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In this paper a framework for maximum a posteriori (MAP) esition of hidden Markov models
(HMM) is presented. Three key issues of MAP estimation, rigrtiee choice of prior distribution
family, the specification of the parameters of prior delsitind the evaluation of the MAP estimates,
are addressed. Using HMMs with Gaussian mixture state wasen densities as an example, it is
assumed that the prior densities for the HMM parameters eaadequately represented as a product
of Dirichlet and normal-Wishart densities. The classicakimum likelihood estimation algorithms,
namely the forward-backward algorithm and the segmentakans algorithm, are expanded and MAP
estimation formulas are developed. Prior density estiomaigssues are discussed for two classes of
applications: parameter smoothing and model adaptatioth,same experimental results are given
illustrating the practical interest of this approach. Besmof its adaptive nature, Bayesian learning is
shown to serve as a unified approach for a wide range of speeogmition applications.

1 Introduction

Estimation of a probabilistic function of Markov chain, alsalled a hidden Markov model (HMM),
is usually obtained by the method mwiaximum likelihoodML) [1, 2, 23, 15] which assumes that the
size of the training data is large enough to provide robusimeses. This paper investigategxi-
mum a posterior(MAP) estimation of continuous density hidden Markov medéCDHMM). The
derivations given here can straight-forwardly be exteridgtie subcases of discrete density HMM and
tied-mixture HMM. The MAP estimate can be seen as a Bayesatiof the vector parameter when
the loss function is not specified [5]. The MAP estimatiomfeavork provides a way of incorporating
prior information in the training process, which is partaxy useful for dealing with problems posed
by sparse training data for which the ML approach gives inete estimates. MAP estimation can be
applied to two classes of applications, namely, paramateothing and model adaptation, both related
to the problem of parameter estimation with sparse traidaig.

In the following the sampl& = (24, ..., 27) denotes a given set @f observation vectors, where
x1, ..., v are either independent and identically distributed ().i.dr are drawn from a probabilistic
function of a Markov chain.

'This work was done while Jean-Luc Gauvain was on leave framSipeech Communication Group at LIMSI/CNRS,
Orsay, France.
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The difference between MAP and ML estimation lies in the agstion of an appropriate prior
distribution of the parameters to be estimated), issumed to be a random vector taking values in the
spaceo, is the parameter vector to be estimated from the samplih probability density function
(p.d.f.) f(-|9), and ifg is the prior p.d.f. of, then the MAP estimatdyiap, is defined as the mode of
the posterior p.d.f. of denoted ag(-|x), i.e.

Ovap = argmgxgwlx) 1)
= argmax f(x[0)g(6). )

If is assumed to be fixed but unknown, then there is no knowlelgetd, which is equivalent to
assuming a non-informative prior or an improper prior, §.&l) =constant. Under such an assumption,
equation (2) then reduces to the familiar ML formulation.

Given the MAP formulation three key issues remain to be ask#ré: the choice of the prior dis-
tribution family, the specification of the parameters foe thrior densities and the evaluation of the
maximum a posteriori. These problems are closely relatedesan appropriate choice of the prior
distribution can greatly simplify the MAP estimation prese

Similar to ML estimation, MAP estimation is relatively eaéthe family of p.d.f’s{ f(:|6),0 € ©}
possessessufficient statistiof fixed dimensiort(x) for the paramete#, i.e. f(x|#) can be factored
into two termsf(x|#) = h(x)k(#|t(x)) such that:(x) is independent of andk(8|t(x)) is thekernel
densitywhich is a function of and depends ox only through the sufficient statisti¢x) [27, 5, 7]. In
this case, the natural solutionis to choose the prior dgimséconjugate family{ & (-|¢), ¢ € ¢}, which
includes the kernel density ¢f-|#). The MAP estimation is then reduced to the evaluation of thden
of the posteriori density(6|¢') « k(6|¢)k(8|t(x)), a problem almost identical to the ML estimation
problem of finding the mode of the kernel density|t(x)). However, among the distribution families
of interest, only exponential families have a sufficientiste of fixed dimension [4, 17].

