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Abstract
In this contribution we investigate the importance of different size text and speechcorpora for speechrecognition in French, measuring

the impact of the training data size on the recognition results and the effect of different text normalization choices. Compared to English,
the French language has higher lexical variety, which in turn implies lower lexical coverage for fixed size lexica, and poorer language
modeling for fixed size training text corpora. Increasing the size of training text corpus is shown to be more effective for error reduction
than adding acoustic data. Experimental results indicate that a significant increase in training texts for language modeling should be
accompanied by an increase in vocabulary size, at least as long as lexical coverage remains a problem. The impact of text normalization
on recognition results is demonstrated by applying different types of normalizations to the reference and hypothesis strings. An analysis
of the word error rate is given as a function of word frequencyrank. The contribution of the language model is shown to be ofparticular
importance to discriminate homophones in French which cannot be seperated on an acoustic basis. Additional training text data should
still allow improvement of language model accuracy and hence yield better recognition results.

1. Introduction

It is generally admitted that increasing speech and text cor-
pora for training, results in more accurate acoustic and lan-
guage models entailing reductions in the recognition error
rate. In this contributionwe measure the impact of different
size acoustic training corpora and different size text training
corpora on our French large vocabulary continuous speech
recognizer.
French is known to be an inflected language with a relatively
high lexical variety. When developing speech recognition
systems this property inhibits the achievement of high lexi-
cal coverage for a fixed lexicon size and accurate language
modeling given limited size training corpora. The lexical
variety as observed in different text sources (mainly news-
papers) can be partly reduced by appropriate text normal-
ization (Adda 1997), but the need of additional text corpora
for French language model (LM) training has been clearly
noted (Adda-Decker 1997). A large proportion of observed
lexical variety corresponds to homophones in speech, which
can be seperated only by an appropriate language model.
Concerning homophones, a comparative study of French
and English showed that, given a perfect phonemic tran-
scription, about 20% of words in English newspapers are
ambiguous, whereas 75% of the words in French newspaper
texts have an ambiguous phonemic transcription (Gauvain
1994). Concerning lexical coverage, the number of words
in French must typically be doubled in order to obtain the
same word coverage as in English for comparable news-
paper text conditions. This difference between French and
English mainly stems from the number and gender agree-
ment in French for nouns, adjectives and past participles,
and the high number of different verbal forms for a given
verb (about 40 forms in French as opposed to at most 5 in
English).

When increasing the system’s lexicon from 20k to 65k
words, additional text corpora are required to estimate LM
parameters. Observed gains in recognition performance are
then due to both improved lexical coverage and language
modeling. The use of different amounts of acoustic training
material is discussed. Recognition results are presented and
compared on 20k and 65k systems using test sets with and
without out of vocabulary word (OOV) control.
The impact of text normalization on recognition results is
demonstrated by applying different types of normalizations
on the reference and hypothesis strings. The results show
the link between a proper tokenization of the text material
and recognition results. Observed word error rates are re-
lated to word frequency ranks in order to highlight the LM
contribution during the recognition decision. These results
underline the need for better language models.
In the next Section we providea short description of the gen-
eral framework in which our latest French large vocabulary
continuous speech recognition system has been evaluated
(AUPELF project) and in which a major part of the below
described developments have been carried out. In Section
3 we present the different French speech corpora used and
corresponding recognition results. Section 4 provides a
description of text corpora, language models and related
recognition experiments. In Section 5 the problem of text
normalization or tokenization is addressed with respect to
coverage and recognition result scoring. In Section 6 the
main error sources for French speech recognition are de-
scribed and related to either acoustic or language modeling
problems.

