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Abstract
This paper presents continuation of research on Structured OUt-
put Layer Neural Network language models (SOUL NNLM)
for automatic speech recognition. As SOUL NNLMs allow
estimating probabilities for all in-vocabulary words and not
only for those pertaining to a limited shortlist, we investigate
its performance on a large-vocabulary task. Significant im-
provements both in perplexity and word error rate over con-
ventional shortlist-based NNLMs are shown on a challenging
Arabic GALE task characterized by a recognition vocabulary
of about 300k entries. A new training scheme is proposed for
SOUL NNLMs that is based on separate training of the out-
of-shortlist part of the output layer. It enables using more data
at each iteration of a neural network without any considerable
slow-down in training and brings additional improvements in
speech recognition performance.
Index Terms: Neural Network Language Model, Automatic
Speech Recognition, Speech-To-Text

1. Introduction
Conventional n-gram language models (LMs) are the basis of
modern language modeling for speech-to-text (STT). There are
quite few approaches that were shown to systematically bring
additional improvements over an n-gram baseline and are thus
used in large-scale STT systems.

One of the most successful approaches to date is to model
and use distributed word representations on top of conventional
n-gram models. Contrary to n-grams that rely on a discrete
space representation of the vocabulary, where each word is as-
sociated with a discrete index, distributionally similar words can
be represented as neighbors in a continuous space. This turns
n-grams distributions into smooth functions of word represen-
tations. These representations and the associated probability
estimates are jointly computed in a Neural Network Language
Model (NNLM). The use of neural-networks for language mod-
eling was introduced in [1] and successfully applied to speech
recognition [2, 3, 4].

The major difficulty with the neural network approach re-
mains the complexity of inference and training, which largely
depends on the size of the output vocabulary (i.e. words that
can be predicted). One practical solution is to restrict the output
vocabulary to a shortlist composed of the most frequent words
(usually from 8k up to 20k). Probabilities of all n-grams fin-
ished with out-of-shortlist words are estimated with a baseline
n-gram model [3]. Such a restriction is likely to limit the poten-
tial of NNLMs. To circumvent this problem we have recently
proposed Structured Output Layer (SOUL) NNLMs that were

shown to improve over state-of-the-art shortlist NNLMs [5].
The SOUL model combines neural network approach with an-
other successful language modeling approach, namely class-
based LMs (as introduced in, e.g. [6]). Structuring the output
layer of the model and using word class information makes es-
timating all in-vocabulary words with a NNLM computationally
feasible.

Our previous results were reported on the GALE Mandarin
task with a 56k word recognition vocabulary. As estimating
all in-vocabulary word probabilities is probably the major dis-
tinctive feature of SOUL NNLMs, it seems interesting to eval-
uate the performance on a larger vocabulary task. The intuition
behind is that the relative coverage of shortlist-based NNLMs
might be smaller, leaving more space for the improvement with
SOUL NNLMs. The GALE Arabic task is thus chosen to carry
out STT experiments and evaluate the performance. Well-tuned
LIMSI Arabic STT system is used in the experiments presented
in this paper. It is based on a 4-gram Kneser-Ney discounted
LM trained on about 2 billion corpora (without any pruning
and cut-offs) interpolated with standard 12k shortlist NNLMs.
The recognition vocabulary contains about 300k MADA de-
composed entries.

A new training scheme for the class part of SOUL NNLMs
is also presented in this paper. It makes a better use of avail-
able data during training and is aimed to provide more robust
parameter estimates for large vocabulary tasks. Application of
this scheme results in additional improvements in perplexity
and speech recognition performance.

This paper is organized as follows. Previous and related
work on SOUL and hierarchical NNLMs is briefly summarized
in Section 2. The new training scheme for SOUL NNLMs is
introduced in Section 3. Experiments and results are presented
in Section 4. Section 5 provides a discussion and conclusions.