When there is no sufficient statistic of a fixed dimension, M&€imation, like ML estimation,
is @ much more difficult problem because the posterior dgnsinot expressible in terms of a fixed
number of parameters and cannot be maximized easily. Forfivote mixture densities and hidden
Markov models, the lack of a sufficient statistic of a fixed dimaion is due to the underlying hidden
process, i.e. the state mixture component and the stateseguwf a Markov chain for an HMM.
In these cases ML estimates are usually obtained usingxbectation-maximizatiaiM) algorithm
[6, 1, 28]. For HMM parameter estimation this algorithm isatalled the Baum-Welch algorithm. The
EM algorithm is an iterative procedure for approximating M&timates in the general case of models
involvingincomplete datalt locally maximizes the likelihood function of the obsed/(or incomplete)
data. This algorithm exploits the fact that the complet&dielihood is simpler to maximize than the
likelihood of the incomplete data, as in the case wheretmeplete-datanodel has sufficient statistics
of fixed dimension. As noted by Dempster et al. [6], the EM &than can also be applied to MAP
estimation.

The remainder of this paper is organized as follows. For HMdWneation, two types of random
parameters are commonly used: one involves parameterdollav multinomial densities and the
other involves parameters of multivariate Gaussian diessitin Section 2, the choice of the prior
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density family is addressed and it is shown that the priosdess for the HMM parameters can be
adequately represented as a product of Dirichlet densitidsrormal-Wishart densities. Sections 3 and
4 derive formulations for MAP estimation of multivariatexture Gaussian densities and for CDHMM
with mixture Gaussian state observation densities. Ini@e&, the important issue of prior density
estimation is discussed. Some experimental resultsrifltisg the practical interest of this approach are
given in Section 6, and Bayesian Learning is shown to be aaghdjpproach for a variety of applications
including parameter smoothing and model adaptation. Fyiwair findings are summarized in Section
7.

2 Choicesof Prior Densities

In this section the choice of the prior density family is aekired. Lek = (21, ..., z7) be a sample
of T i.i.d. observations drawn from a mixture &f p-dimensional multivariate normal densities. The
joint p.d.f. is specified by the equatibn

T K
f(x]0) = HZ wiN (xe|mpg, r) (3)

where
O = (W1 eeey Wy Ty ooy TV, Ty ooy TK) 4)

is the parameter vector ang. denotes the mixture gain for theth mixture component subject to the
constraint" R, wy, = 1. N'(z|ms, ri) is thek-th normal density function denoted by

A (el i) o Il 2 expl=3 (& — mg) s — )] ©)

wherem,, is thep-dimensional mean vector amg is thep x p precision matrix.

As stated in the Introduction, no sufficient statistic of afbdimension exists for the parameter
vectord in equation (4), therefore no joirtonjugate prior densitgan be specified. However a fi-
nite mixture density can be interpreted as a density assatigith a statistical population which is a
mixture of K component populations with mixing proportioQis; , . . ., wg ). In other words f(x|9)
can be seen as a marginal p.d.f. of the joint p.d.f. of themataré expressed as the product of a
multinomial density (for the sizes of the component popatat) and multivariate Gaussian densities
(for the component densities). Consider that the mixturegygr each mixture density have the joint
distribution is in the form of a multinomial distribution.nEn a practical candidate to model the prior
knowledge about the mixture gain parameter vector is th@ugatte density such as a Dirichlet density
[14]

g(wh-..,w]dyh” VIx ox le’k 1 )

%In the following the same terrfi is used to denote both the joint and the marginal p.d.f.sesihis not likely to cause
confusion.

?|r| denotes the determinant of the matrbandr® denotes the transpose of the matrix or veetomn the following, we
will also usetr(r) to denote the trace of the matrix A precision matrix is defined as the inverse of the covagamnatrix.
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wherey;, > 0 are the parameters for the Dirichlet density. As for the @eparametefmy, r;) of the
individual Gaussian mixture component, the joint conjegaior density is a normal-Wishart density
[5] of the form

T

Ek(mk — pu) i (my — pi)] exp[—Ltr(ugre)]  (7)

9 (e, | Ty Ly 0ty i) o || 2P/ 2 excp[—
where(ry, uk, o, ui) are the prior density parameters such ihat> p — 1, 7, > 0, py, is a vector of
dimensiorp anduy, is ap x p positive definite matrix.

Assuming independence between the parameters of the dodivimixture components and the
set of the mixture weights, the joint prior densiyf) is the product of the prior p.d.f.’s defined in

equations (6) and (7), i.e.
K

9(0) :g(wlw'wwﬂ") H!](”%J‘k) (8)
k=1

It will be shown that this choice for the prior density famitgn also be justified by noting that
the EM algorithm can be applied to the MAP estimation probiethe prior density belongs to the
conjugate family of the complete-data density.

