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Abstract
Speech recognition technology has greatly evolved over thelast decade. However, one of the remaining challenges is reducing the
development cost. Most recognition systems are tuned to a particular task and porting the system to a new task (or language) requires
substantial investment of time and money, as well as human expertise. Todays state-of-the-art systems rely on the availability of large
amounts of manually transcribed data for acoustic model training and large normalized text corpora for language model training. Obtain-
ing such data is both time-consuming and expensive, requiring trained human annotators with substantial amounts of supervision. This
paper addresses some of the main issues in porting a recognizer to another task or language, and highlights some some recent research
activities aimed a reducing the porting cost and at developing generic core speech recognition technology.

1. Introduction

Speech recognition tasks can be categorized by several
dimensions: the number of speakers known to the system,
the vocabulary size, the speaking style, and the acoustic
conditions. Concerning speakers, the most restrictive is
when only one speaker can use the system and the speaker
is required to enroll with the system in order to be rec-
ognized (speaker-dependent). The system may be able to
recognize speech from several speakers, but still requires
enrollment data (multiple speaker) or the system can rec-
ognize the speech from nominally any speaker without any
training data (speaker-independent).

A decade ago the most common recognition tasks
were either small vocabulary isolated word or phrases or
speaker dependent dictation, whereas today speech recog-
nizers are able to transcribe unrestricted continuous speech
from broadcast data in multiple languages with acceptable
performance. The increased capabilities of todays recog-
nizers is in part due to the improved accuracy (and in-
creased complexity) of the models, which are closely re-
lated to the availability of large spoken and text corpora
for training, and the wide availability of faster and cheaper
computational means which have enabled the development
and implementation of better training and decoding algo-
rithms. Despite the extent of progress over the recent years,
recognition accuracy is still quite sensitive to the envi-
ronmental conditions and speaking style: channel quality,
speaker characteristics, and background noise have a large
impact on the acoustic component of the speech recognizer,
whereas the speaking style and discourse domain largely
influence the linguistic component. In addition, most sys-
tems are both task and language dependent, and bringing
up a system for a different task or language is costly and
requires human expertise.

Only for small vocabulary, speaker-dependent isolated
word or phrase speech recognizers, such as name dialing on
mobile telephones, portability is not really an issue. With
such devices, all of the names must be entered by the user
according to the specific protocol - such systems typically

use whole word patterns and do not care who the speaker
or what the language is. For almost all more complex
tasks, portability is a major concern. Some speech tech-
nology companies have been addressing the language lo-
calization problem for many years, and some research sites
have also been investigating speech recognition in multiple
languages (4; 13; 14; 21; 35; 37) as well as speech recogni-
tion using multi-lingualcomponents (19; 33). Multi-lingual
speech processing has been the subject of several special
sessions at conferences and workshops (see for example, (1;
2; 3; 20)). The EC CORETEX project(http://coretex.itc.it)is
investigating methods to improve basic speech recognition
technology, including fast system development, as well as
the development of systems with high genericity and adapt-
ability. Fast system development refers to both language
support, i.e., the capability of porting technology to differ-
ent languages at a reasonable cost; and task portability, i.e.
the capability to easily adapt a technology to a new task
by exploiting limited amounts of domain-specific knowl-
edge. Genericity and adaptability refer to the capacity of
the technology to work properly on a wide range of tasks
and to dynamically keep models up to date using contem-
porary data. The more robust the initial generic system is,
the less there is a need for adaptation.

In the next section an overview of todays most widely
used speech recognition technology is given. Following
subsections address several approaches to reducing the cost
of porting, such as improving model genericity, and reduc-
ing the need for annotated training data. An attempt is made
to give an idea of the amount of data and effort required to
port to a different language or task.

2. Speech Recognition Overview

Speech recognition is concerned with converting the
speech waveform into a sequence of words. Today’s most
performant approaches are based on a statistical modeliza-
tion of the speech signal (16; 31; 32; 38). The basic model-
ing techniques have been successfully applied to a number
of languages and for a wide range of applications.
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Figure 1: System diagram of a generic speech recognizer based using statistical models, including training and decoding
processes.

The main components of a speech recognition system
are shown in Figure 1. The elements shown are the main
knowledge sources (speech and textual training materials
and the pronunciation lexicon), the feature analysis (or pa-
rameterization), the acoustic and language models which
are estimated in a training phase, and the decoder. The
training and decoding algorithms are largely task and lan-
guage independent, the main language dependencies are in
the knowledge sources (the training corpora).

