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Abstract
Speech recognition technology has greatly evolved ovelasiedecade. However, one of the remaining challenges iscied the
development cost. Most recognition systems are tuned tatylar task and porting the system to a new task (or langleegjuires
substantial investment of time and money, as well as humpertéige. Todays state-of-the-art systems rely on the atvidityy of large
amounts of manually transcribed data for acoustic modelitrg and large normalized text corpora for language maaéiing. Obtain-
ing such data is both time-consuming and expensive, requirained human annotators with substantial amounts adrsigion. This

activities aimed a reducing the porting cost and at devatpgeneric core speech recognition technology.

1. Introduction use whole word patterns and do not care who the speaker

o ) or what the language is. For almost all more complex
Speech recognition tasks can be categorized by severgdsis, portability is a major concern. Some speech tech-

dimensions: the pumber of spegkers known to the systen_homgy companies have been addressing the language lo-
the vocabulary size, the speaking style, and the acoustigjization problem for many years, and some research sites
conditions. Concerning speakers, the most restrictive i$,5ve also been investigating speech recognition in meltipl
when only one speaker can use the system and the speakghqguages (4; 13; 14; 21; 35; 37) as well as speech recogni-
is required to enroll with the system in order to be rec-jon ysing multi-lingual components (19; 33). Multi-linglu
ognized (speaker-dependent). The system may be able YPeech processing has been the subject of several special
recognize speech from several speakers, but still requiregsssions at conferences and workshops (see for example, (1;
enrqllment data (multiple spfeaker) or the Ssystem can recy: 3: 20)). The EC ®RETEX project (http://coretex.itc.it)is
ognize the speech from nominally any speaker without anynyestigating methods to improve basic speech recognition
training data (speaker-independent). technology, including fast system development, as well as
A decade ago the most common recognition taskshe development of systems with high genericity and adapt-
were either small vocabulary isolated word or phrases oability. Fast system development refers to both language
speaker dependent dictation, whereas today speech recogipport, i.e., the capability of porting technology to eiff
nizers are able to transcribe unrestricted continuouscépee ent languages at a reasonable cost; and task portabity, i.
from broadcast data in multiple languages with acceptableéhe capability to easily adapt a technology to a new task
performance. The increased capabilities of todays recogay exploiting limited amounts of domain-specific knowl-
nizers is in part due to the improved accuracy (and in-edge. Genericity and adaptability refer to the capacity of
creased complexity) of the models, which are closely rethe technology to work properly on a wide range of tasks
lated to the availability of large spoken and text corporaand to dynamically keep models up to date using contem-
for training, and the wide availability of faster and cheape porary data. The more robust the initial generic system is,
computational means which have enabled the developmefiie less there is a need for adaptation.
and implementation of better training and decoding algo-  |n the next section an overview of todays most widely
rithms. Despite the extent of progress over the recent yeargised speech recognition technology is given. Following
recognition accuracy is still quite sensitive to the envi-sybsections address several approaches to reducing the cos
ronmental conditions and speaking style: channel qualityef porting, such as improving model genericity, and reduc-
speaker characteristics, and background noise have a largy the need for annotated training data. An attempt is made
impact on the acoustic component of the speech recognizeg give an idea of the amount of data and effort required to
whereas the speaking style and discourse domain Iargel‘yort to a different language or task.
influence the linguistic component. In addition, most sys-
tems are both task and language dependent, and bringing
up a system for a different task or language is costly and

requires human expertise. Speech recognition is concerned with converting the
Only for small vocabulary, speaker-dependent isolatedpeech waveform into a sequence of words. Today’s most
word or phrase speech recognizers, such as name dialing @erformant approaches are based on a statistical modeliza-
mobile telephones, portability is not really an issue. Withtion of the speech signal (16; 31; 32; 38). The basic model-
such devices, all of the names must be entered by the userg techniques have been successfully applied to a number
according to the specific protocol - such systems typicallyof languages and for a wide range of applications.

2. Speech Recognition Overview
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Figure 1. System diagram of a generic speech recognizedheseg statistical models, including training and decgdin
processes.