3 MAP Estimatesfor Gaussian Mixture

The EM algorithm is an iterative procedure for approximgtiiL estimates in the context of incomplete-
data cases such as mixture density and hidden Markov motiela¢é®n problems [2, 6, 28]. This
procedure consists of maximizing at each iteration theleuyifunction@ (4, é) defined as the expec-
tation of thecomplete-datdog-likelihoodlog h(y|6) given the incomplete data = (x4, ..., z7) and
the current fi), i.e.

Q(8.8) = Ellog h(y|6)|x, 6]. (9)

For a mixture density, the complete-data likelihood is thiatjlikelihood ofx and? = (¢4, ..., (1)
the unobserved labels referring to the mixture componéety; = (x, ().

The EM procedure derives from the facts that f(x|6) = Q(6,0) — H(6,0) whereH (6, 6) =
Ellog h(y|x, 8)|x,8)] and H(0,8) < H(6,8), and therefore whenever a valdesatisfies (4, ) >
Q(8,6) thenf(x|f) > f(x|f). It follows that the same iterative procedure can be usedtimate the
mode of the posterior density by maximizing the auxiliampdtion R(6,6) = Q(6,8) + log ¢(4) at
each iteration instead of the maximization(pfé, é) in conventional ML procedures [6].

For a mixture of K’ densities{ f(-|0x) } k=1,... k With mixture weights{wy, }1=1,... x, the auxiliary
function( takes the following form [28]:

:ii wkf (z:/6) log wy, f(2+|6k) (10)
Sy afelay T
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Let W(9,6) = exp R(6, ) be the function to be maximized. For the case of Gaussianuneixt
component, we havg(z,|0),) = N (2|1, 7). Define the following notations

OrN (2|, Tr)

= 11

T S SN i, ) -
T

Cr = ZCM (12)
t=1
T

Th = D cra/c (13)
t=1
T

S = cht(wt—fk)(wt—fk)t. (14)

t=1

Using the equalit)thzl th(wt — mk)trk(xt — mk) = ck(mk — ik)trk(mk — fk) + tI’(SkT‘k), it
follows from the definition off (x|¢) and equation (10) that

K
U (8,0) x g(0) H wek |rk|ck/2 exp[—%k(mk — ) re(mg — ) — Ltr(Skre)]- (15)
k=1
From the relations (15) and (8) it can easily be verified that é) belongs to the same distribution
family asg(-), and has parametefs,, 7/, ui}., o)., u}. }k=1,... i Satisfying the following conditions:

v, = vp+oc (16)
T = Ttk (17)
ap = ap+cg (18)
' Tk + CRTk
_ 19
B e+ cn (19)
! TECk - N
_ _ _ 2
uy, ug + Sk, + p—— (1 — ) (pw — Tg) (20)

The family of densities defined by (8) is therefore a conjadaimily for the complete-data density.

The mode of'(-, §), denoted &y, 7k, 71), May be obtained from the modes of the Dirichlet and
normal-Wishart densitiesy, = (v, — 1)/ YK, (v} — 1), g = i, andy, = (o}, — p)ul,~". Thus,
the EM reestimation formulas are derived as follows:

~ _ (Vk — 1) + Z?:l Ckt

hTOSE g (21)
?:1 (Vk - 1) + Zﬁzl 2?21 Ckt
T
g, = Teb + Z;:l ChiTy 2
Th + D t=1 Cht
o et 3oy e — i) (e = i)'+ Tk — 1) (i = i)’
L : (23)

(ar = P) + iy Cre

For the Gaussian mean vectors, it can be seen that the newgiaraestimates are simply a
weighted sum of the prior parameters and the observed déa.allove development suggests when
the EM algorithm can be used for maximum likelihood estimata natural prior density can be found
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in the conjugate family of the complete-data density if saatbnjugate family exists. For example,
in the general case of mixture densities from exponentiailfas, the prior will be the product of a
Dirichlet density for the mixture weights and the conjugagasities of the mixture components.