2. Previous and Related Work
A hierarchical structure of the neural network output layer was
introduced in [7] (and further investigated in [8]) in order to
speed-up training and inference. In this approach, the output
vocabulary is first clustered and represented by a binary tree.
Each internal node of the tree holds a word cluster which is
binary divided in sub-clusters. Leaves correspond to words at
the end of this recursive representation of the vocabulary. Thus
the neural network aims to estimate probabilities of the paths in
this binary tree given the history, rather than words directly.

We have recently proposed a new SOUL approach to struc-
turing the output layer that avoids the constraint of a binary tree
structure [5].
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Figure 1: The architecture of a SOUL Neural Network language
model.

The output vocabulary is structured by a clustering tree,
where each word belongs to only one class and its associated
sub-classes. If wi denotes the ith word in a sentence, the se-
quence c1:D(wi) = c1, . . . , cD encodes the path for the word
wi in the clustering tree, with D being the depth of the tree,
cd(wi) a class or sub-class assigned to wi, and cD(wi) being
the leaf associated with wi (the word itself). Then the n-gram
probability of wi given its history h can be estimated as follows:

P (wi|h) = P (c1(wi)|h)
DY

d=2

P (cd(wi)|h, c1:d−1) (1)

This equation holds as each words belongs to only one class,
there is a softmax function at each level of hierarchical repre-
sentation and each word ends up forming its own class in some
leaf of the tree.

The overall architecture of a SOUL NNLM is presented in
Figure 1. The model can be roughly divided into two parts. The
shortlist part deals with in-shortlist words that form separate
classes on their own without any sub-clustering. The softmax
function in this first output layer spans over all shortlist words
plus one additional node. This node serves as a root for a tree
that deal with with all other words from the vocabulary and in-
cludes multiple sub-class layers with a softmax in each.

The SOUL NNLM approach was previously evaluated on
GALE Mandarin STT task with a well-tuned baseline LIMSI
STT system (as described in [9]) based on 56k recognition vo-
cabulary. The gains attained with SOUL NNLMs correspond to
a relative improvement of 23% in perplexity and 7-9% in CER
over the baseline 4-gram Kneser-Ney discounted model when
SOUL NNLMs are interpolated with the latter. As compared
to conventional shortlist NNLMs, 0.1% absolute CER improve-
ment for 4-grams and 0.2% for 6-grams was attained in cases
the well tuned baseline has a character error rate under 10% [5].

Simultaneously with the work described above, using class
information at the output layer was proposed for recurrent
NNLMs [10]. This serves as an additional indication of con-
tinuous interest in improving neural network approach for STT.

3. SOUL NNLM Training Issues
Resampling of training data is conventionally used as it is com-
putationally infeasible to train a NNLM on the same amounts of
data as a baseline n-gram LM. Usually data up to 30M words
are chosen after resampling at each iteration of a neural net-
work. We are not aware of STT neural network language mod-
eling experiments with large vocabularies that made use of sig-
nificantly larger amounts of data, due to the prohibitive increase
in computational load and training time.

As one deals with large vocabularies (e.g. as the one used in
this study), the number of parameters related to the class-part of
the model increases significantly. In this situation training data
after resampling that is used for neural network training at each
epoch may be insufficient to obtain robust parameter estimates.

We can consider the output layer of SOUL model consisting
of two parts: the main softmax layer which models the probabil-
ities of most frequent in-shortlist words (corresponds to the up-
per rectangle in the Figure 1) and the remaining softmax layers
that deal with the classes of less frequent out-of-shortlist words
(represented in the lower rectangle in the Figure 1). These two
parts are not equally learned. For each example, while all pa-
rameters of main softmax layer are updated, only a little part of
the other parameters are learned. The rate of update depends
directly on word frequency. That means only the parameters re-
lated to shortlist words are frequently learned and this is not the
case for the others. At the same time the number of parameters
of the second part are much larger. As a result, following the
previous training scheme there is one part of the output layer
that is well learned and another part which is not. Thus we pro-
pose a new enhanced SOUL NNLM training scheme based on
separate training of the out-of-shortlist part at the output layer.
As compared to the standard SOUL NNLM training procedure,
it includes one additional step.