The main components of a speech recognition systenMarkov models (HMM) for acoustic modeling, which con-
are shown in Figure 1. The elements shown are the maigists of modeling the probability density function of a se-
knowledge sources (speech and textual training materialguence of acoustic feature vectors (32). These models are
and the pronunciation lexicon), the feature analysis (er papopular as they are performant and their parameters can be
rameterization), the acoustic and language models whickfficiently estimated using well established techniqués T
are estimated in a training phase, and the decoder. Th®larkov model is described by the number of states and the
training and decoding algorithms are largely task and laniransitions probabilities between states. The most widely
guage independent, the main language dependencies aretised acoustic units in continuous speech recognition sys-
the knowledge sources (the training corpora). tems are phone-basgdind typically have a small number

The first step of the acoustic feature analysis is digiti-of left-to-right states in order to capture the spectrainge
zation, in which the continuous speech signal is converte@cross time. Since the number of states imposes a minimal
into discrete samples. Acoustic feature extraction is thertime duration for the unit, some configurations allow cer-
carried out on a windowed portion of speethwith the tain states to be skipped. The probability of an observation
goal of reducing model complexity while trying to maintain (i.e. a speech vector) is assumed to be dependent only on
the linguistic information relevant for speech recognitio the state, which is known as the 1st order Markov assump-
Most recognition systems use short-time cepstral featureson.
based either on a Fourier transform or a linear prediction Phone based models offer the advantage that recogni-
model. Cepstral parameters are popular because they ardian lexicons can be described using the elementary units
compact representation, and are less correlated thart direof the given language, and thus benefit from many lin-
spectral components. Cepstral mean removal (subtractioguistic studies. It is of course possible to perform speech
of the mean from all input frames) is commonly used to re-recognition without using a phonemic lexicon, either by
duce the dependency on the acoustic recording conditionsise of “word models” (a commonly used approach for
and delta parameters (obtained by taking the first and sedsolated word recognition) or a different mapping such as
ond differences of the parameters in successive frames) atbe fenones (7). Compared with larger units, small sub-
often used to capture the dynamic nature of the speech sigvord units reduce the number of parameters, and more im-
nal. While the details of the feature analysis differs fromportantly can be associated with back-off mechanisms to
system to system, most of the commonly used analyses canodel rare or unseen, contexts, and facilitate porting¥o ne
be expected to work reasonably well for most languagesocabularies. Fenones offer the additional advantage-of au
and tasks. tomatic training which is of interest for language porting,

Most state-of-the-art systems make use of hidderbut lack the ability to include priori linguistic models.

A given HMM can represent a phone without con-

*An inherent assumption is that due to physical constraints o sideration of its neighbors (context-independent or mono-
the rate at which the articulators can move, the signal carohe
sidered quasi-stationary for short periods (on the ordéi0ofis to 2Phones usually correspond to phonemes, but may also corre-
20ms). spond to allophones such as flaps or glottal stop.