Ifitis assumed that each mixture componentis non-degemem.or > 0, thencyy, cio, ..., cpT IS
a sequence df i.i.d. random variables with a non-degenerate distribwiodim sup,_, . S| cx =
oo with probability one [25]. It follows thats, converges td L, /T with probability one when
T — oo. Applying the same reasoning @, andry, it can be seen that the EM reestimation formulas
for the MAP and ML approaches are asymptotically similaruglas long as the initial estimatesfof
are identical, the EM algorithms for MAP and ML will providdentical estimates with probability one
whenT — co.

4 MAP Estimatesfor HMM

The development in the previous section for a mixture of imafiate Gaussian densities can be ex-
tended to the case of HMM with Gaussian mixture state observdensities. For notational conve-
nience, it is assumed that the observation p.d.f’s of @ldtates have the same number of mixture
components.

Consider anV-state HMM with parameter vector = (7, A, #), wherer is the initial probabil-
ity vector, A is the transition matrix, and is the p.d.f. parameter vector composed of the mixture
parameterﬁi = {wik, mik, rik}k:l,...,K for each state.

For a samplex = (x4, ..., z7), the complete data ig = (x,s, () wheres = (sg, ..., s7) isS the
unobserved state sequence, énd ((4, ..., (1) is the sequence of the unobserved mixture component
labels,s; € [1, N]and/; € [1, K]. The joint p.d.f.h(-|\) of x, s, and/ is defined a$

T
h(X7 57£|A) = Tsg H aSt—lstwstftf(wthtft) (24)

t=1
wherer; is the initial probability of state, a;; is the transition probability from stateto statej, and
0 = (mqk, ri) is the parameter vector of theth normal p.d.f. associated with statdt follows that
the likelihood ofx has the form

T
JxA) = Z Tso H sy 50 f(24]05,) (25)
S t=1

wheref(z:]6;) = S8 | wir N (z¢|mir, rix), and the summation is over all possible state sequences.

If no prior knowledge is assumed abddiandr, or alternatively if these parameters are assumed
fixed and known, the prior density can be chosen to have the following fo6ii\) = [T, ¢(6;), where
g(6;) is defined by equation (8). In the general case where MAP atitmis applied not only to the
observation density parameters but also to the initial eantsition probabilities, a Dirichlet density can
be used for the initial probability vectarand for each row of the transition probability matAx This

*Here we use the definition proposed by Baum et al. [1], whexeliservation p.d.fs are associated to the Markov chain
states and no symbol is produced in state
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choice follows directly from the derivation discussed ie tirevious section, since the complete-data
likelihood satisfies:(x, s, £|\) = h(s|A\)h(x, {|s, A) whereh(s|)) is the product ofV + 1 multinomial
densities with parameter sefs, ..., 75} and{a;,...,a;n}i=1,..n. The prior density for all the
HMM parameters thus satisfies the relation

G(N) ﬂ o) [Tl
x mg(6;) H a;; (26)
=1 7=1

where{7;} is the set of parameters for the prior density of the initi@h@bilities{~; }, and{»;;} is
the set of parameters for the prior density of transitiorbjatulities{«;; } defined the same way as in
equation (6).

In the following subsections we examine two ways of appra@ting Anap by local maximization
of f(x|A\)G(A) or of f(x,s|A)G(A). These two solutions are the MAP versions of the Baum-Welch
algorithm [2] and of the segment&imeans algorithm [26], algorithms which were developedviar
estimation.

41 Forward-Backward MAP Estimate

From equation (24) it is straightforward to show that theibary function of the EM algorithm applied

to ML estimation of\, Q(\, \) = E[log h(y|\)|x, N, can be decomposed into a sum of three auxiliary
functions:Q (m, \), Q4(A, \) andQ4(6, \) such that they can be independently maximized [15]. The
three functions take the following forms:

-

Qr(m,A) = Yio log 7; (27)
T aw A
Qa(AN) = ZZZPr(St_l =1,5 = j|x, A) loga;; (28)
t=14=1j5=1
N ' )
= Z:Qal(a27 A) (29)
=1
) T N K )
Qo(0,N) = Z Z Pr(s; = ¢, 0, = k|x, A) logwik f(x¢|0ix) (30)
t=14=1 k=
- 1 k=1 A
= D Qo (6:]N) (31)
=1
with
) N
Qa;(ai, A) = Y &jilogai; (32)
t=17=1
. L i f (24/0in)
Qo (0, 0) = D3 log wi f(¢|0sk) (33)

t=1 k=1 ZIB:I <*:’ilf(gctmil)
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whereé;;; = Pr(s;—; = 1,5 = j|x, ;\) is the probability of making a transition from statéo state

j at timet given that the model generates, and~;; = Pr(s; = i|x, ) is the probability of being
in statei at timet given that the model generates. Both probabilities can be computed at each EM
iteration using the forward-backward algorithm [2].