Training of SOUL NNLM training can be summarized in
four steps:

1. Shortlist NNLM training.
2. Dimensionality reduction.
3. Clustering based on distributed representations induced

from the context layer of the neural network.
4. Whole vocabulary SOUL NNLM training.

In our experiments, the algorithm starts with 4k classes in
addition to the shortlist of 8k recognition units. This makes 12k
units in total, that is equal to the shortlist size for Arabic shortlist
NNLMs (see results in Section 4). A standard NNLM model
with the shortlist as an output is trained at step 1, following one
vector initialization scheme [11]. Standard back-propagation
training as in [12] is performed for the whole vocabulary SOUL
NNLM at step 4.

The enhanced training scheme can be introduced as fol-
lows. After the clustering step 3, a new step 3′ is added. This
step is similar to 1 but is carried out only for out-of-shortlist
words. The part associated with shortlist words is temporally
kept intact. It reduces the size of first softmax layer to num-
ber of main classes of less frequent words (4k, 2 times smaller
than 8k, the total size of the output layer at step 1). That is
important since training time mostly depends on the size of the
first softmax layer. Furthermore, the example number of out-of-
shortlist words in training data is approximately 5 times smaller.
It means that if we keep the training time for each epoch of this
step as in step 1, we can increase the number of examples for
each epoch by the factor of 10 without considerable slow-downs
in training time.
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4. Experiments and Results
Arabic GALE task characterized by a vocabulary of about 300k
entries was chosen to evaluate the SOUL NNLM performance
for large vocabularies. State-of-the-art LIMSI Arabic STT sys-
tem is used to perform speech recognition experiments.

Arabic is a highly inflective and morphologically rich lan-
guage. In order to deal with its peculiarities, decomposi-
tion of words in its morphological constituents was shown
to improve speech recognition results [13, 14]. There are
several approaches to Arabic word decomposition. In this
study we use one of the most popular tools up-to-date, namely
MADA: Morphological Analysis and Disambiguation for Ara-
bic (http://www1.ccls.columbia.edu/˜cadim/MADA.html).

Acoustic models are based on concatenated TRAP-DCT (as
introduced in [15]), PLP and F0 features and are discrimina-
tively trained on about 2000 hours of speech.

Language model training data consists of about 1.7 bil-
lion words before decomposition. Altogether 32 interpolated
Kneser-Ney 4-gram LMs for different text corpora are trained
on MADA-decomposed units (about 2 billion on total) with-
out pruning and cut-offs. These models are further interpolated
into the final LM that serves as a robust baseline model. Lat-
tices generated with this model are subsequently rescored with
NNLMs.

Three NNLMs are trained with different resampling param-
eters, sizes of context (200, 300, 400) and hidden layers (500,
400, 300) for each n-gram order. These models are interpo-
lated in order to obtain final NNLMs. Resampling favors cor-
pora containing broadcast news (bn) and broadcast conversa-
tions (bc) data as target data. Up to 30M words data are used
at each NNLM iteration of shortlist-based and standard SOUL
NNLMs. For enhanced SOUL NNLMs up to 300M words are
used at the step 3′ (see Section 3) to train class output layers
that deal with out-of-shortlist words.

All training parameters for the SOUL NNLMs were kept
the same as for the shortlist NNLMs. Thus it can be argued
that the difference in performance is due to the use of the whole
vocabulary at the output layer. Three GALE development and
evaluation sets are used to evaluate the performance of differ-
ent models, namely dev09s, eval10ns and dev10c. These sets
consist of 23576, 45629 and 52181 MADA decomposed units
respectively. Recognition vocabulary contains 296772 entries.