phone model) or a phone in a particular context (contextprised of a simple list of lexical items as observed in the
dependent model). The context may or may not include théext. Attempts have been made to use other units, for ex-
position of the phone within the word (word-position de- ample, to use a list of root forms (stems) augmented by
pendent), and word-internal and cross-word contexts magerivation, declension, composition rules. However, @hil
or may not be merged. Different approaches can be usechore powerful in terms of language coverage, such repre-
to select the contextual units based on frequency or usingentations are more difficult to integrate in present sbéte-
clustering techniques, or decision trees, and differgoesy the-art recognizer technology.
of contexts have been investigated. The model states are These pronunciations may be taken from existing pro-
often clustered so as to reduce the model size, resulting inunciation dictionaries, created manually or generated by
what are referred to as “tied-state” models. an automatic grapheme-phoneme conversion software. Al-
Acoustic model training consists of estimating the pa-ternate pronunciations are sometimes used to expliciply re
rameters of each HMM. For continuous density Gaussiamesent variants that cannot be easily modeled by the acous-
mixture HMMs, this requires estimating the means and cotic units, as is the case for homographs (words spelled the
variance matrices, the mixture weights and the transitiorsame, but pronounced differently) which reflect different
probabilities. The most popular approaches make use gfarts of speech (verb or noun) suchexsuse, record, pro-
the Maximum Likelihood criterion, ensuring the best matchduce While pronunciation modeling is widely acknowl-
between the model and the training data (assuming that thedged to be a challenge to the research community, there
size of the training data is sufficient to provide robust-esti is a lack of agreement as to what pronunciation variants
mates). Since the goal of training is to find the best modeshould be modeled and how to do so. Adding a large num-
to account of the observed data, the performance of thber of pronunciation variants to a recognition lexicon with
recognizer is critically dependent upon the represeritgtiv out accounting for their frequency of occurrence can reduce
of the training data. Speaker-independence is obtained biyne system performance. An automatic alignment system is
estimating the parameters of the acoustic models on largable to serve as an analysis tool which can be used to quan-
speech corpora containing data from a large speaker popiy the occurrence of events in large speech corpora and to
ulation. Since there are substantial differences in speecivestigate their dependence on lexical frequency (5).
from male and female talkers arising from anatomical dif-
ferences it is thus common practice to use separate mode®s2. Language modeling
for male and female speech in order to improve recognition | anguage models (LMs) are used in speech recognition
performance (requiring automatic gender identification).  to estimate the probability of word sequences. Grammatical
constraints can be described using a context-free grammars
21. Lexical and pronunciation modeling (for small to medium size vocabulary tasks these are usually
The lexicon is the link between the acoustic-level repre/manually elaborated) or can be modeled stochastically, as
sentation and the word sequence output by the speech re§ common for LVCSR. The most popular statistical meth-
ognizer (34). Lexical design entails two main parts: defi-0ds aren-gram models, which attempt to capture the syn-
nition and selection of the vocabulary items and representactic and semantic constraints by estimating the frequen-
tation of each pronunciation entry using the basic acousti€ies of sequences afwords. The assumption is made that
units of the recognizer. Recognition performance is obvi-the probability of a given word strinf, , ws, ..., wy) can
ously related to lexical coverage, and the accuracy of thée approximated bYIL, Pr(wi|wi_pi1, ..., wiio, wi_1),
acoustic models is linked to the consistency of the protherefore reducing the word history to the preceding 1
nunciations associated with each lexical entry. Developwords. A back-off mechanism is generally used to smooth
ing a consistent pronunciation lexicon requires subsahnti the estimates of the probabilities of rargrams by relying
language specific knowledge from a native speaker of then a lower orden-gram when there is insufficient training
language and usually entails manual modification even iflata, and to provide a means of modeling unobserved word
grapheme-to-phoneme rules are reasonably good for thgequences (17).
language of interest. The lexical units must be able to be Given a large text corpus it may seem relatively straight-
automatically extracted from a text corpus or from speechforward to construch-gram language models. Most of the
transcriptions and for a given size lexicon should opti-steps are pretty standard and make use of tools that count
mize the lexical coverage for the language and the appliword and word sequence occurrences. The main differ-
cation. Since on average, each out-of-vocabulary (OOVEnces arise in the choice of the vocabulary and in the defini-
word causes more than a single error (usually between 1.8on of words, such as the treatment of compound words or
and 2 errors), it is important to judiciously select the igco  acronyms, and the choice of the back-off strategy. There is,
nition vocabulary. The recognition word list is to some ex- however, a significant amount of effort needed to process
tent dependent on the conventions used in the source teitie texts before they can be used.
(punctuation markers, compound words, acronyms, case One of the main motivations for text normalization is
sensitivity, ...) and the specific language. The lexicatsini to reduce lexical variability so as to increase the coverage
can be chosen to explicitly model observed pronunciatiorfor a fixed vocabulary size. The normalization decisions
variants, for example, using compound words to repreare generally language-specific. Much of speech recogni-
sent word sequences subject to severe reductions such &gn research for American English has been supported by
“dunno” for “don’t know”. The vocabulary is usually com- ARPA and has been based on text materials which were