2. The Francophone AUPELF Project

A speech recognition evaluation project for French rec-
ognizers has been launched in 1996 by the Francophone
AUPELF-UREF organisation. Academic sites with French
recognition systems could participate in various evaluation



categories on read speech fromLeMondenewspaper. The
different categories mainly differed by the allowed lexicon
size (20k,65k), and by the use or not of an OOV-controlled
test set. Previous experiments in large vocabulary speech
recognition in French have been reported in Lamel (1995)
and in Young (1997) using a 20k vocabulary (LRE-SQALE

project) on test sets with a controlled OOV rate of about 2%.
Without artificial limitation the OOV rate tends to be closer
to 5 or 6% with 20k systems. For the AUPELF’97 evaluation
(Dolmazon 1997) development and evaluation test setsT
of 600 sentences have been selected without prior control
of the OOV rate. From these,T 0 subsets (containing about
300 sentences) of paragraphs minimizing OOV rates have
been selected. All results reported below are obtained on
the development test sets. Comparisons betweenT andT 0
are carried out. More extensive information concerning our
AUPELF system and the results obtained can be found in
Adda-Decker (1998), and in Adda (1997a,b,c).

3. Speech corpora

We briefly summarize the acoustic modeling approach of
our system, before describing the investigated speech cor-
pora and the results obtained.
Acoustic modeling: The recognizer makes use of con-
tinuous density HMM (CDHMM) with Gaussian mixture
for acoustic modeling. The acoustic models are sets of
context-dependent (CD), position-independent phone mod-
els, which include both intra-word and cross-word con-
texts, selected automatically based on their frequencies in
the training data. Each phone model is a 3-state left-to-right
CDHMM with Gaussian mixtureobservation densities (typ-
ically 32 components). The acoustic parameters consist of
39 cepstral parameters (including first and second order
derivatives) derived from a Mel spectrum estimated on a
8kHz bandwidth.
The acoustic models are built in a series of steps. A first
set of models is used to segment and label the training data
using Viterbi alignment of the text transcription and a lexi-
con containing one or more pronunciations per word. The
chosen phone sequence and segmentation are then used to
construct a set of context-independent models, with a max-
imum of 32 Gaussians per state. Larger context-dependent
model sets can then be built in a similar way, using new seg-
mentations obtained with a previous set of acoustic models.
As contexts are selected based on their frequencies in the
training data, additional training data should result in im-
proved acoustic modeling accuracy.
Corpora description: The corpora contain read newspa-
per texts fromLeMonde, selected to cover a high range of
phonemic contexts (Lamel 1991). Three corpora have been
used in the recognition experiments reported here:
Bref80: 5.3k sentences from 80 speakers, as used in the
SQALE experiments.
Bref: 66.6k sentences from 120 speakers (Bref80� Bref).
Bref+Bref2: 85.9k sentences from 420 speakers (Bref�
Bref+Bref2).
Bref contains a relatively small number of speakers uttering
each a large number of sentences (close to 500), whereas

Bref2 contains a large number of speakers with about 60
sentences each.
Experimental results: Using Bref80, Bref and Bref+Bref2
corpora about 1800, 5500, 6100 tied-states, gender-
dependent triphone models have been estimated respec-
tively. The impact of acoustic training sizes on recognition
results is illustrated in Table 1. These results were obtained
with a 65k system as described in (Adda 1997b) on the
AUPELF’96 development test set (600 sentences from 20
speakers). An important gain is observed from Bref80 to
Bref, which can be directly related to the increased number
of CD models. Whereas the number of acoustic models is
larger for Bref+Bref2 than forBref, no significant difference
in recognition results was measured.

Bref80 Bref Bref+Bref2

#sentences (training) 5.3k 66.6k 85.9k
#CD models 1800 5500 6100T -word error rate 15.0% 12.9% 12.9%T 0-word error rate 10.8% 8.8% 8.8%

Table 1: Sizes of the different speech corpora for training,
the number of context-dependent acoustic HMM models
and word error rates on the AUPELF’96 development setT (600sentences from 20 speakers) andT 0 (300 sentences
subset with controlled OOV rate).

It is worthwhile to note that a significant increase in the
number of training speakers (from 120 to 420 speakers)
leaves recognition results roughly unchanged. Similar re-
sults could be observed on the AUPELF’97 evaluation set.
These experiments suggest that the adopted acoustic model
training approach has reached a limit where larger corpora
no longer yield better recognition results.

