted during the SNCF
user trials is that users do not distinguish the functionalities
of the service from the system responses. Even if a system
is able to detect some out-of-functionality requests, and re-
sponded that it is unable to handle these, such responses are
not satisfactory for users. For example, if the user wants to
reserve for several people and the system informs him/her
that it is unable to reserve for more than one person at a
time, this is logical and correct from the spoken language
system developer’s point of view, who considers the dialog
to be a success . The user, however, has not obtained what
s/he desired, and may not be satisfied with the response.
User trials of the MASK kiosk carried out with over 200
subjects demonstrated that for this task multimodality is
more efficient (faster and easier) than unimodality as some
actions are better carried out by voice and others by touch.
These studies also showed that subjects performed their
tasks more efficiently as they became familiarized with
the MASK system, learning to exploit the vocal input and
benefiting from the multiple modalities. 74% of the users
claimed to have never or rarely encountered difficulties in
using the system, and 98% were largely satisfied with the
usability and simplicity of use.
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