The first step of the acoustic feature analysis is digiti-
zation, in which the continuous speech signal is converted
into discrete samples. Acoustic feature extraction is then
carried out on a windowed portion of speech1, with the
goal of reducing model complexity while trying to maintain
the linguistic information relevant for speech recognition.
Most recognition systems use short-time cepstral features
based either on a Fourier transform or a linear prediction
model. Cepstral parameters are popular because they are a
compact representation, and are less correlated than direct
spectral components. Cepstral mean removal (subtraction
of the mean from all input frames) is commonly used to re-
duce the dependency on the acoustic recording conditions,
and delta parameters (obtained by taking the first and sec-
ond differences of the parameters in successive frames) are
often used to capture the dynamic nature of the speech sig-
nal. While the details of the feature analysis differs from
system to system, most of the commonly used analyses can
be expected to work reasonably well for most languages
and tasks.

Most state-of-the-art systems make use of hidden

1An inherent assumption is that due to physical constraints on
the rate at which the articulators can move, the signal can becon-
sidered quasi-stationary for short periods (on the order of10ms to
20ms).

Markov models (HMM) for acoustic modeling, which con-
sists of modeling the probability density function of a se-
quence of acoustic feature vectors (32). These models are
popular as they are performant and their parameters can be
efficiently estimated using well established techniques. The
Markov model is described by the number of states and the
transitions probabilities between states. The most widely
used acoustic units in continuous speech recognition sys-
tems are phone-based2, and typically have a small number
of left-to-right states in order to capture the spectral change
across time. Since the number of states imposes a minimal
time duration for the unit, some configurations allow cer-
tain states to be skipped. The probability of an observation
(i.e. a speech vector) is assumed to be dependent only on
the state, which is known as the 1st order Markov assump-
tion.

Phone based models offer the advantage that recogni-
tion lexicons can be described using the elementary units
of the given language, and thus benefit from many lin-
guistic studies. It is of course possible to perform speech
recognition without using a phonemic lexicon, either by
use of “word models” (a commonly used approach for
isolated word recognition) or a different mapping such as
the fenones (7). Compared with larger units, small sub-
word units reduce the number of parameters, and more im-
portantly can be associated with back-off mechanisms to
model rare or unseen, contexts, and facilitate porting to new
vocabularies. Fenones offer the additional advantage of au-
tomatic training which is of interest for language porting,
but lack the ability to includea priori linguistic models.

A given HMM can represent a phone without con-
sideration of its neighbors (context-independent or mono-

2Phones usually correspond to phonemes, but may also corre-
spond to allophones such as flaps or glottal stop.



phone model) or a phone in a particular context (context-
dependent model). The context may or may not include the
position of the phone within the word (word-position de-
pendent), and word-internal and cross-word contexts may
or may not be merged. Different approaches can be used
to select the contextual units based on frequency or using
clustering techniques, or decision trees, and different types
of contexts have been investigated. The model states are
often clustered so as to reduce the model size, resulting in
what are referred to as “tied-state” models.

Acoustic model training consists of estimating the pa-
rameters of each HMM. For continuous density Gaussian
mixture HMMs, this requires estimating the means and co-
variance matrices, the mixture weights and the transition
probabilities. The most popular approaches make use of
the Maximum Likelihood criterion, ensuring the best match
between the model and the training data (assuming that the
size of the training data is sufficient to provide robust esti-
mates). Since the goal of training is to find the best model
to account of the observed data, the performance of the
recognizer is critically dependent upon the representativity
of the training data. Speaker-independence is obtained by
estimating the parameters of the acoustic models on large
speech corpora containing data from a large speaker pop-
ulation. Since there are substantial differences in speech
from male and female talkers arising from anatomical dif-
ferences it is thus common practice to use separate models
for male and female speech in order to improve recognition
performance (requiring automatic gender identification).