4. Text corpora

The higher lexical variety in French as compared to English
entails lower lexical coverage for a given size lexicon (N
words) and poorer language modeling as long as the train-
ing corpus size remains limited. For statistical word-based
language models the needed amount of training material
naturally depends on the system’s vocabulary size. Better
recognition results are achievable only if a vocabulary in-
crease is carried out jointlywith a significant increase in text
corpora for LM training. Conversely it may be important to
increase the lexicon size when enough LM training material
is available, as long as lexical coverage remains a problem.
Lexical coverage: Table 2 gives OOV rates for different
values of N (ranging from 20k to 65k lexical items) mea-
sured on the AUPELF’96 development test set. TheN most
frequent words have been obtained from a training data set
(T0 LeMonde,years 1987-88 (40M words)).
Corpora description: Training texts have been added to
the data used in the SQALE evaluation in 1995 where only
40M words fromLeMonde(years 1992-93) were available.
Training corpora used for the AUPELF evaluation included



word list 20k 30k 40k 50k 60k 65kT 6.4 4.3 3.2 2.4 2.0 1.8

Table 2: OOV rates on the devT set, for word lists ranging
from 20k to 65k words. The word lists consist of theN
most frequent words inT0 training data

over 250M words. These texts come from similar but dif-
ferent sources:
Le Monde: a daily French newspaper,
Le Monde Diplomatique: a monthly political and cultural
newspaper,
Agence France Presse: the main French news agency.
We describe the amounts of data as used for the AUPELF

development experiments:
LeM: 185M words fromLe Mondeyears 87-961,
MD: 6M words fromLe Monde Diplomatique, years 89-96,
AFP: 64M words fromAgence France Presse, years 94-96.

Language models: Statisticaln-gram models attempt to
capture the syntactic and semantic constraints by estimat-
ing the frequencies of sequences ofn words. A backoff
mechanism (Katz 1987) is used to smooth the estimates of
the probabilities of rare n-grams by relying on a lower order
n-gram when there is insufficient training data, and to pro-
vide a means of modeling unobserved n-grams. Bigram and
trigram language models have been trained using different
combinations of the above described corpora. In Table 3
the LM size for fixed cutoff values are shown as a function
of training corpus size.

LeM LeM + MD LeM+ MD + AFP
#words 185 M 191 M 255 M

#bg 11.9 M 12.1 M 13.5 M
#tg 13.9 M 14.3 M 18.1 M

ppx. 137.7 137.3 135.2

Table 3: LM size (number of bigrams and trigrams) and
perplexity (ppx.) as a function of different training corpora:
LeM, LeM + MD, LeM + MD + AFP. Bigram and trigram
cutoffs of 0 and 1 are applied respectively.

When building N-gram language models for French, we use
cutoffs of 0/1, whereas in English we typically apply 1/2
cutoffs for bigram/trigram selection. Adding the AFP data
yields an increase of about 10% (relative) for the number of
bigrams in the LM, whereas for trigrams a 20% (relative)
increase is observed. Cutoff values and the increase of LM
size when adding training data suggest that still more data
are necessary for accurate LM training.
Experimental results The recognition results presented
hereafter are based on 20k and 65k recognitionsystems. For
the 20k system, two different language models were trained
using either the complete 255M text set (LeM+MD+AFP)

1 LeM corresponds to theT1 corpus for lexical coverage pre-
sented in section 5, + 4 months of 1996

or a 40M text subset (T0). The obtained results are shown in
Table 4. The gains observed when significantly increasing
the training text material remains rather low: 9% (relative)
on theT development set 600 sentences) and of 16% (rela-
tive) on theT 0 set (300 sentence subset ofT with controlled
OOV rate). A possible conclusion here is that the low lexi-
cal coverage prevents the LM from taking advantage from
the larger text corpus. This hypothesis is supported by the
larger gains observed for theT 0 subset where OOV rates
are significantly smaller. When moving from a 20k to a
65k system OOV rates are reduced by nearly 3% (absolute)
for the T set and almost 1% (absolute) for theT 0 subset,
ranging from 1.3% to 0.5%respectively. Comparing the
20k-255M and 65k-255M systems the relative gain is about
40% for bothT andT 0 sets, consisting in roughly 9% ab-
solute error reduction for theT set and almost 6% for theT 0 subset. The important gain is due to combined improve-
ments in lexical coverage and language modeling: as the
language model is based on 65k different lexical items, bet-
ter advantage can be taken from the training corpus (255M
words). These results illustrate the importance of increas-
ing the system’s vocabulary size provided there are enough
data for LM training available.T LM OOV Werr