processed to remove upper/lower case distinction and consearch which uses a dynamic programming algorithm. This
pounds. Thus, for instance, no lexical distinction is madebasic strategy has been extended to deal with large vocab-
betweenGates, gatesr Green, green However with in-  ularies by adding features such as dynamic decoding, mul-
creased interest in going beyond transcription to informatipass search and N-best rescoring. Multi-pass decoding
tion extraction tasks (such as finding named entities or lostrategies progressively add knowledge sources in the de-
cating events in the audio signal) such distinctions are imeoding process and allows the complexity of the individual
portant. In our work at LIMSI for other languages (French, decoding passes to be reduced. Information between passes
German, Portuguese) capitalization of proper names is dids usually transmitted via word graphs, although some sys-
tinctive with different lexical items for the French words tems use N-best hypotheses (a list of the most likely word
Pierre, pierreor Roman, roman sequences with their respectives scores). One important ad
The main conditioning steps are text mark-up and convantage of multi-pass is the possibility to adapt the models
version. Text mark-up consists of tagging the texts (aticl between decoding passes. Acoustic model adaptation can
paragraph and sentence markers) and garbage bracketihg used to compensate mismatches between the training
(which includes not only corrupted text materials, but all and testing conditions, such as due to differences in acous-
text material unsuitable for sentence-based language motic environment, to microphones and transmission chan-
eling, such as tables and lists). Numerical expressions areels, or to particular speaker characteristics. Attempts a
typically expanded to approximate the spoken form ($150anguage model adaptation have been less successful. How-
— one hundred and fifty dollars). Further semi-automaticever, multi-pass approaches are not well suited to rea-tim
processing is necessary to correct frequent errors inhere@pplications since no hypothesis can be returned until the
in the texts (such as obvious mispellingdllion, officaly  entire utterance has been processed.
or arising from processing with the distributed text praces
ing tools. Some normalizations can be considered as “de- 3. Languageporting
compounding” rules in they modify the word boundaries  ping 5 recognizer to another language necessitates
and the total number of words. These concern the procesgyification of some of the system parameters, i.e. those
ing of ambiguous punctua_tlon maTk?rS (TSUCh as hyphen anﬁ#corporating language-dependent knowledge sources such
apostrophe)_, the pracessing of digit strings, and treatmen,g 1he phone set, the recognition lexicon (alternate word
of abbreviations a_nd acronyms (ABCB A. B. C D.). pronunciations), and phonological rules and the language
Another example |s_the treatment OT numbers_m Germanqe|.  Different languages have different sets of units
where decompounding can be used in order toincrease |, giterent coarticulation influences amomg adjacent
!cal coverage. The date 1991.Wh'Ch n stgndard Germarf)honemes. This influences the way of choosing context-
Is written asneunzehnhunderteinundneunzég be repre- dependent models and of tying distributions. Other consid-
s_ented by word sequ_enmunzehn_ hur_ldert ein und NEUN- arations are the acoustic confusability of the words in the
zig. Generally speaking, the choice is a compromise befanguage (such as homophone, monophone, and compound

tween producing an output close to correct standard Writteovord rates) and the word coverage of a given size recogni-
form of the language and lexical coverage, with the finaltion vocabulary.

choice of normalization being largely application-driven One important aspect in developing a transcription sys-

. Inpractice, the, selection of words is done so as t0 MiNye, for 5 different language is obtaining the necessary
imize the system’s OOV rate by including the most use-egqrces for training the acoustic and language models,
ful words. By useful we mean that the words are expected,,q 4 pronunciation lexicon. The Linguistic Data Con-
as an input to the recognizer, but also that the LM can beqtjym (LDC http:/mmw.ldc.upenn.equand the European
trained given the available text corpora. There is the SOMe[ anguage Resources Association (ELRp:/www.elda.f)
tim_es conflicting need for sufficient_amounts of text c_Iata 10 ave greatly aided the creation and distribution of languag
estimate LM parameters and assuring that the data is represqqrees. The number and diversity of language resources
sentative of the task. It is also common that different typeg, ;o grown substantially over recent years. However, most

of LM training material are available in differing quanés. ¢ ihe resources are only available for the most interesting
One easy way to combine training material from OI'ﬁeremlanguages from the commercial or military perspectives.

sources is to train a language model per source and to inter- There are two predominant approaches taken to boot-
polate them, where the interpolation weights are estimategtrapping the acoustic models for another language. The

on some development data. first is to use acoustic models from an existing recognizer
. and a pronunciation dictionary to segment manually anno-
2.3. Decoding tated training data for the target language. If recognizers
The aim of the decoder is to determine the word sefor several languages are available, the seed models can be
guence with the highest likelihood given the lexicon and theselected by taking the closest model in one of the available
acoustic and language models. Since it is often prohibitivéanguage-specific sets. An alternative approach is to use
to exhaustively search for the best solution, techniques ha a set of global acoustic models, that cover a wide number
been developed to reduce the computational load by limitef phonemes (33). This approach offers the advantage of
ing the search to a small part of the search space. The mobeing able to use the multilingual acoustic models to pro-
commonly used approach for small and medium vocabuvide additional training data, which is particularly in¢st-
lary sizes is the one-pass frame-synchronous Viterbi bearing when only very limited amounts of data (10 hours)



