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In this paper a framework for maximum a posteriori (MAP) estimation of hidden Markov models

(HMM) is presented. Three key issues of MAP estimation, namely the choice of prior distribution

family, the specification of the parameters of prior densities and the evaluation of the MAP estimates,

are addressed. Using HMMs with Gaussian mixture state observation densities as an example, it is

assumed that the prior densities for the HMM parameters can be adequately represented as a product

of Dirichlet and normal-Wishart densities. The classical maximum likelihood estimation algorithms,

namely the forward-backward algorithm and the segmentalk-means algorithm, are expanded and MAP

estimation formulas are developed. Prior density estimation issues are discussed for two classes of

applications: parameter smoothing and model adaptation, and some experimental results are given

illustrating the practical interest of this approach. Because of its adaptive nature, Bayesian learning is

shown to serve as a unified approach for a wide range of speech recognition applications.

1 Introduction

Estimation of a probabilistic function of Markov chain, also called a hidden Markov model (HMM),

is usually obtained by the method ofmaximum likelihood(ML) [1, 2, 23, 15] which assumes that the

size of the training data is large enough to provide robust estimates. This paper investigatesmaxi-

mum a posteriori(MAP) estimation of continuous density hidden Markov models (CDHMM). The

derivations given here can straight-forwardly be extendedto the subcases of discrete density HMM and

tied-mixture HMM. The MAP estimate can be seen as a Bayes estimate of the vector parameter when

the loss function is not specified [5]. The MAP estimation framework provides a way of incorporating

prior information in the training process, which is particularly useful for dealing with problems posed

by sparse training data for which the ML approach gives inaccurate estimates. MAP estimation can be

applied to two classes of applications, namely, parameter smoothing and model adaptation, both related

to the problem of parameter estimation with sparse trainingdata.

In the following the samplex = (x1; :::; xT) denotes a given set ofT observation vectors, wherex1; :::; xT are either independent and identically distributed (i.i.d.), or are drawn from a probabilistic

function of a Markov chain.1This work was done while Jean-Luc Gauvain was on leave from the Speech Communication Group at LIMSI/CNRS,

Orsay, France.
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The difference between MAP and ML estimation lies in the assumption of an appropriate prior

distribution of the parameters to be estimated. If�, assumed to be a random vector taking values in the

space�, is the parameter vector to be estimated from the samplex with probability density function

(p.d.f.) f(�j�), and ifg is the prior p.d.f. of�, then the MAP estimate,�MAP, is defined as the mode of

the posterior p.d.f. of� denoted asg(�jx), i.e.�MAP = argmax� g(�jx) (1)= argmax� f(xj�)g(�): (2)

If � is assumed to be fixed but unknown, then there is no knowledge about�, which is equivalent to

assuming a non-informative prior or an improper prior, i.e.g(�) =constant. Under such an assumption,

equation (2) then reduces to the familiar ML formulation.

Given the MAP formulation three key issues remain to be addressed: the choice of the prior dis-

tribution family, the specification of the parameters for the prior densities and the evaluation of the

maximum a posteriori. These problems are closely related, since an appropriate choice of the prior

distribution can greatly simplify the MAP estimation process.

Similar to ML estimation, MAP estimation is relatively easyif the family of p.d.f.’sff(�j�); � 2 �g
possesses asufficient statisticof fixed dimensiont(x) for the parameter�, i.e. f(xj�) can be factored

into two termsf(xj�) = h(x)k(�jt(x)) such thath(x) is independent of� andk(�jt(x)) is thekernel

densitywhich is a function of� and depends onx only through the sufficient statistict(x) [27, 5, 7]. In

this case, the natural solution is to choose the prior density in aconjugate familyfk(�j'); '2 �g, which

includes the kernel density off(�j�). The MAP estimation is then reduced to the evaluation of the mode

of the posteriori densityk(�j'0) / k(�j')k(�jt(x)), a problem almost identical to the ML estimation

problem of finding the mode of the kernel densityk(�jt(x)). However, among the distribution families

of interest, only exponential families have a sufficient statistic of fixed dimension [4, 17].

