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ABSTRACT

Over the last decade technological advances have been made which
enable us to envision real-world applications of speech technologies.
1t is possible to foresee applications, for example, information centers
in public places such as train stations and airports, where the spoken
query is to be recognized without even prior knowledge of the language
being spoken. Other applications may require accurate identification
of the speaker for security reasons, including control of access to
confidential information or for telephone-based transactions.

In this paper we present a unified approach to identifying non-
linguistic speech features from the recorded signal using phone-based
acoustic likelihoods. The basic idea is to process the unknown speech
signal by feature-specific phone model sets in parallel, and to hy-
pothesize the feature value associated with the model set having
the highest likelihood. This technique is shown to be effective for
text-independent sex, speaker, and language identification and can
enable better and more friendly human-machine interaction. Text-
independent speaker identification accuracies of 98.8% on TIMIT
(168 speakers) and 99.2% on BREF (65 speakers), were obtained
with one utterance per speaker, and 100% with 2 utterances for both
corpora. Experiments estimating speaker-specific models without use
of the phonetic transcription for the TIMIT speakers had the same
identification accuracies obtained with the use of the transcriptions.
French/English language identification is better than 99% with 2s of
read, laboratory speech. On spontaneous telephone speech from the
OGI corpus, the language can be identified as French or English with
82% accuracy with 10s of speech. 10 language identification using the
OGI corpus is 59.7% with 10s of signal.

INTRODUCTION

As speech recognition technology advances, so do the aims
of system designers, and the prospects of potential applica-
tions. One of the main efforts underway in the community
is the development of speaker-independent, task-independent
large vocabulary speech recognizers that can easily be adapted
to specific tasks. Itis becoming apparent that many of the porta-
bility issues may depend more on the specification of the task,
and the ergonomy, than on the performance of the speech recog-
nition component itself. The acceptance of speech technology
in the world at large will depend on how well the technology
can be integrated in systems which simplify the life of the users.
This in turns means that the service provided by such a system
must be easy to use, and as fast as other providers of the service
(i.e., such as using a human operator).

While the focus has been on improving the performance of
the speech recognizers, it is also of interest to be able to identify
what we refer to as some of the “non-linguistic” speech features
present in the acoustic signal. For example, it is possible to en-
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vision applications where the spoken query is to be recognized
without prior knowledge of the language being spoken. This is
the case for information centers in public places, such as train
stations and airports, where the language may change from one
user to the next. The ability to automatically identify the lan-
guage being spoken, and to respond appropriately, is possible.
If telephone-based applications are considered, a wide range
of possibilities can be envisioned. These include emergency
and medical assistance, travel services, communications re-
lated applications (translation services, operator and directory
assistance, information services), as well as the well-known
national intelligence applications.

Other applications of speech technology, such as for financial
or banking transactions, access to confidential information, such
as financial, medical or insurance records, etc., require accurate
identification or verification of the user. Typically security
is provided by the human who “recognizes” the voice of the
client he is used to dealing with (the transaction often will
also be confirmed by a fax), or for automated systems by the
use of cards and/or codes, which must be provided in order to
access the data. With the new payment and information retrieval
services offered by telephone, itis a logical extension to explore
the use of speech for user identification. An advantage of text-
independent speaker verification techniques is that the speaker’s
identity can be continually verified during the transaction, in a
manner completely transparent to the user. This can avoid
the problems encountered by theft or duplication of cards, and
pre-recording of the user’s voice during an earlier transaction.

With these future views in mind, this paper presents a unified
approach for identifying non-linguistic speech features using
phone-based acoustic likelihoods. The basic idea is to process
the unknown speech signal by multiple feature-specific phone
model sets in parallel (this is similar to the use of sex-dependent
models for recognition), where instead of the output being the
recognized string, the output is the characteristic associated
with the model set having the highest likelihood.

A non-linguistic speech feature which has been the fo-
cus of many years of active research is the identity of the
speaker. Reviews of speaker identification and verifica-
tion can be found in (1, 39, 6, 33, 41]. Automatic lan-
guage identification has also been the subject of long-term
research[19, 26, 4, 7, 18, 43, 34, 21, 11, 46]. Recently sex-
identification has been of interest, primarily to improve acous-
tic modeling capabilities[5, 8, 12]. We show that all of these
identification problems can be effectively handied by the use of
phone-based acoustic likelihoods.
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PHONE-BASED ACOUSTIC LIKELIHOODS

The basic idea is to train a set of large phone-based ergodic
hidden Markov models (HMMs) for each non-linguistic fea-
ture to be identified (language, gender, speaker, ...). Feature
identification on the incoming signal x is then performed by
computing the acoustic likelihoods f(x|A;) for all the models
A; of a given set. The feature value corresponding to the model
with the highest likelihood is then hypothesized. This decoding
procedure has been efficiently implemented by processing all
the models in parallel using a time-synchronous beam search
strategy.