20k-40M 6.4% 23.9%
20k-255M 6.4% 21.8%
65k-255M 1.3% 12.9%T 0 LM OOV Werr
20k-40M 3.6% 17.3%
20k-255M 3.6% 14.6%
65k-255M 0.5% 8.8%

Table 4: Recognition results obtained by 20k and 65k sys-
tems. 20k-40M and 20k-255M systems use LMs estimated
from 40M T0 data or from the 255MLeM + MD + AFP
data respectively.T is the 600 sentences AUPELF develop-
ment set,T 0 corresponds to a subset of 300 sentences with
controlled OOV rate.

Looking at recognition results one can observe that many
errors are due to short term gender and number disagree-
ments (example:elle étaient(she was)instead ofelle était).
Whereas long term agreement (example:la femme de trente
ans habituéaux: : : (the thirty year old woman, used to: : :) in-
stead ofhabituée) cannot be handled by N-gram language
modeling, short term errors should not occur with properly
trained N-gram models from sufficient data. An algorithmic
solution to this problem has been investigated by interpo-
lating the trigram backoff LM with a biclass LM (Jardino
96). This allows for an improved LM contribution when
the trigram LM has to back-off to unigrams. The applied
interpolation formula is as follows:Pint(w) = �Ptg(w) + (1� �)Pbc(w)Pint(w); Ptg(w) andPbc(w) stand forprobabilitieson word
sequencew from interpolated, trigram and biclass LMs re-
spectively. An experimentally optimized value of� = 0:9
has been fixed. Biclass-based LM interpolation allowed a
perplexity reduction from 135 to 131 and a relative word



error reduction of 1.5% due to a reduction of some short
term disagreements.
Results show that for highly inflected languages like French
coverage improvements together with a significant increase
in training data represent the main reasons in error reduc-
tion. Further improvements can be expected by additional
data and larger vocabularies, but algorithmic solutions tak-
ing better benefit from a fixed sized training corpus are
interesting research alternatives.

5. Tokenization

The issue of tokenization evaluation in the natural language
processing domain is addressed more extensively in (Habert
1998), in these proceedings. The impact of tokenization,
what we usually refer to as text normalization, on lexical
coverage and language modeling has been extensively de-
scribed in (Adda 1997a,Adda 1997c). We briefly recall here
the importance of training text corpus selection and normal-
ization to optimize lexical coverage before discussing the
impact of normalization on recognition results.
To measure lexical coverage as a function of training text
corpus theLeMondenewspaper corpus has been divided in
different subsets (differing in size and epoch):T0 : years 1987-88 (40M words)2T 0

0 : years 1994-95 (40M words)T1 : years 1987-95 (185M words)T2 : years 1991-95 (105M words)3

In Figure 1 out of vocabulary (OOV) rates are given for
65k word lists derived from these different subsets and for
different text normalizations. ForT 0

0, T1 andT2 subsets al-
most identical OOV rates are obtained, showing that corpus
size is not critical. To optimize coverage, text epoch is more
important than text size: comparingT0 andT 0

0 OOV rates a
significant reduction (about 25% relative) can be observed
when replacing 40M words from years 1987-88 by the same
amount from years 1994-95.
The importance of proper tokenization for lexical cover-
age is also demonstrated in Figure 1. OOV word rates
are shown to be reduced by about 50% when going from
raw but clean data (Na text form) to stronger normalized
data (Nb, Nc). TheNb normalized text form derives fromNa after processing of ambiguous punctuations, capitalized
sentence starts, digits and acronyms. TheNc form differs
from theNb form by additional case-insensitivity, absence
of diacritics and systematic decomposition on ambiguous
ponctuation marks. TheNb text form has been used for all
previously presented recognition experiments.