2.1. Lexical and pronunciation modeling

The lexicon is the link between the acoustic-level repre-
sentation and the word sequence output by the speech rec-
ognizer (34). Lexical design entails two main parts: defi-
nition and selection of the vocabulary items and represen-
tation of each pronunciation entry using the basic acoustic
units of the recognizer. Recognition performance is obvi-
ously related to lexical coverage, and the accuracy of the
acoustic models is linked to the consistency of the pro-
nunciations associated with each lexical entry. Develop-
ing a consistent pronunciation lexicon requires substantial
language specific knowledge from a native speaker of the
language and usually entails manual modification even if
grapheme-to-phoneme rules are reasonably good for the
language of interest. The lexical units must be able to be
automatically extracted from a text corpus or from speech
transcriptions and for a given size lexicon should opti-
mize the lexical coverage for the language and the appli-
cation. Since on average, each out-of-vocabulary (OOV)
word causes more than a single error (usually between 1.5
and 2 errors), it is important to judiciously select the recog-
nition vocabulary. The recognition word list is to some ex-
tent dependent on the conventions used in the source text
(punctuation markers, compound words, acronyms, case
sensitivity, ...) and the specific language. The lexical units
can be chosen to explicitly model observed pronunciation
variants, for example, using compound words to repre-
sent word sequences subject to severe reductions such as
“dunno” for “don’t know”. The vocabulary is usually com-

prised of a simple list of lexical items as observed in the
text. Attempts have been made to use other units, for ex-
ample, to use a list of root forms (stems) augmented by
derivation, declension, composition rules. However, while
more powerful in terms of language coverage, such repre-
sentations are more difficult to integrate in present state-of-
the-art recognizer technology.

These pronunciations may be taken from existing pro-
nunciation dictionaries, created manually or generated by
an automatic grapheme-phoneme conversion software. Al-
ternate pronunciations are sometimes used to explicitly rep-
resent variants that cannot be easily modeled by the acous-
tic units, as is the case for homographs (words spelled the
same, but pronounced differently) which reflect different
parts of speech (verb or noun) such asexcuse, record, pro-
duce. While pronunciation modeling is widely acknowl-
edged to be a challenge to the research community, there
is a lack of agreement as to what pronunciation variants
should be modeled and how to do so. Adding a large num-
ber of pronunciation variants to a recognition lexicon with-
out accounting for their frequency of occurrence can reduce
the system performance. An automatic alignment system is
able to serve as an analysis tool which can be used to quan-
tify the occurrence of events in large speech corpora and to
investigate their dependence on lexical frequency (5).

2.2. Language modeling

Language models (LMs) are used in speech recognition
to estimate the probability of word sequences. Grammatical
constraints can be described using a context-free grammars
(for small to medium size vocabulary tasks these are usually
manually elaborated) or can be modeled stochastically, as
is common for LVCSR. The most popular statistical meth-
ods aren-gram models, which attempt to capture the syn-
tactic and semantic constraints by estimating the frequen-
cies of sequences ofn words. The assumption is made that
the probability of a given word string(w1; w2; :::; wk) can
be approximated by

Qki=1Pr(wijwi�n+1; :::; wi�2; wi�1),
therefore reducing the word history to the precedingn � 1
words. A back-off mechanism is generally used to smooth
the estimates of the probabilities of raren-grams by relying
on a lower ordern-gram when there is insufficient training
data, and to provide a means of modeling unobserved word
sequences (17).

Given a large text corpus it may seem relatively straight-
forward to constructn-gram language models. Most of the
steps are pretty standard and make use of tools that count
word and word sequence occurrences. The main differ-
ences arise in the choice of the vocabulary and in the defini-
tion of words, such as the treatment of compound words or
acronyms, and the choice of the back-off strategy. There is,
however, a significant amount of effort needed to process
the texts before they can be used.

One of the main motivations for text normalization is
to reduce lexical variability so as to increase the coverage
for a fixed vocabulary size. The normalization decisions
are generally language-specific. Much of speech recogni-
tion research for American English has been supported by
ARPA and has been based on text materials which were



processed to remove upper/lower case distinction and com-
pounds. Thus, for instance, no lexical distinction is made
betweenGates, gatesor Green, green. However with in-
creased interest in going beyond transcription to informa-
tion extraction tasks (such as finding named entities or lo-
cating events in the audio signal) such distinctions are im-
portant. In our work at LIMSI for other languages (French,
German, Portuguese) capitalization of proper names is dis-
tinctive with different lexical items for the French words
Pierre, pierreor Roman, roman.