This approach has the following characteristics:

¢ Itcanperform text-independent feature recognition. (Text-
dependent feature recognition can also be performed.)

o It is more precise than methods based on long-term statis-
tics such as long term spectra, VQ codebooks, or proba-
bilistic acoustic maps[41, 45].

o It can easily take advantage of phonotactic constraints.
(These are shown to be useful for language identification.)

o It can easily be integrated in recognizers which are based
on phone models, as all the components already exist.

In our implementation, each large ergodic HMM is built from
small left-to-right phonetic HMMs. The Viterbi algorithm is
used to compute the joint likelihood f(x, s{A;) of the incoming
signal and the most likely state sequence instead of f(x|A;).
This implementation is therefore nothing more than a slightly
modified phone recognizer with language-, sex-, or speaker-
dependent model sets used in parallel, and where the output
phone string is ignored and only the acoustic likelihood for
each model is taken into account.

The phone recognizer can use either context-dependent or
context-independent phone models, where each phone model
is a 3-state ‘left-to-right continuous density hidden Markov
model (CDHMM) with Gaussian mixture observation densi-
ties. The covariance matrices of all Gaussian components are
diagonal. Duration is modeled with a gamma distribution per
phone model. As proposed by Rabiner et al.[37], the HMM and
duration parameters are estimated separately and combined in
the recognition process for the Viterbi search.

Maximum likelihood estimators are used to derive langunage
specific models whereas maximum a posteriori (MAP) estima-
tors are used to generate sex- and speaker-specific models as
has already been proposed in [15, 17]. The MAP estimates
are obtained with the segmental MAP algorithm [16] using
speaker-independent seed models. These seed models are used
to estimate the parameters of the prior densities and to serve
as an initial estimate for the segmental MAP algorithm. This
approach provides a way to incorporate prior information into
the model training process and is particularly useful to build
the speaker-specific models when using only a small amount of
speaker-specific data.

In our original formulation, phonetic labels were required

! The likelihood computation can in fact be simplified since there is noneed
to maintain the backtracking information necessary to know the recognized
phone sequence.
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for training the models[11]. However, there is in theory no
absolute need for phonetic labeling of the speech training data
to estimate the HMM parameters. In this case, if a blind (or non
informative) initialization for the HMM training re-estimation
algorithm is used, the elementary left-to-right models are no
lIonger related to the notion of phone. Such a non-informative
initialization can lead to poor models for two reasons. First,
the commonly used EM re-estimation procedure can only find
a local maximum of the data likelihood and therefore "good"
initialization is critical. Second, maximum likelihood training
of large models with limited amount of training data (as in our
case) cannot provide robust models if prior information infor-
mation is not incorporated in the training process. We have ex-
perimented with two ways of dealing with these problems. The
first is to use MAP estimation with seed models derived from
transcribed speech data. We applied this approach to speaker
identification in order to build the speaker-specific models from
small amount of untranscribed speaker-specific data. The sec-
ond approach is simply based on ML estimation where models
trained on labeled data are used to generate an approximate tran-
scription of the training data. We applied this second approach
to language identification allowing us to estimate "phone"” mod-
cls from language specific data using a common phone alphabet
for all of the langnages. While there are many ways to intro-
duce prior knowledge in the training process, it should be clear
that the use of a great deal of prior information in the training
procedure leads to more discriminative models.

The use of ergodic HMM has been reported for speaker
identification[36,44, 27, 34] and for language identification{46]
using small ergodic HMMs with a maximum of 5 to 8 states.
Gaussian mixture models, which are special cases of er-
godic HMM, have been used for speaker identification{38,
45). The use of phone-based HMM has been reported
for text-dependent[40, 29] and for text-independent, fixed-
vocabulary[40] speaker identification.

In the remainder of this paper experimental results applying
our approach to text-free identification of sex, speaker, and
language are presented. In particular, we show that text-free
identification of gender and speaker perform as well as fixed-
text identification for a given duration of identification data,
with the same quantity of training data.