In the followingwe discuss thedependence of speech recog-
nition results on text normalization. The speech recognition
evaluation community indirectly faced the problem of to-
kenization for years during a so-called adjudication phase,
where multiple graphemic forms of words and word se-
quences are discussed and a decision was taken to accept

2These were baseline resources for all partners in the AUPELF

French recognizer evaluation project.
3T2 is significantly smaller thanT1, but contains on average

more recent data.
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Figure 1: OOV rates on development test data for different
normalisation versionsNa; Nb; Nc on T0; T 0

0; T1; T2 train-
ing data using 65k word lists.

or reject the alternate forms, decided acceptable or rejected,
resulting in a list of acceptable rewriting rules. Such redefi-
nitions of lexical items may significantly influence word er-
ror rates. In Table 5 recognition results using different text
normalizations are shown: reference and hypothesis strings
of a given test condition are normalized as follows: starting
from a standard scoring without rewriting rules (Nb result)
strings are then normalized by adding case-insensitivity,by
removing diacritics and by decompounding. Decompound-
ing is seen to be the most effective normalization with re-
spect to error rate reduction (3.5% relative), for the simple
reason that the total number of words is larger and that errors
are rarely found in more than one of the compounding items.
The absolute number of errors remains globally constant,
whereas the total number of lexical items increases. Case-
insensitivity mainly concerns removing emphatic capitals
(for examplefJournal, journalg or fMinistre, ministreg)
which are rather common in French newspaper texts, but
emphatic capitals are limited to a relatively small set of
words. In (Adda 1997c) the emphatic capital normalisa-
tion has been shown to be negligible with respect to lexical
coverage. However concerning recognition rates a relative
error reduction of 2.5% is obtained by ignoring confusions
between a word and its emphatic capitalized counterpart
(which are homophones). Removing diacritics which has
been shown to be important when optimizing coverage, is
less effective here with only about 1% relative word error re-
duction. After removing diacriticsymbols, words which are
not homophones have the same orthographic form. How-
ever, these were not originally prone to mutual confusion
(for example the wordsfaccusé, accuseg correspond to the
phonemic formsfakyze, akyzg). The major reason of error
reduction here is due to one of the rare homophone word
pairsfà, ag (in Englishfat, hasg), both words being among
the 20 most common words in French text corpora. The
importance of inflected form substitutions is highlighted by
the two last entries in Table 5. Root forms are obtained us-
ing the INTEX system (Silberztein 1995). More than 20%
relative error reduction is achieved by reducing inflected
forms to their root form.



normalization %WerrNb form (standard) 13.62%Nb + case-insensitive 13.3%Nb + ci, no diacritics 13.2%Nb + no compounds 13.1%Nb + no comp., ci 12.8%Nc (Nb + no comp., ci, no diac.) 12.7%Nb + root forms 10.3%Nc + root forms 9.6%

Table 5: Word error rates as a function of different text
normalizations applied on reference and hypotheses strings
as produced by the recognizer (Nb form). The two last
entries of the table result from reducing inflected forms to
root forms.