The main conditioning steps are text mark-up and con-
version. Text mark-up consists of tagging the texts (article,
paragraph and sentence markers) and garbage bracketing
(which includes not only corrupted text materials, but all
text material unsuitable for sentence-based language mod-
eling, such as tables and lists). Numerical expressions are
typically expanded to approximate the spoken form ($150! one hundred and fifty dollars). Further semi-automatic
processing is necessary to correct frequent errors inherent
in the texts (such as obvious mispellingsmilllion, officals)
or arising from processing with the distributed text process-
ing tools. Some normalizations can be considered as “de-
compounding” rules in they modify the word boundaries
and the total number of words. These concern the process-
ing of ambiguous punctuation markers (such as hyphen and
apostrophe), the processing of digit strings, and treatment
of abbreviations and acronyms (ABCD! A. B. C. D.).
Another example is the treatment of numbers in German,
where decompounding can be used in order to increase lex-
ical coverage. The date 1991 which in standard German
is written asneunzehnhunderteinundneunzigcan be repre-
sented by word sequenceneunzehn hundert ein und neun-
zig. Generally speaking, the choice is a compromise be-
tween producing an output close to correct standard written
form of the language and lexical coverage, with the final
choice of normalization being largely application-driven.

In practice, the selection of words is done so as to min-
imize the system’s OOV rate by including the most use-
ful words. By useful we mean that the words are expected
as an input to the recognizer, but also that the LM can be
trained given the available text corpora. There is the some-
times conflicting need for sufficient amounts of text data to
estimate LM parameters and assuring that the data is repre-
sentative of the task. It is also common that different types
of LM training material are available in differing quantities.
One easy way to combine training material from different
sources is to train a language model per source and to inter-
polate them, where the interpolation weights are estimated
on some development data.

2.3. Decoding

The aim of the decoder is to determine the word se-
quence with the highest likelihood given the lexicon and the
acoustic and language models. Since it is often prohibitive
to exhaustively search for the best solution, techniques have
been developed to reduce the computational load by limit-
ing the search to a small part of the search space. The most
commonly used approach for small and medium vocabu-
lary sizes is the one-pass frame-synchronous Viterbi beam

search which uses a dynamic programming algorithm. This
basic strategy has been extended to deal with large vocab-
ularies by adding features such as dynamic decoding, mul-
tipass search and N-best rescoring. Multi-pass decoding
strategies progressively add knowledge sources in the de-
coding process and allows the complexity of the individual
decoding passes to be reduced. Information between passes
is usually transmitted via word graphs, although some sys-
tems use N-best hypotheses (a list of the most likely word
sequences with their respectives scores). One important ad-
vantage of multi-pass is the possibility to adapt the models
between decoding passes. Acoustic model adaptation can
be used to compensate mismatches between the training
and testing conditions, such as due to differences in acous-
tic environment, to microphones and transmission chan-
nels, or to particular speaker characteristics. Attempts at
language model adaptation have been less successful. How-
ever, multi-pass approaches are not well suited to real-time
applications since no hypothesis can be returned until the
entire utterance has been processed.

3. Language porting
Porting a recognizer to another language necessitates

modification of some of the system parameters, i.e. those
incorporating language-dependent knowledge sources such
as the phone set, the recognition lexicon (alternate word
pronunciations), and phonological rules and the language
model. Different languages have different sets of units
and different coarticulation influences amomg adjacent
phonemes. This influences the way of choosing context-
dependent models and of tying distributions. Other consid-
erations are the acoustic confusability of the words in the
language (such as homophone, monophone, and compound
word rates) and the word coverage of a given size recogni-
tion vocabulary.

One important aspect in developing a transcription sys-
tem for a different language is obtaining the necessary
resources for training the acoustic and language models,
and a pronunciation lexicon. The Linguistic Data Con-
sortium (LDC http://www.ldc.upenn.edu) and the European
Language Resources Association (ELRAhttp://www.elda.fr)
have greatly aided the creation and distribution of language
resources. The number and diversity of language resources
has grown substantially over recent years. However, most
of the resources are only available for the most interesting
languages from the commercial or military perspectives.

There are two predominant approaches taken to boot-
strapping the acoustic models for another language. The
first is to use acoustic models from an existing recognizer
and a pronunciation dictionary to segment manually anno-
tated training data for the target language. If recognizers
for several languages are available, the seed models can be
selected by taking the closest model in one of the available
language-specific sets. An alternative approach is to use
a set of global acoustic models, that cover a wide number
of phonemes (33). This approach offers the advantage of
being able to use the multilingual acoustic models to pro-
vide additional training data, which is particularly interest-
ing when only very limited amounts of data (< 10 hours)



for the target language are available.
A general rule of thumb for the necessary resources for

speaker independent, large vocabulary continuous speech
recognizers is that the minimal data requirements are on
the order of 10 hours transcribed audio data for training the
acoustic models and several million words of texts (tran-
scriptions of audio if available) for language modeling. De-
pending upon the application, these resources are more or
less difficult to obtain. For example, unannotated data for
broadcast news type tasks can be easily recorded via stan-
dard TV, satellite or cable and data of this type is becoming
more easily accessible via the Internet. Related text materi-
als are also available from a variety of on-line newspapers
and new feeds. The manual effort required to transcribe
broadcast news data is roughly 20-40 hours per hour of au-
dio data, depending upon the desired precision (8).