EXPERIMENTAL CONDITIONS

In this section we provide a brief description of the corpora
used to carry out these experiments on identifying non-linguistic
speech features, and provide a baseline performance assessment
for the phone recognizer. Five corpora have been used in the
experiments reported in this paper: BDSONS[3] and BREF[24,
14] for French; TIMIT[9] and WSJ[35] for English, and the
OGI 10-language Corpus[32]. BREF, TIMIT and WSJO have
been used for sex identification; BREF and TIMIT for speaker
identification; and all 5 corpora have been used for language
identification. Since the training and test data used differ for
the various experiments, the details are specified later for each
experiment,

The BDSONS Corpus: BDSONS, Base de Données des Sons
du Frangais[3], was designed to provide a large corpus of
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French speech data for the study of the sounds in the French
language and to aid speech research. The corpus contains
an “evaluation” subcorpus consisting primarily of isolated
and connected letters, digits and words from 32 speakers
(16m/16f), and an “acoustic” subcorpus which includes pho-
netically balanced words and sentences. A subset of this latter
subcorpus has been used for testing language identification.

The BREF Corpus: BREF is a large read-speech corpus, con-
taining over 100 hours of speech material, from 120 speak-
ers (55m/65f)[24]. The text materials were selected verba-
tim from the French newspaper Le Monde, so as to provide
a large vocabulary (over 20,000 words) and a wide range
of phonetic environments[14]. Containing 1115 distinct di-
phones and over 17,500 triphones, BREF can be used to train
vocabulary-independent phonetic models. The text material
was read without verbalized punctuation. All the data used
for the experiments reported in this paper comes from the
BREF80 sub-corpus (2 CDs). Phonetic transcriptions of this
subcorpus were automatically derived and manually verified
using a set of 35 phones[10].

DARPA TIMIT Corpus: The DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus[9] is a corpus of read
speech designed to provide speech data for the acquisition
of acoustic-phonetic knowledge and for the development and
evaluation of automatic speech recognition systems. TIMIT
contains a total of 6300 sentences, 10 sentences spoken by
each of 630 speakers from 8 major dialect regions of the U.S.
The TIMIT CDROM[9] contains a training/test subdivision
of the data that ensures that there is no overlap in the text
materials. All of the utterances in TIMIT have associated
time-aligned phonetic transcriptions.

DARPA WSJ Corpus: The DARPA Wall Street Journal-
based Continuous-Speech Corpus (WSI)[35] has been de-
signed to provide general-purpose speech data (primarily,
read speech data) with large vocabularies. Text materials were
selected to provide training and test data for 5K and 20K word,
closed and open vocabularies, and with both verbalized and
non-verbalized punctuation. The recorded speech material
supports both speaker-dependent and speaker-independent
training and evaluation. In these experiments only data from
the WSJO corpus are used.

The 10-Language OGI-TS Corpus: The Oregon Graduate
Institute Multi-language Telephone Speech Corpus[32] was
designed to support research on automatic language identi-
fication, as well as multi-language speech recognition. The
entire corpus contains data from 100 native speakers of each
of 10 languages (English, Farsi, French, German, Japanese,
Korean, Mandarin, Spanish, Tamil, and Vietnamese). The
utterances have been verified and transcribed at a broad pho-
netic level.

Since the identification of non-linguistic speech features is
based on phone recognition, some baseline phone recognition
results are given here for the corpora for which we have a phone
transcription. The speaker-independent (SI) phone recogniz-
ers use sets of sex-dependent, context-dependent (CD) models
which were automatically selected based on their frequencies
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Condition | #ph | Corr. | Subs. | Del. | Ins. | Errors
BREF 35 | 817 | 137 | 46 | 3.0 | 213
WSJ nvp 46 | 793 | 162 | 45 | 50 | 257
TIMIT 39 | 783 | 167 | 49 | 49 | 266

Table 1: Phone error (%) with CD models and phonotactic constraints.

in the training data which was used. Phone errors rates with
428 CD models for BREF, 1619 for WSJ and 459 for TIMIT
are given in Table 1. For BREF and WSJ phone errors are
reported after removing silences, whereas for TIMIT silences
are included as transcribed, following the common practise for
TIMIT. The phone error for BREF is 21.3%, WSJ (Feb-92
S5knvp) is 25.7% and TIMIT (complete test set) is 27.6% scored
using the 39 phone set proposed by[25]. More details about the
phone recognizer and experiments in phone recognition can be
found in [23].