6. Error Analysis

A major part of observed errors can be attributed to weak
language modeling. This assertion is first supported by
manual investigations of the recognizer’s output. It can
also be concluded from the observed error rate reductions
obtained by applying different text normalizations and fi-
nally from an automatic analysis of word error rates against
word frequency ranks.
Looking at recognition errors, gender, number and tense
disagreements and other homophone substitutions are fre-
quently observed. About 40% of confusion errors are due
to single word homophones (for the most part these are
homophone gender and number agreement forms and ho-
mophone verb forms), where the LM contribution is solely
responsible. About 15% of the substitutions are due to
proper names, which are difficult to model both on LM and
acoustic levels, as in general they are infrequent in training
texts, and foreign proper names often have a large variety
of acceptable pronunciations.
Word error rates are usually obtained by averaging error
measures on a sentence by sentence basis. This allows
sentence error rates to be related to LM perplexity. Sen-
tences with high error rates generally have high perplex-
ity values. To more precisely investigate how word error
rates are related to LM accuracy, word error rates can be
measured on a word frequency basis, instead of the usual
sentence by sentence basis. To do so, the system vocabu-
lary is first partitioned intoI word frequency rank regions]Ki�1;Ki], which are logarithmically distributed along the
word frequency rank axis. Each wordwn of the test set
is associated its frequency rankkn in the system’s vo-
cabulary. Ifkn 2 ]Ki�1;Ki] thenwn belongs to thei-
th frequency rank region (FFR) (1� i � I). The first
FFR contains the 10 most frequent words (in training data):de; la; l0; le; à; et; les; des; d0; un which are inflected forms
of defined and undefined articles, the conjunctionand, and
prepositionsof andat. OOV words are grouped in an OOV
subset. Error rates can then be measured for each subset.
In Figure 2 we analyze the word error rate as a function of]Ki�1;Ki] word frequency rank regions (FFRs). The word
occurrence distribution of the test is provided in the same
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Figure 2: Word error rates and word occurrence rates as a
function of frequency rank regions (FRRs) in the 65k system
vocabulary. Each point defines the upper limit of an FRR.
11 FFRs have been defined and distributed logarithmically
from 1 to 65000.

figure as a complementary information. The OOV subset
(0.45% of the data) with a 100% error rate is not represented.
For each curve the dots correspond to the upper bound of
an FFR. Figure 2 illustrates that for rankskn > 5000 er-
ror rates tend to increase drastically, but only 15% of the
test are concerned, i.e. not covered by the first 5000 words
(the first 7 rank regions). The first FFRs contain very short
words (including many monophone homophones) which are
acoustically very difficult to identify. The best results are
obtained for words in the 5th FFR (rank between 500 and
1200). Here words are well trained and in general polysyl-
labic, which are acoustically easier to discriminate.
Concerning acoustics only a small part of errors can be
clearly related to acoustic modeling reasons, like miss-
ing schwas and liaisons in the pronunciation lexicon, syl-
labic reduction phenomena, respirations and other noises.
Progress in acoustic modeling is nonetheless important,
in order to experiment with different weightings between
acoustic and LM scores in the decoder.

7. Discussion and Perspectives

Increasing acoustic training data from about 6k sentences to
65k sentences allows for significant reductionsin the word
error rate. A larger speech corpus did not further improve
recognition rates, indicating that the acoustic modeling ap-
proach being used has probably reached its limits. Research
in defining new relevant acoustic unit contexts may lead to
additional benefit from larger acoustic training data. The
increase of the text trainingcorpora from 40M to over 250M
words allowed a significant error rate reduction. When ex-
tending the 20k system to a 65k system recognition results
are improved by 40% (relative) when moving from a 20k
word system to a 65k word system. This may be explained
by simultaneous improvements in lexical coverage and lan-
guage modeling. We have shown the importance of increas-
ing the lexicon size if LM training material is available, at
least as long as lexical coverage remains a problem.



Small gains are achieved by trigram-biclass LM interpola-
tion avoiding someerroneous short-termnumberand gender
agreements. Taking into account morphological informa-
tion as proposed by El-Bèze (1990), can be an interesting
alternative to achieve better language model predictability
and to introduce linguistic knowledge into the statistical
models for highly inflected languages.
Recognition errors are mainly due to homophones, mostly
arising from gender and number disagreements. The impact
of text normalization (tokenization) on recognition results
has been discussed. The importance of inflected form sub-
stitutions has been shown by reducing inflected forms to
their root forms for both the reference and the hypothesis
strings. More than 20% relative error reduction is achieved
by such a reduction.
Error rates have been shown to increase drastically for less
frequent words as these words are less well represented by
both the acoustic model and the LM. Improving present LM
techniques can be considered as a challenging research di-
rection for French speech recognition during the next years.
New application-related text sources will certainly continue
to contribute to improve recognition results in the future.
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de dictée vocale”,1ères JST FRANCIL, Avignon, April
1997.
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