When there is no sufficient statistic of a fixed dimension, MAPestimation, like ML estimation,

is a much more difficult problem because the posterior density is not expressible in terms of a fixed

number of parameters and cannot be maximized easily. For both finite mixture densities and hidden

Markov models, the lack of a sufficient statistic of a fixed dimension is due to the underlying hidden

process, i.e. the state mixture component and the state sequence of a Markov chain for an HMM.

In these cases ML estimates are usually obtained using theexpectation-maximization(EM) algorithm

[6, 1, 28]. For HMM parameter estimation this algorithm is also called the Baum-Welch algorithm. The

EM algorithm is an iterative procedure for approximating MLestimates in the general case of models

involving incomplete data. It locally maximizes the likelihood function of the observed (or incomplete)

data. This algorithm exploits the fact that the complete-data likelihood is simpler to maximize than the

likelihood of the incomplete data, as in the case where thecomplete-datamodel has sufficient statistics

of fixed dimension. As noted by Dempster et al. [6], the EM algorithm can also be applied to MAP

estimation.

The remainder of this paper is organized as follows. For HMM estimation, two types of random

parameters are commonly used: one involves parameters thatfollow multinomial densities and the

other involves parameters of multivariate Gaussian densities. In Section 2, the choice of the prior
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density family is addressed and it is shown that the prior densities for the HMM parameters can be

adequately represented as a product of Dirichlet densitiesand normal-Wishart densities. Sections 3 and

4 derive formulations for MAP estimation of multivariate mixture Gaussian densities and for CDHMM

with mixture Gaussian state observation densities. In Section 5, the important issue of prior density

estimation is discussed. Some experimental results illustrating the practical interest of this approach are

given in Section 6, and Bayesian Learning is shown to be a unified approach for a variety of applications

including parameter smoothing and model adaptation. Finally our findings are summarized in Section

7.

2 Choices of Prior Densities

In this section the choice of the prior density family is addressed. Letx = (x1; :::; xT) be a sample

of T i.i.d. observations drawn from a mixture ofK p-dimensional multivariate normal densities. The

joint p.d.f. is specified by the equation2f(xj�) = TYt=1 KXk=1!kN (xtjmk; rk) (3)

where � = (!1; :::; !K; m1; :::; mK; r1; :::; rK) (4)

is the parameter vector and!k denotes the mixture gain for thek-th mixture component subject to the

constraint
PKk=1 !k = 1. N (xjmk; rk) is thek-th normal density function denoted byN (xjmk; rk) / jrkj1=2 exp[�12(x�mk)trk(x�mk)] (5)

wheremk is thep-dimensional mean vector andrk is thep� p precision matrix3.
As stated in the Introduction, no sufficient statistic of a fixed dimension exists for the parameter

vector� in equation (4), therefore no jointconjugate prior densitycan be specified. However a fi-

nite mixture density can be interpreted as a density associated with a statistical population which is a

mixture ofK component populations with mixing proportions(!1; : : : ; !K). In other words,f(xj�)
can be seen as a marginal p.d.f. of the joint p.d.f. of the parameter� expressed as the product of a

multinomial density (for the sizes of the component populations) and multivariate Gaussian densities

(for the component densities). Consider that the mixture gains for each mixture density have the joint

distribution is in the form of a multinomial distribution. Then a practical candidate to model the prior

knowledge about the mixture gain parameter vector is the conjugate density such as a Dirichlet density

[14] g(!1; :::; !Kj�1; :::; �K) / KYk=1!�k�1k (6)2In the following the same termf is used to denote both the joint and the marginal p.d.f.’s since it is not likely to cause

confusion.3jrj denotes the determinant of the matrixr andrt denotes the transpose of the matrix or vectorr. In the following, we

will also usetr(r) to denote the trace of the matrixr. A precision matrix is defined as the inverse of the covariance matrix.
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where�k > 0 are the parameters for the Dirichlet density. As for the vector parameter(mk; rk) of the

individual Gaussian mixture component, the joint conjugate prior density is a normal-Wishart density

[5] of the formg(mk; rkj�k; �k; �k; uk) / jrkj(�k�p)=2 exp[��k2 (mk � �k)trk(mk � �k)] exp[� 12tr(ukrk)] (7)

where(�k; �k; �k; uk) are the prior density parameters such that�k > p� 1, �k > 0, �k is a vector of

dimensionp anduk is ap� p positive definite matrix.