for the target language are available. tests. To give an idea of the resources used in developing
A general rule of thumb for the necessary resources fothese systems, the training material are shown in Table 1.
speaker independent, large vocabulary continuous speedhcan be seen that there is a wide disparity in the available
recognizers is that the minimal data requirements are ofanguage resources for a broadcast news transcription task
the order of 10 hours transcribed audio data for training thdor American English, 200 hours of manually transcribed
acoustic models and several million words of texts (tran-acoustic training were available from the LDC, compared
scriptions of audio if available) for language modeling-De with only about 20-50 hours for the other languages. Ob-
pending upon the application, these resources are more ¢dining appropriate language model training data is even
less difficult to obtain. For example, unannotated data foimore difficult. While newspaper and newswire texts are be-
broadcast news type tasks can be easily recorded via stageming widely available in many languages, these texts are
dard TV, satellite or cable and data of this type is becomingjuite different than transcriptions of spoken languageerOv
more easily accessible via the Internet. Related text inater 10k hours of commercial transcripts are available for Amer-
als are also available from a variety of on-line newspaperécan English (from PSMedia), and many TV stations pro-
and new feeds. The manual effort required to transcribgyide closed captions. Such data are not available for most
broadcast news data is roughly 20-40 hours per hour of awether languages, and in some countries it is illegal to sell
dio data, depending upon the desired precision (8). transcripts. Not shown here, manually annotated broadcast
Data for other applications can be much more difficult"€ws corpora are also available for the Italian (30 hours)
to obtain. In general, for spoken language dialog systemsnd Czech (30 hours) languages via ELRA and LDC re-
training data needs to be obtained from users interactin§Pectively, and some text sources can be found on the Inter-
with the system. Often times an initial corpus is recordedn€t.
from a human-human service (should it exist) or using sim-  Some of the system characteristics are shown in Ta-
ulations (Wizard-of-OZ) or an initial prototype system.€eTh ble 2, along with indicative recognition performance rates
different means offer different advantages. For examplefor these languages. State-of-the-art systems can traascr
WOz simulations help in making design decisions beforeunrestricted American English broadcast news data with
the technology is implemented and allow alternative deword error rates under 20%. Our transcription systems for
signs to be simulated quickly. However, the amount of datdrench and German have comparable error rates for news
that can be collected with a WOz setup is limited by thebroadcasts (6). The character error rate for Mandarin & als
need for a human wizard. Prototype systems offer the pogabout 20% (10). Based on our experience, it appears that
sibility of collection much larger corpora, albeit somewha With appropriately trained models, recognizer perforneanc
limited by the capacity of the current system. We have obiS more dependent upon the type and source of data, than on
served that the system’s response generation has a large the language. For example, documentaries are particularly
fluence on the naturalness of the data collected with a prochallenging to transcribe, as the audio quality is often not
totype system. very high, and there is a large proportion of voice over.
Other application areas of growing interest are the tran- . .
scription of conversational speech from telephone conver- 4. Reducing theporting cost
sations and meetings, as well as voicemail. Several sourcdsl. Improving Genericity

of multilingual corpora are available (for example, thelCal In the context of the EC GRETEX project, research is
Home and CallFriend corpora from LDC) This data is quiteunderway to improve the genercity of Speech recognition
difficult to obtain and COStIy to annotate due to its Verytechnok)gy, by improving the basic techno|g0y and exp|or-
spontaneous nature (hesitations, interruptions, userof jajng rapid adaptation methods which start with the initial
gon). The manual effort involved is higher than that re-ropust generic system and enhance performance on partic-
quired for broadcast news transcription, and the transcripy|ar tasks. To this extent, cross task recognition experi-
tions are less consistent and accurate. ments have been reported where models from one task are
The application-specific data is useful for accurate modused as a starting point for other tasks (24; 9; 15; 26; 30;
eling at different levels (acoustic, lexical, syntacticla®-  11). In (26) broadcast news (BN) (28) acoustic and lan-
mantic). Acquiring sufficient amounts of text training data guage models to decode the test data for three other tasks
is more challenging than obtaining acoustic data. With 10K TI-digits (27), ATIS (12) and WSJ (29)). For TI-digits and
queries relatively robust acoustic models can be trainedATIS the word error rate increase was shown to be primar-
but these queries contain only on the order of 100k wordsily due to a linguistic mismatch since using task-specific
which probably yield an incomplete coverage of the taskanguage models greatly reduces the error rate. For spon-
(ie. they are not sufficient for word list development) andtaneous WSJ dictation the BN models out-performed task-
are insufficient for trainingr-gram language models. specific models trained on read speech data, which can be
At LiMsI broadcast news transcription systems haveattributed to a better modelization of spontaneous speech
been developed for the American English, French, Gereffects (such as breath and filler words).
man, Mandarin, Spanish, Arabic and Portuguese languages. Methods to improve genericity of the models via multi-
The Mandarin language was chosen because it is quite difource training have been investigated. Multi-sourcairai
ferent from the other languages (tone and syllable-baseding can be carried out in a variety of ways — by pooling
and Mandarin resources are available via the LDC as weltlata, by interpolating models or via single or multi-step
as reference performance results from DARPA benchmarknodel adaptation. The aim of multi-source trainingis to ob-