Data for other applications can be much more difficult
to obtain. In general, for spoken language dialog systems,
training data needs to be obtained from users interacting
with the system. Often times an initial corpus is recorded
from a human-human service (should it exist) or using sim-
ulations (Wizard-of-OZ) or an initial prototypesystem. The
different means offer different advantages. For example,
WOz simulations help in making design decisions before
the technology is implemented and allow alternative de-
signs to be simulated quickly. However, the amount of data
that can be collected with a WOz setup is limited by the
need for a human wizard. Prototype systems offer the pos-
sibility of collection much larger corpora, albeit somewhat
limited by the capacity of the current system. We have ob-
served that the system’s response generation has a large in-
fluence on the naturalness of the data collected with a pro-
totype system.

Other application areas of growing interest are the tran-
scription of conversational speech from telephone conver-
sations and meetings, as well as voicemail. Several sources
of multilingual corpora are available (for example, the Call-
Home and CallFriend corpora from LDC). This data is quite
difficult to obtain and costly to annotate due to its very
spontaneous nature (hesitations, interruptions, use of jar-
gon). The manual effort involved is higher than that re-
quired for broadcast news transcription, and the transcrip-
tions are less consistent and accurate.

The application-specific data is useful for accurate mod-
eling at different levels (acoustic, lexical, syntactic and se-
mantic). Acquiring sufficient amounts of text training data
is more challenging than obtaining acoustic data. With 10k
queries relatively robust acoustic models can be trained,
but these queries contain only on the order of 100k words,
which probably yield an incomplete coverage of the task
(ie. they are not sufficient for word list development) and
are insufficient for trainingn-gram language models.

At L IMSI broadcast news transcription systems have
been developed for the American English, French, Ger-
man, Mandarin, Spanish, Arabic and Portuguese languages.
The Mandarin language was chosen because it is quite dif-
ferent from the other languages (tone and syllable-based),
and Mandarin resources are available via the LDC as well
as reference performance results from DARPA benchmark

tests. To give an idea of the resources used in developing
these systems, the training material are shown in Table 1.
It can be seen that there is a wide disparity in the available
language resources for a broadcast news transcription task:
for American English, 200 hours of manually transcribed
acoustic training were available from the LDC, compared
with only about 20-50 hours for the other languages. Ob-
taining appropriate language model training data is even
more difficult. While newspaper and newswire texts are be-
coming widely available in many languages, these texts are
quite different than transcriptions of spoken language. Over
10k hours of commercial transcripts are available for Amer-
ican English (from PSMedia), and many TV stations pro-
vide closed captions. Such data are not available for most
other languages, and in some countries it is illegal to sell
transcripts. Not shown here, manually annotated broadcast
news corpora are also available for the Italian (30 hours)
and Czech (30 hours) languages via ELRA and LDC re-
spectively, and some text sources can be found on the Inter-
net.

Some of the system characteristics are shown in Ta-
ble 2, along with indicative recognition performance rates
for these languages. State-of-the-art systems can transcribe
unrestricted American English broadcast news data with
word error rates under 20%. Our transcription systems for
French and German have comparable error rates for news
broadcasts (6). The character error rate for Mandarin is also
about 20% (10). Based on our experience, it appears that
with appropriately trained models, recognizer performance
is more dependent upon the type and source of data, than on
the language. For example, documentaries are particularly
challenging to transcribe, as the audio quality is often not
very high, and there is a large proportion of voice over.