Perplexity and word error rate (WER) results are presented
in Tables 1 and 2 respectively. The first rows in the tables corre-
spond to the 4-gram baseline Kneser-Ney LM. For the shortlist-
based NNLMs (marked with shrtlst) 12k most frequent words
form the shortlist. Six-gram NNLMs (6-gr) were trained in or-
der to verify possible improvements from using longer context
as opposed to the usual 4-gram (4-gr) setup. Perplexity results
in Table 1 are given both for stand-alone NNLMs (columns s/a)
and for the cases NNLMs are interpolated with the baseline 4-
gram LM (columns int). Models marked as SOUL are conven-
tional SOUL NNLMs as introduced in [5] while SOUL+ cor-
responds to the SOUL NNLMs that make use of the enhanced
training scheme as described in Section 3. The latter use more
data to train the out-of-shortlist part of output layers.

Perplexity results in Table 1 show that using longer context
brings improvements both for shortlist and SOUL NNLMs. It
should be mentioned that according to our experience longer-
context conventional n-gram models bring only marginal im-
provements and at the same time result in a drastic increase
in model sizes that makes them hard to handle. The ability
of neural network LMs to improve performance with the in-

Table 1: Perplexity for different language models.

LM type dev09s eval10ns dev10c
s/a int s/a int s/a int

4-gram baseline 312 239 256
shrtlst NN 4-gr 324 276 247 213 256 224
SOUL NN 4-gr 293 256 225 200 231 208
SOUL+ NN 4-gr 277 250 214 195 221 204
shrtlst NN 6-gr 302 263 228 202 236 210
SOUL NN 6-gr 255 231 196 180 200 186
SOUL+ NN 6-gr 245 227 189 177 194 183

crease of context goes in line with results obtained with recur-
rent NNLMs [4]. The latter can be regarded as a special case of
neural networks that takes account of all the history seen before
the predicted word.

Perplexity also shows that SOUL NNLMs consistently out-
perform shortlist NNLMs of the same orders on all the test sets.
Relative improvements about 10% for stand-alone NNLMs and
7% for interpolated models are observed for 4-gram NNLMs on
different test sets. For longer-context 6-gram NNLMs, the gains
from using SOUL NNLMs are even larger, about 15% and 12%
in stand-alone and interpolated scenarios respectively.

It is also worth noticing that SOUL NNLMs (both 4-gram
and 6-gram) outperform in terms of perplexity the baseline 4-
gram LM trained on much bigger data.

Only minor gains in perplexity are attained with the en-
hanced SOUL NNLM training scheme as compared to standard
SOUL NNLMs. This points out that using 10 times more data
to train out-of-shortlist part of SOUL NNLMs does not have
much influence on model performance.

Table 2: WER for different language models (in %).

LM type dev09s eval10ns dev10c
4-gram baseline 14.8 9.6 14.5
shrtlst NN 4-gr 14.4 9.1 14.2
SOUL NN 4-gr 14.3 9.0 14.0
SOUL+ NN 4-gr 14.1 9.1 14.0
shrtlst NN 6-gr 14.3 9.1 14.2
SOUL NN 6-gr 14.0 8.9 14.0
SOUL+ NN 6-gr 14.0 8.9 13.9

Results in Table 2 show that the improvements in perplex-
ity attained with SOUL NNLMs over shortlist NNLMs carry
over to speech recognition experiments. The lattices gener-
ated with the baseline 4-gram Kneser-Ney LM were rescored
with NNLMs of different types. The interpolation weights were
tuned on GALE Phase 5 development data and are given in Ta-
ble 3. It shows that the SOUL NNLMs obtain higher interpola-
tion weights as compared to the shortlist NNLMs.