SEX IDENTIFICATION

It is well known that the use of sex-dependent models
gives improved word recognition performance over one set
of speaker-independent models[20]. However, this approach
can be costly in terms of computation for medium-to-large-size
tasks, since recognition of the unknown sentence is typically
carried out twice, once for each sex. A logical alternative is
to first determine the speaker’s sex, and then to perform word
recognition using the models of selected sex. Automatic iden-
tification of the speaker’s sex has been previously investigated
using single Gaussian classifiers{5, 8], with sex identification
accuracies reported for broad phonetic classes. Our approach is
to use phone-based acoustic likelihoods for sex-identification,
using the same phone model sets that are used for phone or
word recognition. The sex of the speaker is hypothesized as the
sex associated with the model set giving the highest likelihood.

This approach was used in the LIMSI Nov-92 WSJ
system[12]. The standard WSJO SI-84 training material, con-
taining 7240 sentences from 84 speakers (42m/42f) was used to
build speaker-independent CD phone models. Sex-dependent
model sets were then obtained using MAP estimation[17] with
the SI seed models. The phone likelihoods using the context-
dependent male and female models were computed, and the
sex of the speaker was selected as the sex associated with the
model set that gave the highest likelihood. Since these male and
female models are exactly the same CD phone models as used
for word recognition, there is no need for additional training
material or effort. No errors were observed in sex identification
for WSJO on the Feb92 or Nov92 5k test data containing 851
sentences, from 18 speakers (10m/8f).

Sex identification was also assessed for French using a por-
tion of the BREF corpus. Sex-dependent models were also
obtained from SI seeds by MAP estimation. The training data
consisted of 2770 sentences from 57 speakers (28m/29f). No
errors in sex-identification were observed on 109 test sentences
from 21 test speakers (10m/11f).

Toinvestigate sex identification based on acoustic likelihoods
on a larger set of speakers, the approach was evaluated on the
168 speakers of the TIMIT test corpus. SI seed models were
trained using all the available training data, i.e., 4620 sentences
from 462 speakers. These models were then adapted using
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Figure 1: Text-independent and text-dependent sex-identification er-
ror rates as a function of signal duration for 128 TIMIT speakers. (The
duration includes 100ms of silence.)

MAP estimation with data from the 326 males speakers and
136 females to form gender-specific models. The test data
consist of 1344 sentences, 8 sentences from each of the 168
test speakers (112m/56f). The error rate in sex-identification is
shown as a function of the speech duration in Figure 1. Each
speech segment used for the test is part of a single sentence,
and always starts at the beginning of the sentence, preceeded by
about 100ms of silence?. These results on this more significant
test show that the text-independent sex identification error rate
using phone-based acoustic likelihoods is 2.8% with 400ms
of speech and is about 1% with 2s of speech. For reference,
400ms of speech signal (which includes about 100ms of silence)
represents about 4 phones, i.e. the number found in a typical
word in TIMIT (avg. 3.9 phones/word[9]). This implies that
before the speaker has finished enunciating the first word, one
is fairly certain of the speaker’s sex. We observed that the
sentences misclassified with regards to the speaker’s sex had
better phone recognition accuracies with the cross-sex models.

An experiment of text-dependent sex identification was car-
ried out using the same test data and the same phone models, in
order to assess if by adding linguistic information the speaker’s
gender can be more easily identified. The basic idea was to
measure the lower bound on the error rate that would be ob-
tained if higher order knowledge such as lexical information
were provided. To do this, a long left-to-right HMM was built
for each sex by concatenating the sex-dependent CD phone
models corresponding to the TIMIT transcription. The acoustic
likelihoods were then computed for the two models. These like-
lihood values are lower than are obtained for text-independent
identification. The results are shown in the second curve of
Figure 1 where it can be seen that the error rate is not any better
than the error rate obtained with the text-independent method.
This indicates that acoustic-phonetic information is sufficient
to accomplish this task.

While in our previous work[12], sex-identification was used
primarily as a means to reduce the computation and to improve
recognition performance, sex identification has other uses in
spoken language systems. Accurate sex identification can per-

2The initial and final silences of each test sentence have been automatically
reduced to 100ms.

EUROSPEECH 93, Berlin, Germany, September 1993

mit the synthesis module of a system to respond appropriately to
the unknown speaker. In languages like French, where the for-
malities are used more than in English, the system acceptance
may be easier if greetings such as “Bonjour Madame” or “Je
vous en prie Monsieur” are foreseen. Since sex-identification
is not perfect, some fall-back mechanism must be integrated
to avoid including the signs of politeness if the system is un-
sure of the sex. This can be accomplished by comparing the
likelihoods of the model sets, or by being wary of speakers for
whom the better likelihood jumps back and forth between the
gender-specific models over time.