4. Reducing the porting cost
4.1. Improving Genericity

In the context of the EC CORETEX project, research is
underway to improve the genercity of speech recognition
technology, by improving the basic technolgoy and explor-
ing rapid adaptation methods which start with the initial
robust generic system and enhance performance on partic-
ular tasks. To this extent, cross task recognition experi-
ments have been reported where models from one task are
used as a starting point for other tasks (24; 9; 15; 26; 30;
11). In (26) broadcast news (BN) (28) acoustic and lan-
guage models to decode the test data for three other tasks
(TI-digits (27), ATIS (12) and WSJ (29)). For TI-digits and
ATIS the word error rate increase was shown to be primar-
ily due to a linguistic mismatch since using task-specific
language models greatly reduces the error rate. For spon-
taneous WSJ dictation the BN models out-performed task-
specific models trained on read speech data, which can be
attributed to a better modelization of spontaneous speech
effects (such as breath and filler words).

Methods to improve genericity of the models via multi-
source training have been investigated. Multi-source train-
ing can be carried out in a variety of ways – by pooling
data, by interpolating models or via single or multi-step
model adaptation. The aim of multi-source training is to ob-



Audio Text (words)
Language Radio-TV sources Duration Size News Com.Trans.
English ABC, CNN, CSPAN, NPR, PRI, VOA 200h 1.9M 790M 240M
French Arte, TF1, A2, France-Info, France-Inter 50h 0.8M 300M 20M
German Arte 20h 0.2M 260M -
Mandarin VOA , CCTV, KAZN 20h 0.7M(c) 200M(c) -
Portuguese 9 sources 3.5h �35k 70M -
Spanish Televisa, Univision,VOA 30h 0.33M 295M -
Arabic tv: Aljazeera, Syria; radio: Orient, Elsharq, ... 50h 0.32M 200M -

Table 1: Approximate sizes of the transcribed audio data andtext corpora used for estimating acoustic and language models.
For the text data, newspaper texts (News) and commercial transcriptions (Com.Trans.) are distinguished in terms of the
millions of words (or characters for Mandarin). The American English, Spanish and Mandarin data are distributed by the
LDC. The German data come from the EC OLIVE project and the French data partially from OLIVE and from the DGA.
The Portuguese data are part of the 5h, 11 source Pilot corpus used in the EC ALERT project (data from 2 sources 24Horas
and JornalTarde were reserved for the test set). The Arabic data were produced by the Vecsys company in collaboration
with the DGA.

Lexicon Language Model Test
Language #phon. size (words) coverage N-gram ppx Duration %Werr
English 48 65k 99.4% 11M fg, 14M tg, 7M bg 140 3.0h 20
French 37 65k 98.8% 10M fg, 13M tg, 14M bg 98 3.0h 23
German 51 65k 96.5% 10M fg, 14M tg, 8M bg 213 2.0h 25(n)-35(d)
Mandarin 39 40k+5k(c) 99.7% 19M fg, 11M tg, 3M bg 190 1.5h 20
Spanish 27 65k 94.3% 8M fg, 7M tg, 2M bg 159 1.0h 20
Portuguese 39 65k 94.0% 9M tg, 3M bg 154 1.5h 40
Arabic 40 60k 90.5% 11M tg, 6M bg 160 5.7h 20

Table 2: Some language characteristics. Specified for each language are: the number of phones used to represent lexical
pronunciations, the approximate vocabulary size in words (characters for Mandarin) and lexical coverage (of the test data),
the language model size and the perplexity, the test data duration (in hours) and the word/character error rates. For Arabic
the vocabulary and language model are vowelized, however the word error rate does not include vowel or gemination errors.
For German, separate word error rates are given for broadcast news (n) and documentaries (d).

tain generic models which are comparable in performance
to the respective task-dependent models for all tasks un-
der consideration. Compared to the results obtained with
task-dependent acoustic models, both data pooling and se-
quential adaptation schemes led to better performance for
ATIS and WSJ read, with slight degradations for BN and
TI-digits (25).

In (9) cross-task porting experiments are reported for
porting from an Italian broadcast news speech recognition
system to two spoken dialogue domains. Supervised adap-
tation was shown to recover about 60% of the WER gap
between the broadcast news acoustic models and the task-
specific acoustic models. Language model adaptation us-
ing just 30 minutes of transcriptions was found to reduce
the gap in perplexity between the broadcast news and task-
dependent language models by 90%. It was also observed
that the out-of-vocabulary rates for the task-specific lan-
guage models are 3 to 5 times higher than the best adapted
models, due to the relatively limited amount of task-specific
data and the wide coverage of the broadcast news domain.