Audio Text (words)
Language | Radio-TV sources Duration Size News Com.Trans.
English ABC, CNN, CSPAN, NPR, PRI, VOA 200h 1.9M 790M 240M
French Arte, TF1, A2, France-Info, France-Inter 50h 0.8M 300M 20M
German Arte 20h 0.2M 260M -
Mandarin | voa, ccTv, KAZN 20h 0.7M(c) | 200M(c) -
Portuguesg 9 sources 3.5h  ~35k 70M -
Spanish Televisa, UnivisionyoA 30h 0.33M 295M -
Arabic tv: Aljazeera, Syria; radio: Orient, Elsharg, ... 50h 0.32M 200M -

Table 1: Approximate sizes of the transcribed audio dataextatorpora used for estimating acoustic and language Isiode
For the text data, newspaper texts (News) and commerciaddrgptions (Com.Trans.) are distinguished in terms of the
millions of words (or characters for Mandarin). The Ameridanglish, Spanish and Mandarin data are distributed by the
LDC. The German data come from the EQIQE project and the French data partially fromi®@e and from the DGA.
The Portuguese data are part of the 5h, 11 source Pilot corpddmuthe EC AERT project (data from 2 sources 24Horas
and JornalTarde were reserved for the test set). The Aradigc\dere produced by the Vecsys company in collaboration

with the DGA.
Lexicon Language Model Test

Language | #phon. size (words) coverage N-gram ppx| Duration %Werr
English 48 65k 99.4% | 11Mfg,14Mtg,7Mbg 140, 3.0h 20
French 37 65k 98.8% | 10M fg, 13Mtg, 14Mbg 98| 3.0h 23
German 51 65k 96.5% | 10Mfg,14Mtg,8Mbg 213 2.0h 25(n)-35(d)
Mandarin 39 40k+5k(c) 99.7% | 19Mfg, 11Mtg,3Mbg 190 1.5h 20
Spanish 27 65k 94.3% 8M fg, 7M tg, 2M bg 159/ 1.0h 20
Portuguesg 39 65k 94.0% 9M tg, 3M bg 154 1.5h 40
Arabic 40 60k 90.5% 11M tg, 6M bg 160| 5.7h 20

Table 2: Some language characteristics. Specified for eajubge are: the number of phones used to represent lexical
pronunciations, the approximate vocabulary size in woctialacters for Mandarin) and lexical coverage (of the tatt)]

the language model size and the perplexity, the test datdidor(in hours) and the word/character error rates. Fobira

the vocabulary and language model are vowelized, howeeextind error rate does not include vowel or gemination errors
For German, separate word error rates are given for broadeass (n) and documentaries (d).

tain generic models which are comparable in performanceion in place of conventional maximum likelihood esti-

to the respective task-dependent models for all tasks urmation (MLE) have studied and it has been demonstrated
der consideration. Compared to the results obtained withat MMIE-based systems can lead to sizable reductions in
task-dependent acoustic models, both data pooling and serord error rate on the transcription of conversational-tele

guential adaptation schemes led to better performance fgghone speech (30). Experiments on discriminative train-
ATIS and WSJ read, with slight degradations for BN anding for cross-task genericity have made use of recognition
systems trained on the low-noise North American Business

In (9) cross-task porting experiments are reported fog\l_ews corpus of read newspaper texts and tested on tele-

TI-digits (25).

porting from an Italian broadcast news speech recognitio
system to two spoken dialogue domains. Supervised adaB
tation was shown to recover about 60% of the WER ga

between the broadcast news acoustic models and the task- _ o
specific acoustic models. Language model adaptation ug-2. Reducing the need for annotated training data

ing just 30 minutes of transcriptions was found to reduce

the gap in perplexity between the broadcast news and taslé-
dependent language models by 90%. It was also observ

that the out-of-vocabulary rates for the task-specific lan-
guage models are 3 to 5 times higher than the best adapt
models, due to the relatively limited amount of task-specifi
data and the wide coverage of the broadcast news domalna

yision and radio Broadcast News data. These experiments
howed that MMIE-trained models could indeed provide
FJmproved cross-task performance (11).