Assuming independence between the parameters of the individual mixture components and the

set of the mixture weights, the joint prior densityg(�) is the product of the prior p.d.f.’s defined in

equations (6) and (7), i.e. g(�) = g(!1; :::; !K) KYk=1 g(mk; rk): (8)

It will be shown that this choice for the prior density familycan also be justified by noting that

the EM algorithm can be applied to the MAP estimation problemif the prior density belongs to the

conjugate family of the complete-data density.

3 MAP Estimates for Gaussian Mixture

The EM algorithm is an iterative procedure for approximating ML estimates in the context of incomplete-

data cases such as mixture density and hidden Markov model estimation problems [2, 6, 28]. This

procedure consists of maximizing at each iteration the auxiliary functionQ(�; �̂) defined as the expec-

tation of thecomplete-datalog-likelihoodlog h(yj�) given the incomplete datax = (x1; :::; xT) and

the current fit�̂, i.e. Q(�; �̂) = E[log h(yj�)jx; �̂]: (9)

For a mixture density, the complete-data likelihood is the joint likelihood ofx and` = (`1; :::; `T)
the unobserved labels referring to the mixture components,i.e. y = (x; `).

The EM procedure derives from the facts thatlog f(xj�) = Q(�; �̂) � H(�; �̂) whereH(�; �̂) =E[logh(yjx; �)jx; �̂)] andH(�; �̂) � H(�̂; �̂), and therefore whenever a value� satisfiesQ(�; �̂) >Q(�̂; �̂) thenf(xj�) > f(xj�̂). It follows that the same iterative procedure can be used to estimate the

mode of the posterior density by maximizing the auxiliary functionR(�; �̂) = Q(�; �̂) + log g(�) at

each iteration instead of the maximization ofQ(�; �̂) in conventional ML procedures [6].

For a mixture ofK densitiesff(�j�k)gk=1;:::;K with mixture weightsf!kgk=1;:::;K, the auxiliary

functionQ takes the following form [28]:Q(�; �̂) = TXt=1 KXk=1 !̂kf(xtj�̂k)PKl=1 !̂lf(xtj�̂l) log!kf(xtj�k): (10)
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Let 	(�; �̂) = expR(�; �̂) be the function to be maximized. For the case of Gaussian mixture

component, we havef(xtj�̂k) = N (xtjm̂k; r̂k). Define the following notationsckt = !̂kN (xtjm̂k; r̂k)PKl=1 !̂lN (xtjm̂l; r̂l) (11)ck = TXt=1 ckt (12)�xk = TXt=1 cktxt=ck (13)Sk = TXt=1 ckt(xt � �xk)(xt � �xk)t: (14)

Using the equality
PTt=1 ckt(xt �mk)trk(xt �mk) = ck(mk � �xk)trk(mk � �xk) + tr(Skrk), it

follows from the definition off(xj�) and equation (10) that	(�; �̂) / g(�) KYk=1!ckk jrkjck=2 exp[�ck2 (mk � �xk)trk(mk � �xk)� 12tr(Skrk)]: (15)

From the relations (15) and (8) it can easily be verified that	(�; �̂) belongs to the same distribution

family asg(�), and has parametersf� 0k; � 0k; �0k; �0k; u0kgk=1;:::;K satisfying the following conditions:�0k = �k + ck (16)� 0k = �k + ck (17)�0k = �k + ck (18)�0k = �k�k + ck�xk�k + ck (19)u0k = uk + Sk + �kck�k + ck (�k � �xk)(�k � �xk)t (20)

The family of densities defined by (8) is therefore a conjugate family for the complete-data density.