SPEAKER IDENTIFICATION

Speaker identification has been a topic of active research for
many years(see [1, 39, 6, 33, 41]), and has many potential ap-
plications where propriety of information is a concern. In these
experiments, the technique of phone-based acoustic likelihoods
is applied to the problem of speaker-identification. A set of CI
phone models were built for each speaker by adaptation of
ClI, SI seed models using MAP estimation[17]. The unknown
speech was recognized by all of the speakers models in parallel,
and the speaker identified as that associated with the model set
having the highest likelihood. Speaker-identification experi-
ments were performed using BREF for French and TIMIT for
English. TIMIT has recently been used in a few studies on
speaker identification[42, 2, 30, 22] with high speaker identi-
fication rates reported using various sized subsets of the 630
speakers.

Experiments with BREF

For French, the acoustic seed models were 35 SI CI models,
built using 2200 sentences from 57 BREF training speakers. 10
sentences for each were reserved for adaptation and test. These
models were adapted to each of 65 speakers (including 8 new
speakers not used in training the SI models) using 8 sentences
for adaptation. While the original CI models had a maximum
of 32 Gaussians, the adapted models were limited to 4 mixture
components, since the amount of adaptation data was relatively
limited. The remaining 2 sentences were used for identification
test. Text-independent speaker-identification results are given
in the first entry in Table 2 for 65 speakers (27m/38f) as a
function of signal duration. As for sex identification, the initial
and final silences were adjusted to have a maximum duration of
100ms according to the provided time-aligned transcriptions.
Using only one sentence per speaker for identification, there is
one error, corresponding to an identification accuracy of 99.2%.
When 2 sentences for each speaker are used for identification
test, all speakers are correctly identified.

Duration 05s | 10s | 155 | 20s | 25s | EOS

BREF (textind.) | 338 [ 13.1 ]| 78 | 33 | 26 | 08

BREF (textdep.) | 354 {200 | 11.7 ] 6.7 | 43 | 54

Table 2: Text-independent vs. text-dependent speaker identification
error rate as a function of duration for 65 speakers from BREF. (EOS
is End Of Sentence identification error rate. The duration includes
100ms of siience.)

Experiments for text-dependent speaker identification using
exactly the same models and test sentences were performed. As
can be seen in the second entry in Table 2, the text-dependent
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Figure 2: Text-independentspeaker identification error rate as a func-
tion of duration for 168 test speakers of TIMIT. Training based on
TIMIT seed models, with and without the phone transcription, and
on WSJ seed models, without phone transcription. (EOS is End Of
Sentence identification error rate. The duration includes 100ms of
silence.)

error rates are higher error than the text-independent error rates.
There is almost a 4% degradation in the identification accuracy
at the end of the sentence. These results were contrary to
our expectations, in that typically text-dependent speaker ver-
ification is considered to outperform text-independent(6, 41].
However, Rosenberg et al. have already demonstrated that with
accurate modeling the difference in performance between text-
dependent and text-independent speaker identification becomes
quite small[41]. A possible explanation of our results is that
by using the phone transcription (i.e., text-dependent identi-
fication) the phone-based likelihoods are more dependent on
the recognizer phone accuracy than for text-free identification.
Therefore, speakers for whom the phone accuracies are lower
than average, are more likely to be misidentified.

Experiments with TIMIT

For the experiments with TIMIT, a speaker-independent set
of 40 CI models were built using data from all of the 462
training speakers. These SI CI models served as seed models to
estimate 31-phone model sets for each of the 168 test speakers
in TIMI, using 8 sentences (2 SA, 3 SX, and 3 SI) for adaptation.
The remaining 2 SX sentences for each speaker were reserved
for the identification test. This set of speakers was chosen for
identification test so as to evaluate the performance for speakers
not in the original SI training material, which greatly simplifies
the enrollment procedure for new speakers. A reduced number
of phones was used so as to minimize subtle distinctions, and
to reduce the number of models to be adapted. As for BREF,
while the original CI models had a maximum of 32 Gaussians,
the adapted models were limited to 4 mixture components.