As can be seen from Table 2, using SOUL NNLMs re-
sults in better recognition performance as compared to shortlist
NNLMs both for 4-gram and 6-gram cases. The gains from us-
ing 6-gram NNLMs are smaller than it could be expected as the
lattices had to be pruned before rescoring with 6-grams due to
computational reasons. The effect of pruning is most notable on
dev10c set. This set contains some large lattices that need more
severe pruning. However, as 6-gram shortlist NNLMs show no
improvement with pruned lattices over 4-gram NNLMs, 6-gram
SOUL NNLMs do still improve the results.
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Enhanced SOUL NNLMs bring improvements over stan-
dard SOUL NNLMs on some datasets and NNLM configura-
tions (4-gram NNLM on dev09s and 6-gram NNLM on dev10c).
There is rather unexpected small degradation with 4-grams on
eval10ns that is difficult to explain and we are going to run ad-
ditional experiments to find out the reasons.

Table 3: Neural network language model weights for interpola-
tion with the baseline n-gram model.

NNLM type interpolation weight
shrtlst NN 4-gr 0.50
SOUL NN 4-gr 0.68
SOUL+ NN 4-gr 0.72
shrtlst NN 6-gr 0.55
SOUL NN 6-gr 0.74
SOUL+ NN 6-gr 0.75

5. Conclusions and Discussion
In this paper we have investigated performance of structured
output layer neural networks on Arabic GALE task character-
ized by a large vocabulary containing approximatively 300k
entries. In our previous work significant gains with SOUL
NNLMs were reported on Mandarin GALE task with a smaller
vocabulary of 56k words. As for Mandarin, the results on Ara-
bic show that SOUL NNLMs consistently outperform conven-
tional shortlist NNLMs both in terms of perplexity (up to 15%
relative improvement) and recognition error rate (up to 0.3%
absolute improvement) on a challenging GALE task.

As the Arabic vocabulary is 6 times larger than the Man-
darin one, larger gains could be expected from using SOUL
NNLMs, as they estimate probabilities for all n-grams and not
only for those ending with a in-shortlist word. However, similar
gains were observed.

One of the possible reasons for similar gains on Arabic as
compared to Mandarin Chinese could be insufficient data to ro-
bustly estimate parameters in out-of-shortlist words in SOUL
NNLMs as the number of these parameters is greatly increased
with a much larger vocabulary. Thus enhanced SOUL NNLM
training scheme was proposed in this paper. It supposes sepa-
rate training of the part related to in-shortlist words (as each of
these forms a separate class itself without sub-clustering) and
the class part that deals with all other words from the vocab-
ulary. One order of magnitude more data is used to train the
out-of-shortlist part of SOUL NNLMs without drastic increase
in computational charge and training time. However, only mi-
nor improvements in perplexity and WER were observed.

As increasing training data for more robust estimates of out-
of-shortlist output layers of a SOUL NNLM doesn’t seem to
bring consistent significant improvements in recognition accu-
racy, another reason may be suggested. It is concerned with
a relatively hight data coverage with shortlists. Shortlists are
formed on the basis of all training data before resampling. For
12k shortlists used in Mandarin (as introduced in [5]) and Ara-
bic NNLMs (described in this paper), coverage on the basis
of all training data is 95% and 90% respectively. The overall
coverage shows that though Arabic vocabulary is several times
larger than the Chinese one, the shortlist coverage is only 5%
lower. As training data is resampled at each NNLM epoch
with the emphasis on sources containing target bn and bc data,
the number of calls to a NNLM (i.e. coverage at each epoch)

changes. The same is valid for development data due to the fact
it consists only of bn and bc data and the general vocabulary
may have different coverage. We checked the coverage on de-
velopment and test data and observed no significant difference
as compared to the overall coverage.

The shortlist coverage statistics shows that similar size
shortlists do relatively well in terms of data coverage even for
models with much larger vocabularies. Thus, as confirmed
by the experimental results, improvements from using full-
vocabulary SOUL NNLMs, while being consistent, are not pro-
portional to a vocabulary size.
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ror Rates in Phoneme Recognition”, in Proc. of TSD’04, Lecture
Notes in Computer Science, 3206:465-472, 2004.

1472