With today’s technology, the adaptation of a recognition
stem to a new task or new language requires the availabil-
fi// of sufficient amount of transcribed training data. When
changing to new domains, usually no exact transcriptions of
Gé\%oustic data are available, and the generation of such tran
. scribed data is an expensive process in terms of manpower
nd time. On the other hand, there often exist incomplete

Techniques for large-scale discriminative training of theinformation such as approximate transcriptions, sumrsarie
acoustic models of speech recognition systems using ther at least key words, which can be used to provide su-
maximum mutual information estimation (MMIE) crite- pervision in what can be referred to as “informed speech



Amount of training datg Language Mode Raw Acoustic training data
Raw Usable News.Com.Cap Language model | 200 hours| 1.5 hours| 10 min
10min 10min 53.1 News.Com.Cap, 65k 18.0 33.3 53.1
1.5h 1h 33.3 News, 65k 20.9 36.1 55.6
50h 33h 20.7 30 M words, 60k 24.1 40.8 60.2
104h 67h 19.1 1.8 M words, 40k 28.8 46.9 65.3
200h 123h 18.0

Table 4: Supervised acoustic model training: Reference
Table 3: Supervised acoustic model training: Word errorword error rates (%) on the 1999 evaluation test data with
rate (%) on the 1999 evaluation test data for various condivarying amounts of manually annotated acoustic training
tions using one set of gender-independent acoustic modetiata and a language model trained on 1.8 M and 30 M
trained on subsets of the HUB4 training data with detailedyords of news texts from 1997.
manual transcriptions. The language model is trained on
the available text sources, without any detailed transcrip

tions of the acoustic training data. The raw data reflects Raw Acoustic training data WER (%)
the size of the audio data before patrtitioning, and the us- bootstrap models 10 min manual|  65.3
able data the amount of data used in training the acoustic | 1 (6 shows) 4 h 54.1
models. 2 (+12 shows) 12 h 47.7
3 (+23 shows) 27h 43.7
. ) . 4 (+44 shows) 53 h 41.4
recognition”. Depending on the level of completeness, this 5 (+60 shows) 103 h 39.2
information can be used to develop confidence measures | g (+58 shows) 135h 37.4

with adapted or trigger language models or by approximate
alignments to automatic transcriptions. Another approach
is to use existing recognizer components (developed fofable 5: Unsupervised acoustic model training: Word er-
other tasks or languages) to automatically transcribe-taskor rate (%) on the 1999 evaluation test data with varying
specific training data. Although in the beginning the erroramounts of automatically transcribed acoustic trainirtgda
rate on new data is likely to be rather high, this speech datand a language model trained on 1.8 M words of news texts
can be used to re-train a recognition system. If carried outrom 1997.

in an iterative manner, the speech data base for the new do-

main can be cumulatively extended over tiwighoutdirect

manual transcription. This approach has been investigated i . h f training d
in (18; 22; 23; 36 39). tively increasing the amount of training data, more accu-

rate acoustic models are obtained, which can then be used

In order to give an idea of the influence of the amount Ofto transcribe another set of unannotated data. The manual
training data on system performance, Table 3 shows the per- '

fomance o  10RelTme Amercan Eng B system 1570l EcLess, oo genra i o
for different amounts of manually annotated training data. P 9 gp £S

The language model News.Com.Cap is trained on Iarge':t is no longer necessary to extend the pronunciation lex-

text corpora, and results from the interpolation of individ icon to cover all words and word fragments occurring in

ual language models trained on newspaper and newswireﬂs1e training data. In (22) it was found that somewhat com-

tests (790M words), commercially produced transcripts an(EJarabIe acoustic models could be estimated on 400 hours

closed-captions predating the test epoch (240M Words)automatlcally annotated data from the TDT-2 corpus and