Techniques for large-scale discriminative training of the
acoustic models of speech recognition systems using the
maximum mutual information estimation (MMIE) crite-

rion in place of conventional maximum likelihood esti-
mation (MLE) have studied and it has been demonstrated
that MMIE-based systems can lead to sizable reductions in
word error rate on the transcription of conversational tele-
phone speech (30). Experiments on discriminative train-
ing for cross-task genericity have made use of recognition
systems trained on the low-noise North American Business
News corpus of read newspaper texts and tested on tele-
vision and radio Broadcast News data. These experiments
showed that MMIE-trained models could indeed provide
improved cross-task performance (11).

4.2. Reducing the need for annotated training data

With today’s technology, the adaptation of a recognition
system to a new task or new language requires the availabil-
ity of sufficient amount of transcribed training data. When
changing to new domains, usually no exact transcriptions of
acoustic data are available, and the generation of such tran-
scribed data is an expensive process in terms of manpower
and time. On the other hand, there often exist incomplete
information such as approximate transcriptions, summaries
or at least key words, which can be used to provide su-
pervision in what can be referred to as “informed speech



Amount of training data Language Model
Raw Usable News.Com.Cap

10min 10min 53.1
1.5h 1h 33.3
50h 33h 20.7

104h 67h 19.1
200h 123h 18.0

Table 3: Supervised acoustic model training: Word error
rate (%) on the 1999 evaluation test data for various condi-
tions using one set of gender-independent acoustic models
trained on subsets of the HUB4 training data with detailed
manual transcriptions. The language model is trained on
the available text sources, without any detailed transcrip-
tions of the acoustic training data. The raw data reflects
the size of the audio data before partitioning, and the us-
able data the amount of data used in training the acoustic
models.

recognition”. Depending on the level of completeness, this
information can be used to develop confidence measures
with adapted or trigger language models or by approximate
alignments to automatic transcriptions. Another approach
is to use existing recognizer components (developed for
other tasks or languages) to automatically transcribe task-
specific training data. Although in the beginning the error
rate on new data is likely to be rather high, this speech data
can be used to re-train a recognition system. If carried out
in an iterative manner, the speech data base for the new do-
main can be cumulatively extended over timewithoutdirect
manual transcription. This approach has been investigated
in (18; 22; 23; 36; 39).

In order to give an idea of the influence of the amount of
training data on system performance, Table 3 shows the per-
formance of a 10xRealTime American English BN system
for different amounts of manually annotated training data.
The language model News.Com.Cap is trained on large
text corpora, and results from the interpolation of individ-
ual language models trained on newspaper and newswires
tests (790M words), commercially produced transcripts and
closed-captions predating the test epoch (240M words).
The word error is seen to rapidly decrease initially, with
only a relatively small improvement above 30 hours of us-
able data. However, there is substantial information avail-
able in the language models. Table 4 summarizes su-
pervised training results using substantially less language
model training material. The second entry is for a language
model estimated only on the newpaper texts (790M words),
whereas for the remaining two language models were es-
timated on only 30 M words of texts (the last 2 months of
1997) and 1.8 M words (texts from December 26-31, 1997).
It can be seen that the language model training texts have a
large influence on the system performance, and even 30 M
words is relatively small for the broadcast news transcrip-
tion task.

The basic idea of light supervision is to use a speech rec-
ognizer to automatically transcribe unannotated data, thus
generating “approximate” labeled training data. By itera-

Raw Acoustic training data
Language model 200 hours 1.5 hours 10 min

News.Com.Cap, 65k 18.0 33.3 53.1
News, 65k 20.9 36.1 55.6
30 M words, 60k 24.1 40.8 60.2
1.8 M words, 40k 28.8 46.9 65.3

Table 4: Supervised acoustic model training: Reference
word error rates (%) on the 1999 evaluation test data with
varying amounts of manually annotated acoustic training
data and a language model trained on 1.8 M and 30 M
words of news texts from 1997.

Raw Acoustic training data WER (%)
bootstrap models 10 min manual 65.3
1 (6 shows) 4 h 54.1
2 (+12 shows) 12 h 47.7
3 (+23 shows) 27 h 43.7
4 (+44 shows) 53 h 41.4
5 (+60 shows) 103 h 39.2
6 (+58 shows) 135 h 37.4

Table 5: Unsupervised acoustic model training: Word er-
ror rate (%) on the 1999 evaluation test data with varying
amounts of automatically transcribed acoustic training data
and a language model trained on 1.8 M words of news texts
from 1997.

tively increasing the amount of training data, more accu-
rate acoustic models are obtained, which can then be used
to transcribe another set of unannotated data. The manual
work is considerably reduced, not only in generating the an-
notated corpus but also during the training procedure, since
it is no longer necessary to extend the pronunciation lex-
icon to cover all words and word fragments occurring in
the training data. In (22) it was found that somewhat com-
parable acoustic models could be estimated on 400 hours
automatically annotated data from the TDT-2 corpus and
150 hours of carefully annotated data.