As for the mixture Gaussian case, estimating the mode of ¢élseedor density requires the max-
imization of the auxiliary functionR(\, \) = Q(), \) + log G()\). The form chosen fof7()) in
(26) permits independent maximization of each of the folly2 N + 1 parameter setxy, ..., 7n},
{@i1, -y €inYiz1....v @nd{6;};=1... n. The MAP auxiliary function?(), A) can thus be written as the
SUMR, (7, \)+Y; Ra, (a;, ) +3; Rs, (6;, \), where each term represents the MAP auxiliary function
associated with the respective indexed parameter sets.

We can recognize in (33) the same form as was see@férd) in (10) for the mixture Gaussian
case. It follows that if;; in equation (11) is replaced hy;,; defined as

QOipN (i, Fir.)

Cikt = it q " "
' SR N (@i, )

(34)

which is the probability of being in statewith the mixture component labélat timet given that the
model\ generates, then the reestimation formulas (21-23) can be used to niagiRy, (6;, \).

It is straightforward to derive the reestimations formuiasr andA by applying the same deriva-
tions as were used for the mixture weights. The EM iterataritie three parameter skt= (7, A, §)
is:

~ (7 — 1) + 7o
LT 35
" Y= — 1)+ Zé\le 750 (35)
S (nij = D+ 20 e a6
" S (i — 1)+ 0 Y i (36)

T
ou = e ity @)
k=t (Vi — 1) + 2okt 2ov=t Cike
e = TikMk + 25:1 Cikt Tt (38)
Tik + D _t=1 Cikt
1= Wi+ S ey — mige) (2 — mige)t 4 o (i — mian) (s — mik)t‘ (39)
‘ (aix —p) + L i
For multiple independent observation sequerees -1 ... v, with x,, = (x(lv), oy x(TUv)), we must
maximizeG'(\) TT'_; f(x,|A), wheref(-|)\) is defined by equation (25). The EM auxiliary function
is thenR(\, \) = log G(\) + S°V_, Ellog h(y.|A)|x, A], whereh(-|)) is defined by equation (24).
It follows that the reestimation formulas fé and# still hold if the summations over (5.1, ) are

replaced by summations overandz (3.V_, 3°7,). The valueff;t) and+" are then obtained by

applying the forward-backward algorithm for each obseéorasequence. The reestimation formula for
the initial probabilities becomes
i — 1 iy
77:2' — N (77 ) + Z;j\f_l 72?/ (U) . (40)
Z]‘:1(77j -1+ Z]‘:1 2 v=1 70
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Reestimation formulation similar to equations (36-39) akso be derived. Just like for the mixture
parameter case, it can be shown that’as» oo, the MAP reestimation formulas approach the ML
ones, exhibiting the asymptotical similarity of the twoiegites.

These reestimation equations give estimates of the HMMnpeters which correspond to a local
maximum of the posterior density. The choice of the initstimates is therefore critical to ensure a
solution close to the global maximum and to minimize the nendd EM iterations needed to attain
the local maximum. When using an informative prior, a ndtareice for the initial estimates is the
mode of the prior density, which represents all the avadaffiormation about the parameters when no
data has been observed. The corresponding values are siigiyned by applying the reestimation
formulas withT" equal to O (i.e. without any observed data). Unlike the cslisarete HMMs where it
is possible to use uniform initial estimates, there is nadtiinitial solution for the continuous density
HMM case. Therefore, in practice, the statistician addsrinftion in the training process such as a
uniform or manual segmentation of the observation sequemnoestates from which it is possible to
obtain raw estimates of the HMM parameters by direct contmrtaf the mode of the complete-data
likelihood.