The 168 speaker-specific phone model sets were combined in
parallel in one large HMM, which is used to recognize the un-
known speech. Error rates are shown as a function of the speech
signal duration in Figure 2, for text-independent speaker iden-
tification. The curve labeled TIMIT-168 shows results with
TIMIT SI seed models, using the phone transcription of the
speaker-specific data during adaptation. The initial and final si-
lences were adjusted to have a maximum duration of 100ms ac-
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cording to the provided time-aligned transcriptions. If the entire
utterance is used for identification, the accuracy is 98.5%. With
2.5s of speech the speaker identification accuracy is 98.3%.
For the small number of sentences longer than 3s, identifi-
cation was 100% correct, suggesting that if longer sentences
were available performance would improve. This hyphothesis
is also supported by the result that speaker-identification using
both sentences for identification was 100% correct. ***Text-
dependent speaker identification on TIMIT exhibited the same
performance degradation as observed for BREF. At the EOS,
the speaker-identification error is 6%, compared to 1.5% for
text-independent identification with the same models.

Two additional experiments were performed in which
speaker-specific models were estimated for each of the 168
test speakers in TIMIT without knowledge of the phonetic tran-
scription. The same 8 sentences were used for adaptation. In
the first case, the 40 SI CI seed models from TIMIT were used
to segment and label the data from the 168 speakers. In the
second case, WSJ SI CI seed models were used to segment and
label the TIMIT data. These labels were then used during the
adaptation instead of the provided phone transcriptions. Per-
forming text-independent speaker identification as before on
the remaining 2 sentences gives the results shown in Figure 2
TIMIT-168-NT. It can be seen that there is not a significant
difference in identification error when adaptation is performed
with or without verified phone transcriptions, or when SI seed
models from WSJ are used. The end of sentence identification
error is 1.5% with TIMIT seed models and 1.2% with the WSJ
seed models. As observed previously, if 2 sentences are used
for identification, the speaker identification accuracy is 100%.
This experimental result indicates that the time-consuming step
of providing phonetic transcriptions is not needed for accuracte
text-independent speaker identification.

LANGUAGE IDENTIFICATION

While automatic language identification has been a research
topic for over 20 years, there are relatively few studies published
in this area. Oflate there has been a revived interest in language
identification, in part due to the availability of a multi-language
corpus(32] providing the means for comparative evaluations of
techniques. Some proposed techniques for language identifi-
cation combine feature vectors (filter bank, LPC, cepstum, for-
mants) with prosodic features using polynomial classifiers[4],
vector quantization{7, 18, 43), or neural nets[31). Broad pho-
netic labels were used with finite state models[26] and with
neural nets[31]. More recently, Gaussian mixture and HMM
have been proposed for language identification[34, 46].

Phone-based acoustic likelihoods can also be used for lan-
guage identification. Once again, the basic idea is to process
in parallel the unknown incoming speech by different sets of
phone models (each set is a large ergodic HMM) for each of
the languages under consideration, and to choose the language
associated with the model set providing the highest normal-
ized likelihood.? If the language can be accurately identified,

31n fact, this is not a new idea: House and Neuberg (1977)[19] proposed
a similar approach for language identification using models of broad phonetic
classes, where we use phone models. Their experimental results, however,
were synthetic, based on phonetic transcriptions derived from texts.
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it simplifies using speech recognition for a variety of applica-
tions, from selecting the language in multilingual spoken lan-
guage systems to selecting an appropriate operator, or aiding
with emergency assistance. Language identification can also
be done using word recognition, but itis much more efficient to
use phone recognition, which has the added advantage of being
task independent.

French/English LID Experiments

Experimental results for language identification for En-
glish/French were given in [21, 22], where models trained on
TIMIT [9] and BREF [24], were tested on different sentences
taken from the same corpus. While these results gave high
identification accuracies (100% if an entire sentence is used,
and greater than 97% with 400ms, and error free with 1.6s of
speech signal), it is difficult to discern that the language and
not the corpus is being identified. Identification of independent
data taken from the WSJO corpus was less accurate: 85% with
400ms, and 4% error with 1.6s of speech signal.

In these experiments we attempted to avoid the bias due to
corpus, by testing both on data from the same corpora from
which the models were built, and on independent test data from
different corpora. The language-dependent models are trained
from similar-style corpora, BREF for French and WSJO for
English, both containing read newspaper texts and similar size
vocabularies[14, 24, 35]. A setof SICIphone models were built
for each language, with 35 models for French and 46 models
for English.* Each phone model has 32 gaussians per mixture,
and no duration model. In order to minimize influences due to
the use of different microphones and recording conditions a 4
kHz bandwidth is used. The training data were the same as for
sex-identification (BREF:2770 sentences from 57 speakers and
WSJO SI-84: 7240 sentences from 84 speakers).