The effects of reducing the amount of supervision are
summarized in Table 5. The first observation that can be
made, is that even using a recognizer with an initial word
error of 65% the procedure is converging properly by train-
ing acoustic models on automatically labeled data. This
is even more surprising since the only supervision is via a
language model trained on a small amount of text data pre-
dating the raw acoustic audio data. As the amount of auto-
matically transcribed acoustic data is successively doubled,
there are consistent reductions in the word error rate. While
these error rates are still quite high compared to supervised
training, retranscribing the same data (36) can be expected
to reduce the word error rate further. (Recall that even with
supervised acoustic model training trained on 200 hours of
raw data the word error rate is 28.8% with this language
model.)



4.3. Unsupervised Cross-Task Adaptation

An incremental unsupervised adaptation scheme was
investigated for cross-task adaptation from the broadcast
news task to the ATIS task (26). In this system-in-loop
adaptation scheme, a first subset of the training data is auto-
matically transcribed using the generic system. The acous-
tic and linguistic models of the generic system are then
adapted with these automatically annotated data and the re-
sulting models are used to transcribe another portion of the
training data. One obvious use of this scheme is for online
model adaptation in a dialog system.

Using about one-third (15 hours) of the ATIS training
corpus transcribed with a BN system to adapt both the
acoustic and language models, the word error rate is re-
duced from 20.8% to 6.9%. Transcribing the remaining
data, and readapting the models reduces the word error to
5.5% (which can be compared to 4.7% for a task-specific
system). Contrastive experiments have shown that this gain
is somewhat equally split between adaptation of the acous-
tic and language models.

4.4. Cross Language Portability

The same basic idea was used to develop BN acoustic
models for the Portuguese language for which substantially
less manually transcribed data are available. RTP and IN-
ESC, partners in the Alert project(http:alert.uni-duisburg.de)
provided 5 hours of manually annotated data from 11 dif-
ferent news programs. Two of the programs (82 minutes)
were reserved for testing purposes (JornalTarde20 04 00
and 24Horas19 07 00). The remaining 3.5 hours of data
were used for acoustic model training. The language model
texts were obtained from the following sources: the Por-
tuguese Newswire Text Corpus distributed by LDC (23M
words from 1994-1998); Correio da Manha (1.6M words),
Expresso (1.9M words from 2000-2001), and Jornal de
Noticias (46M words, from 1996-2001), The recognition
lexicon contains 64488 words. The pronunciations are gen-
erated by grapheme-to-phoneme rules, and use 39 phones.

Initial acoustic model trained on the 3.5 hours of avail-
able data were used to transcribe 30 hours of Portuguese TV
broadcasts. These acoustic models had a word error rate of
42.6%. By training on the 30 hours of data using the auto-
matic transcripts the word error was reduced to 39.1%. This
preliminary experiment supports the feasibility of lightly
supervised and unsupervised acoustic model training.

5. Conclusions
This paper has discussed the main issues in speech rec-

ognizer development and portability across languages and
tasks. Today’s most performant systems make use of statis-
tical models, and therefore require large corpora for acous-
tic and language model training. However, acquiring these
resources is both time-consuming, costly, and may be be-
yond the economic interest for many languages. Research
is underway to reduce the need for manually annotated
training data, thus reducing the human investment needed
for system development when porting to another task or
language. By eliminating the need for manual transcription,

automated training can be applied to essentially unlimited
quantities of task-specific training data.

The pronunciation lexicon still requires substantial
manual effort for languages without straightfoward letter-
to-sound correspondences, and to handle foreign words and
proper names. For languages or dialects without a written
form, the challenge is even greater, since important lan-
guage modeling data are simply unavailable. Even if a
transliterated form can be used, it is likely to be imprac-
tical to transcribe sufficient quantities of data for language
model training.

In summary, our experience is that although general
technologies and development strategies appear to port
from one language to another, to obtain optimal perfor-
mance language specificities must be taken into account.
Efforts underway to improve the genericity of speech rec-
ognizers, and to reduce training costs will certainly help to
enable the development of language technologies for mi-
nority languages and less economically promising applica-
tions.
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