4.2 Segmental MAP Estimate

By analogy with the segment&imeans algorithm [26], a similar optimization criteriomdae adopted.
Instead of maximizing(\|x), the joint posterior density of parameteand state sequensg’/ (A, s|x),
is maximized. The estimation procedure becomes

A= argmax msaXG(/\7 s|x) = argmax max F(x,s|A)G(N). (41)

where is refered to as theegmental MAP estimaté \. As for the segmentdl-means algorithm [16],
it is straightforward to prove that starting with any esttma(™), alternate maximization overand
) gives a sequence of estimates with non-decreasing valuggos|x), i.e. G(A("+1D s(m+1)|x) >
G (AU s(™)|x) with

g(m+1)  _ argmgxf(X,SM(m)) (42)
Am) argmax Fx, s G, (43)

The most likely state sequensé”t!) is decoded by the Viterbi algorithm [9]. Maximization over
can also be replaced by ahill climbing procedure oveh subject to the constraint that

F(x, st AN G > f(x s X)) G(A™), The EM algorithm is once again a
good candidate to perform this maximization usiki§”) as an initial estimate. The EM auxiliary
function is thenR(X, A) = log G'(\) + Eflog h(y|))|x,s(™), X] whereh(-|)) is defined by equation
(24). Itis straightforward to show that the reestimationatipns (35-39) still hold witl§, ;; = §(s\™) —
)6(s\™ — j) andy;; = 5(s™ — i), wheres denotes the Kronecker delta function.
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5 Prior dendity estimation

In the previous sections it was assumed that the prior de@i§ix) is a member of a preassigned family
of prior distributions defined by (26). In a strictly Bayesiapproach the vector parameteiof this
family of p.d.f's{G(-|¢), ¢ € ¢} is also assumed known based on common or subjective knoaledg
about the stochastic process. An alternate solution isapteath empirical Bayes approach [29] where
the prior parameters are estimated directly from data. Btienation is then based on the marginal
distribution of the data given the estimated prior paramsete

In fact, part of the available prior knowledge can be dingiritorporated in the model by assuming
some of the parameters to be fixed and known and/or by tyingesainthe parameters. As for the
prior distribution, this information will reduce the un¢ainty during the training process and increase
the robustness of the estimates. However, in contrast tpribedistribution, such deterministic prior
information by definition cannot be changed even if a largewam of training data is available.

Adopting the empirical Bayes approach, it is assumed thaitséguence of observations, is
composed of multiple independent sequences associatedlifférent unknown values of the HMM
parameters. LetX,A) = [(x1, A1), (X2, A2), ..., (Xg, Ag)] be such a multiple sequence of observa-
tions, where each pair is independent of the others and thave a common prior distributiafi(-|¢).
Since the\, are not directly observed, the prior parameter estimatest beiobtained from the marginal
densityf(X|¢) defined as

F(Xlg)= [ FXING(Al) dA (44)

where f(X|A) = TI, f(x4]A) andG(A|e) = ], G(N|w). However, maximum likelihood esti-
mation based orf (X |¢) appears rather difficult. To alleviate the problem, we canosie a simpler
optimization criterion of maximizing the joint p.d.ff(X, A|¢) over A and¢ instead of maximizing
the marginal p.d.f. oK given. Starting with an initial estimate af("), a hill climbing procedure is
obtained by alternate maximization overand, i.e.

ot = argmgXG(/\(m)W) (48)

Such a procedure provides a sequence of estimates withemeasing values of (X, A|¢(™).
The solution of (45) is the MAP estimate df based on the current prior parametelf™), which
can be obtained by applying the forward-backward MAP reeaiion formulas to each observation
sequence,. The solution of (46) is the maximum likelihood estimate-dfased on the current values
of the HMM parameters. It should be noted that this procediwes not only an estimate of the prior
parameters but also MAP estimates of the HMM parametersafdr sndependent observation sequence
Xq.

Finding the solution of equation (46) poses two problemsstFdue to the Wishart and Dirichlet
components, maximum likelihood estimation for the dendgfined by (26) is not trivial. Second,
since more parameters are needed for the prior density tmahg HMM itself, there can be a problem
of overparametrization when the number of paits, A,) is small. One way to simplify the estimation
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problem is to use moment estimates to approximate the Mimeséis. For the overparametrization
problem, it is possible to reduce the size of the prior farbyyadding some constraints on the prior
parameters. For example, the prior family can be limitedhi family of the kernel density of the

complete-data likelihood, i.e. the posterior density fgof the complete-data model when no prior
information is available. Doing so, it is easy to show that fibllowing constraints on the prior param-
eters hold

Vik = Tik 47
Qi = Tik + P (48)

Parameter tying can also be used to further reduce the sike pfior family and is useful for parameter
smoothing purposes. Finally, another practical constiaito impose the prior mode to be equal to the
parameters of a given HMM, resulting in a scheme for modeptadeon.