Language identification accuracies are given in Table 3 with
phonotactic constraints provided by a phone bigram. Language
identification error rates are given for the 4 test corpora, WSJ
and TIMIT for English, and BREF and BDSONS for French,
as a function of the duration of the speech signal. Approx-
imately 100ms of silence are included at the beginning and
end of each utterance (the initial and final silences were auto-
matically removed based on HMM segmentation), so as to be
able to compare language identification as a function of dura-
tion without biases due to long initial silences. The test data
for WSJO consist of 100 sentences, the first 10 sentences for
each of the 10 speakers (5m/5f) in the Feb92-siSknvp (speaker-
independent, 5k, non-verbalized punctuation) test data. For
TIMIT, the 192 sentences in the “coretest™ set containing 8 sen-
tences from each of 24 speakers (16m/8f) was used. The BREF
test data consists of 130 sentences from 20 speakers (10m/10f)
and for BDSONS the data is comprised of 121 sentences from
11 speakers (Sm/6f).

While WSJ sentences are more easily identified as English
for short durations, errors persist longer in these sentences than

4The 35 phones used to represent French include 14 vowels (including 3
nasal vowels), 20 consonants (6 plosives, 6 fricatives, 3 nasals, and 5 semivow-
els), and silence. The phone table can be found in {10]. For English, the set
of 46 phones include 21 vowels (including 3 diphthongs and 3 schwas), 24
consonants (6 plosives, 8 fricatives, 2 affricates, 3 nasals, 5 semivowels), and
silence.
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Test #of Error rate vs. Duration
Corpus | sents | 04s [ 08s | 12s | 1.65s | 2.05 | 245
wsJ 100 | 50 [ 30 | 10| 20 10| 10
TIMIT 192 | 94 | 57 | 26 |21 |05 | O
BREF 130 | 85 {1508 ] 0 08 | 0.8
BDSONS | 121 | 74 | 25 |25 | 17 |08 | O
Overall 543 179 | 35| 18 | 15 | 0.7 | 04

Table 3: Language identification error rates as a function of duration
and language with phonotactic constraints provided by a phone bigram.

" (The duration includes 100ms of silence.)
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Figure 3: Overall French/English language identification as a function
of duration with and without phonotactic constraints provided by a
phone bigram. (The duration includes 100ms of silence.)

for TIMIT. In contrast for French, BDSONS data is better iden-
tified than BREF with 400ms of signal, perhaps because the sen-
tences are phonetically balanced. For longer durations, BREF
is slightly better identified than BDSONS. Bearing in mind that
the corpora were recorded under similar conditions, the perfor-
mance demonstrated here shows that accurate task-independent,
cross-corpus language identification can be achieved.

The overall French/English language identification error is
shown in Figure 3 as a function of duration, with and without
phonotactic constraints provided by a phone bigram. Using
the phone bigram is seen to improve language identification
primarily for short signals. The overall error rate with 2s of
speech is less than 1% and with 1s of speech (not shown)
is about 2%. Incorporating phonotactic constraints had the
smallest improvement for TIMIT, probably due to the nature of
the selected sentences which emphasized rare phone sequences.

Language identification of the BREF and WSJ data is com-
plicated by the inclusion of foreign words in the source text
materials. One of the errors on BREF involved such a sen-
tence. The sentence was identified as French at the beginning
and then all of a sudden switched to English. The sentence was
“Durant mon adolescence, je dévorais les récits westerns de
Zane Grey, Luke Short, et Max Brand...”, where the italicized
words were pronounced in correct English.

We are in the process of obtaining corpora for other languages
to extend this work. However, there are variety of applications
where a bilingual system, just French/English would be of use,
including air traffic control (where both French and English are
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permitted languages for flights within France), telecommuni-
cations applications, and many automated information centers,
ticket distributors, and tellers, where already you can select
between English and French with the keyboard or touch screen.

OGI 10-Language Experiments

Language identification over the telephone opens a wide
range of potential applications. Cognizantof this, we have eval-
uated our approach on the OGI 10 language telephone-speech
corpus[32]. The training data consists of calls from 50 speakers
of each language. There are a total of about 4650 sentences,
corresponding to about 1 hour of speech for each language.
The test data are taken from the spontaneous stories from the
development test data as specified by NIST and include about
18 signal files for each language. Since these stories tend to be
quite long, they have been divided into chunks by NIST, with
each chunk estimated to contain at least 10 seconds of speech.