The word error is seen to rapidly decrease initially, with 150 hours of carefully annotated data.
only a relatively small improvement above 30 hours of us-  The effects of reducing the amount of supervision are
able data. However, there is substantial information avail summarized in Table 5. The first observation that can be
able in the language models. Table 4 summarizes sumade, is that even using a recognizer with an initial word
pervised training results using substantially less laggua error of 65% the procedure is converging properly by train-
model training material. The second entry is for a languagéng acoustic models on automatically labeled data. This
model estimated only on the newpaper texts (790M words)is even more surprising since the only supervision is via a
whereas for the remaining two language models were esanguage model trained on a small amount of text data pre-
timated on only 30 M words of texts (the last 2 months ofdating the raw acoustic audio data. As the amount of auto-
1997) and 1.8 M words (texts from December 26-31, 1997)matically transcribed acoustic data is successively daijbl
It can be seen that the language model training texts havetfere are consistent reductions in the word error rate. &hil
large influence on the system performance, and even 30 ithese error rates are still quite high compared to supevise
words is relatively small for the broadcast news transcrip+raining, retranscribing the same data (36) can be expected
tion task. to reduce the word error rate further. (Recall that even with
The basic idea of light supervisionis to use a speech recsupervised acoustic model training trained on 200 hours of
ognizer to automatically transcribe unannotated dates thuraw data the word error rate is 28.8% with this language
generating “approximate” labeled training data. By itera-model.)



4.3. Unsupervised Cross-Task Adaptation automated training can be applied to essentially unlimited

An incremental unsupervised adaptation scheme waguantities of task-specific training data. _
investigated for cross-task adaptation from the broadcast 1he Pronunciation lexicon still requires substantial
news task to the ATIS task (26). In this system-in-loopmanual effort for languages without stralghtfo_ward letter
adaptation scheme, a first subset of the training data is auté?-Sound correspondences, and to handle foreign words and
matically transcribed using the generic system. The acoud2/OP€er names. For languages or dialects without a written
tic and linguistic models of the generic system are therform, the cha_llenge IS even_greater, since Important I_an-
adapted with these automatically annotated data and the r84@9€ modeling data are simply unavailable. Even if a
sulting models are used to transcribe another portion of thfansliterated form can be used, it is likely to be imprac-

training data. One obvious use of this scheme is for onlindiC@! t0 transcribe sufficient quantities of data for langea
model adaptation in a dialog system. model training.

Using about one-third (15 hours) of the ATIS training " Summary, our experience is that although general
corpus transcribed with a BN system to adapt both th
acoustic and language models, the word error rate is re-
duced from 20.8% to 6.9%. Transcribing the remaining
data, and readapting the models reduces the word error
5.5% (which can be compared to 4.7% for a task-specifi
system). Contrastive experiments have shown that this gaiﬁ
is somewhat equally split between adaptation of the acou
tic and language models.

4.4. CrossLanguage Portability

The same basic idea was used to develop BN acousti&0
models for the Portuguese language for which substantiall}{k
less manually transcribed data are available. RTP and IN-
ESC, partners in the Alert projeittp:alert.uni-duisburg.de)
provided 5 hours of manually annotated data from 11 dif-
ferent news programs. Two of the programs (82 minutes
were reserved for testing purposes (JornalT&2€4 00
and 24Horad9.07.00). The remaining 3.5 hours of data
were used for acoustic model training. The language model
texts were obtained from the following sources: the Por-
tuguese Newswire Text Corpus distributed by LDC (23M [2]
words from 1994-1998); Correio da Manha (1.6M words),
Expresso (1.9M words from 2000-2001), and Jornal de [3]
Noticias (46M words, from 1996-2001), The recognition
lexicon contains 64488 words. The pronunciations are gen-[4]
erated by grapheme-to-phoneme rules, and use 39 phones.

Initial acoustic model trained on the 3.5 hours of avail-
able data were used to transcribe 30 hours of Portuguese T
broadcasts. These acoustic models had a word error rate o
42.6%. By training on the 30 hours of data using the auto-
matic transcripts the word error was reduced to 39.1%. This
preliminary experiment supports the feasibility of lightl
supervised and unsupervised acoustic model training.

(1]

[6]

5. Conclusions [7]

This paper has discussed the main issues in speech rec-
ognizer development and portability across languages and8]
tasks. Today's most performant systems make use of statis-
tical models, and therefore require large corpora for acous
tic and language model training. However, acquiring these
resources is both time-consuming, costly, and may be be- ]
yond the economic interest for many languages. Research
is underway to reduce the need for manually annotated

training data, thus reducing the human investment needego]

for system development when porting to another task or
language. By eliminating the need for manual transcription

éechnologies and development strategies appear to port
from one language to another, to obtain optimal perfor-
mance language specificities must be taken into account.
tléf“forts underway to improve the genericity of speech rec-
é)gnizers, and to reduce training costs will certainly help t
nable the development of language technologies for mi-
ggority languages and less economically promising applica-
tions.
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