This approach can be used for two classes of applicationgmeer smoothing and adaptive learn-
ing. For parameter smoothing, the goal is to estirfate A,. ..., Ag}. The abovementioned algorithm
offers a direct solution to “smooth” these different estiegaby assuming a common prior density
for all the models. For adaptive learning, we observe a neyuesece of observations, associated
with the unobserved vector parameter vakje The required specification of the prior parameters for
finding the MAP estimate of, can be obtained as a point estimateomputed with the proposed iter-
ative algorithm. Such a training process can be seen as #paatibn of a less specific a priori model
A = argmax, G/(A|¢) (When no training data are available) to more specific cammtitwhich match
well with the new observation sequence Some experimental results for these applications arengive
in the next section.

6 Experimental Results

Bayesian learning of Gaussian densities has been widely fasesequential learning of the mean
vectors of feature- and template-based recognizers (seexémple, Zelinski and Class [31], Stern
and Lasry [30]). Ferretti and Scarci [8] used Bayesian ediion of mean vectors to build speaker-
specific codebooks in an HMM framework. In all these casespthcision parameter was assumed to
be known and the prior density limited to a Gaussian. Brawal. [3] used Bayesian estimation for
speaker adaptation of CDHMM parameters in a connected migitgnizer. More recently, Lest al.
[20] investigated various training schemes of Gaussiamnaea variance parameters using normal-
gamma prior densities for speaker adaptation. They shohagdoin the alpha-digit vocabulary, with
only a small amount of speaker specific data (1 to 3 utteramioeach word), the MAP estimates gave
better results than the ML estimates.

Using the theoretical developments presented in this p8agesian estimation has been success-
fully applied to CDHMM with Gaussian mixture observationndéies for four speech recognition
applications: parameter smoothing, speaker adaptat@aker group modeling and corrective train-
ing. We have previously reported experimental resultsifese applicationsin[10, 11, 12, 22]. In order
to demonstrate the effectiveness of Bayesian estimatiosuich applications, some results are given
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here. In all cases, the HMM parameters were estimated uséngggmental MAP algorithm. The prior
parameters, subject to the conditions (47-48), were obthiry forcing the prior mode to be equal to
the parameters of a given HMM [10]. These constraints legae the parameters;, which can either
be estimated using the algorithm described in Section 5abe arbitrarily fixed. For model adapta-
tion, ;5 can be regarded as a weight associated witlkttteGaussian of stateas shown in equations
(35) and (39). When this weight is large, the prior densitgtiarply peaked around the values of the
seed HMM parameters which are only slightly modified by thapdtion process. Conversely;if.

is small, adaptation is fast and the MAP estimates depenadlyrnai the observed data.

The applications discussed here are parameter smoothihgpmaker adaptation. It is well known
that HMM training requires smoothing (or tying), partictijaif a large number of context-dependent
(CD) phone models are used with limited amounts of trainiatad While several solutions have
been investigated to smooth discrete HMMs, such as modaipiolation, co-occurrence smoothing,
and fuzzy VQ, only variance smoothing has been proposeddotimuous density HMMs. In [10,
11] we have shown that MAP estimation can be used to solveptbislem for CDHMMs by tying
the parameters of the prior density. Performance improwerhas been reported by tying the prior
parameters in two ways. For CD model smoothing, the same geiasity was used for all CD models
corresponding to the same phone [10], and for p.d.f. smogttiie same marginal prior density was
used for all the components of a given mixture [11]. In expents using the DARPA Naval Resource
Management (RM) [24] and the Tl connected digit corpora, Me¥SEmation always outperformed ML
estimation, with error rate reductions on the order of 105602

In the case of model adaptation, MAP estimation may be viexged process for adjusting seed
models to form more specific ones based on a small amount @tatden data. The seed models
are used to estimate the parameters of the prior densitieagerve as an initial estimate for the EM
algorithm. Here experimental results are presented orkepealaptation as an example of model adap-
tation (Bayesian learning was also demonstrated as a sdbesex-dependent trainingin [10, 11, 12].)
The experiments used a set of context-independent (Cl)ghwmuels, where each model is a left-to-
right HMM with Gaussian mixture state observation densitigith a maximum of 32 mixture com-
ponents per state. Diagonal covariance matrices are uskthariransition probabilities are assumed
fixed and known. Details of the recognition system and theclzssumptions for acoustic modeling of
subword units can be found in [19]. As described in [21], adB8ensional feature vector composed
of LPC-derived cepstrum coefficients, and first and secoddrarme derivatives was computed after
the data were down-sampled to 8kHz to simulate the telepbanéwidth.