Duration #10s chunks | 2s 6s 10s
English 63 54 64 67
Farsi 61 64 61 66
French 72 58 65 67
German 63 44 48 54
Japanese 57 28 32 | 42
Korean 44 48 48 55
Mandarin 59 46 51 61
Spanish 54 32 52 56
Tamil 49 69 82 82
Vietnamese 53 42 49 47
Overall 575 48.7 | 55.1 | 59.7

Table 4: OGI language identification rates (%) as a function of test
utterance duration (without phonotactic constraints) for “10s chunks”.

The training data was first labeled using a set of speaker-
independent, context-independent phone models. Language-
specificic models were then estimated using MLE with the these
labels. Thus, in contrast to the French/English experiments
where the phone transcriptions were used to train the speaker-
independent models, language-specific training is done without
the use of phone transcriptions. Language identification results
using all 10 languages are shown in Table 4 as a function of
signal duration. The overall 10-language identification rate is
59.4% with 10s of signal (including silence). There is a wide
variation in identification accuracy across languages, ranging
from 42% for Japanese to 82% for Tamil.

Duration | #10s chunks | 2s | 6s | 10s
English 63 76 [ 83 | 84
French 72 76 (79 79
Overall 135 76 { 81 | 82

Table 5: French/English language identification rates (%) on the OGI
corpus as a function of test for “10s chunks”.

Two-way French/English language identification was evalu-
ated on the OGI corpus so as to provide a measure of the degra-
dation observed due to the use of spontaneous speech over the
telephone. The results are given in Table 5. Language identi-
fication was 82% at 10s (79% on French and 84% for English)
for the 135 10s-chunks. This can be compared to the results
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with the laboratory read speech, where French/English language
identification is better than 99% with only 2s of speech.

We would like to emphasize that these are very preliminary
results which have been obtained by simply porting the ap-
proach to the conditions of telephone speech. Our approach for
English and French took advantage of the associated phonetic
transcriptions, whereas for this evaluation the training has been
performed without transcriptions. Despite these conditions, our
results compare favorably to previously published results on the
same corpus[31, 46].

SUMMARY

In this paper we have presented a unified approach for the
identification of non-linguistic speech features from recorded
signals using phone-based acoustic likelihoods. The inclusion
of this technique in speech-based systems, can broaden the
scope of applications of speech technologies, and lead to more
user-friendly systems. The approach is based on training a set
of large phone-based ergodic HMMs for each non-linguistic
feature to be identified (language, gender, speaker, ...), and
identifying the feature as that associated with the model having
the highest acoustic likelihood of the set. The decoding proce-
dure is efficiently implemented by processing all the models in
parallel using a time-synchronous beam search strategy.

This has been shown to be a powerful technique for sex,
language, and speaker-identification, and has other possible
applications such as for dialect identification (including for-
eign accents), or identification of speech disfluencies. Sex-
identification for BREF and WSJ was error-free, and 99%
accurate for TIMIT with 2s of speech. Speaker identifica-
tion accuracies of 98.8% on TIMIT (168 speakers) and 99.1%
on BREF (65 speakers) were obtained with one utterance per
speaker, and 100% if 2 utterances were used for identification.
This identification accuracy was obtained on the 168 test speak-
ers of TIMIT without making use of the phonetic transcriptions
during training, verifying that it is not necessary to have labeled
data adaptation data. Speaker-independent models can be used
to provide the labels used in building the speaker-specific mod-
els. Being independent of the spoken text, and requiring only a
small amount of identification speech (on the order of 2.5s), this
technique is promising for a variety of applications, particularly
those for which continual, transparent verification is preferable.

Tests of two-way language identification of read, laboratory
speech show that with 2s of speech the language is correctly
identified as English or French with over 99% accuracy. Sim-
ply porting the approach to the conditions of telephone speech,
French and English data in the OGI multi-language telephone
speech corpus was about 76% with 2s of speech, and increased
to 82% with 10s. The overall 10-language identification ac-
curacy on the designated development test data of in the OGI
corpus is 59.7%. These results were obtained without the use
of phone transcriptions for training, which were used for the
experiments with laboratory speech.

In conclusion, we propose a unified approach to identify-
ing non-linguistic speech features from the recorded signal
using phone-based acoustic likelihoods. This technique has
been shown to be effective for text-independent, vocabulary-
independent sex, speaker, and language identification. While
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phone labels have been used to train the speaker-independent
seed models, these models can then be used to label unknown
speech, thus avoiding the costly process of transcribing the
speech data. The ability to accurately identify non-linguistic
speech features can lead to more performant spoken language
systems enabling better and more friendly human machine in-
teraction.
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