In Table 1, speaker adaptation using MAP estimation is coetpéo ML training of speaker-
dependent (SD) models, using a set of 47 Cl phone models. B& étimation speaker-independent
(SI) and sex-dependent (M/F) seed models were trained agtdhdard RM SI-109 training set consist-
ing of 3990 utterances from 109 native American talkers tdles and 78 males), each providing 30
or 40 utterances. The test material consisted of the RM FERD1est data with 25 testing utterances
from each of the 12 testing speakers (7 males and 5 femalesultR are reported using 40, 100 and
600 utterances (or equivalently about two, five and thirtpués of speech material) of the speaker-
specific data (taken from RM SD data) for training and adamafrhe MLE (SD) and MAP (SI) word
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Training | Omin | 2min | 5min | 30 min
MLE — | 315| 121 35
MAP (SI) 13.9 8.7 6.9 3.4
MAP (M/F) | 115 7.5 6.0 3.5

Table 1. Summary of SD, SA (SI), and SA (M/F) results on FEE1test. Results are given as word
error rate (%).

error rates using the standard RM word pair grammar are givéime two first rows of the table. The
MLE (SD) word error rate for 2 minutes of training data is 3%.5The Sl word error rate (O minutes of
adaptation data) is 13.9%, somewhat comparable to the MalHtreith 5 minutes of speaker-specific
training data. While the MAP models are seen to outperformrENdhodels when only relatively small
amounts of data were used for training or adaptation, the MA®PMLE results are comparable when
all the available training data were used. This resultisiant with the Bayesian formulation that the
MAP estimate and the MLE are asymptotically similar as destrated in equations (35) - (39) with
T — oo. Compared to the Sl results, the word error reduction is 37# & minutes of adaptation
data. A larger improvement was observed for the female spedk1%) than for the male speakers
(22%), presumably because there are fewer female speaktes $1-109 training data.

Speaker adaptation can also be done using sex-dependdninseels if the gender of the new
speaker is known or can be estimated prior to the adaptatimeeps. In the case of estimation, the
gender-dependent model set that best matches the gender oéw speaker is then used as the seed
model set instead of the Sl seed models. Results for speddptation using sex-dependent seed mod-
els are given in the third row of Table 1. The word error ratéwut speaker adaptation is 11.5%. The
error rate is reduced to 7.5% with 2 minutes, and 6.0% with Butgs, of adaptation data. Comparing
the last 2 rows of the table it can be seen that speaker agapigmore effective when sex-dependent
seed models are used. The error reduction with 2 minutesaofitig data is 35% compared to the
sex-dependent model results and 46% compared to the S| mesdis.

More details on experimental results using MAP estimatmmparameter smoothing and model
adaptation can be found in [10, 11, 12, 22] including appilicato speaker clustering and corrective
training. MAP estimation has also been applied to task adi@pf22]. In this case task-independent
S| models, trained from 10,000 utterance of a general Emglispus[13], served as seed models for
speaker and task adaptation. Another use of MAP estimatisnrécently been proposed for text-
independent speaker identification[18] using a small arhofispeaker-specific training data.

7 Conclusion

The theoretical framework for MAP estimation of multivagasaussian mixture density and HMM
with Gaussian mixture state observation densities waspted. By extending the two well-known
ML estimation algorithms to MAP estimation, two correspmgaMAP training algorithms, namely the
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forward-backward MAP estimatiand thesegmental MAP estimatipowere formulated. The proposed
Bayesian estimation approach provides a framework to s@kieus HMM estimation problems posed
by sparse training data. It has been applied successfubigdostic modeling in automatic speech
recognition, where Bayesian learning serves as a unifieabapp for speaker adaptation, speaker group
modeling, parameter smoothing and corrective traininge $&me framework can also be adopted for
the smoothing and adaptation of discrete and tied-mixtigiddn Markov models (also known as semi-
continuous hidden Markov models) antétgram stochastic language models.
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