The mode of	(�; �̂), denoted(~!k; ~mk; ~rk), may be obtained from the modes of the Dirichlet and

normal-Wishart densities:~!k = (� 0k � 1)=PKk=1(�0k � 1), ~mk = �0k , and~rk = (�0k � p)u0k�1. Thus,

the EM reestimation formulas are derived as follows:~!k = (�k � 1) +PTt=1 cktPKk=1(�k � 1) +PKk=1PTt=1 ckt (21)~mk = �k�k +PTt=1 cktxt�k +PTt=1 ckt (22)~r�1k = uk +PTt=1 ckt(xt � ~mk)(xt � ~mk)t + �k(�k � ~mk)(�k � ~mk)t(�k � p) +PTt=1 ckt : (23)

For the Gaussian mean vectors, it can be seen that the new parameter estimates are simply a

weighted sum of the prior parameters and the observed data. The above development suggests when

the EM algorithm can be used for maximum likelihood estimation, a natural prior density can be found
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in the conjugate family of the complete-data density if sucha conjugate family exists. For example,

in the general case of mixture densities from exponential families, the prior will be the product of a

Dirichlet density for the mixture weights and the conjugatedensities of the mixture components.

If it is assumed that each mixture component is non-degenerate, i.e.!̂k > 0, thenck1; ck2; :::; ckT is

a sequence ofT i.i.d. random variables with a non-degenerate distributionandlim supT!1PTt=1 ckt =1 with probability one [25]. It follows that~wk converges to
PTt=1 ckt=T with probability one whenT !1. Applying the same reasoning to~mk and ~rk, it can be seen that the EM reestimation formulas

for the MAP and ML approaches are asymptotically similar. Thus as long as the initial estimates of�̂
are identical, the EM algorithms for MAP and ML will provide identical estimates with probability one

whenT !1.

4 MAP Estimates for HMM

The development in the previous section for a mixture of multivariate Gaussian densities can be ex-

tended to the case of HMM with Gaussian mixture state observation densities. For notational conve-

nience, it is assumed that the observation p.d.f.’s of all the states have the same number of mixture

components.

Consider anN -state HMM with parameter vector� = (�;A; �), where� is the initial probabil-

ity vector, A is the transition matrix, and� is the p.d.f. parameter vector composed of the mixture

parameters�i = fwik; mik; rikgk=1;:::;K for each statei.
For a samplex = (x1; :::; xT), the complete data isy = (x; s; `) wheres = (s0; :::; sT) is the

unobserved state sequence, and` = (`1; :::; `T) is the sequence of the unobserved mixture component

labels,st 2 [1; N ] andlt 2 [1; K]. The joint p.d.f.h(�j�) of x, s, and` is defined as4h(x; s; `j�) = �s0 TYt=1ast�1st!st`tf(xtj�st`t) (24)

where�i is the initial probability of statei, aij is the transition probability from statei to statej, and�ik = (mik; rik) is the parameter vector of thek-th normal p.d.f. associated with statei. It follows that

the likelihood ofx has the formf(xj�) =Xs �s0 TYt=1ast�1stf(xtj�st) (25)

wheref(xtj�i) =PKk=1 !ikN (xtjmik; rik), and the summation is over all possible state sequences.

If no prior knowledge is assumed aboutA and�, or alternatively if these parameters are assumed

fixed and known, the prior densityG can be chosen to have the following formG(�) = Qi g(�i), whereg(�i) is defined by equation (8). In the general case where MAP estimation is applied not only to the

observation density parameters but also to the initial and transition probabilities, a Dirichlet density can

be used for the initial probability vector� and for each row of the transition probability matrixA. This4Here we use the definition proposed by Baum et al. [1], where the observation p.d.f.’s are associated to the Markov chain

states and no symbol is produced in states0
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choice follows directly from the derivation discussed in the previous section, since the complete-data

likelihood satisfiesh(x; s; `j�) = h(sj�)h(x; `js; �)whereh(sj�) is the product ofN +1 multinomial

densities with parameter setsf�1; :::; �Ng and fai1; :::; aiNgi=1;:::;N . The prior density for all the

HMM parameters thus satisfies the relationG(�) / NYi=124��i�1i g(�i) NYj=1a�ij�1ij 35 (26)

wheref�ig is the set of parameters for the prior density of the initial probabilitiesf�ig, andf�ijg is

the set of parameters for the prior density of transition probabilitiesfaijg defined the same way as in

equation (6).

In the following subsections we examine two ways of approximating�MAP by local maximization

of f(xj�)G(�) or of f(x; sj�)G(�). These two solutions are the MAP versions of the Baum-Welch

algorithm [2] and of the segmentalk-means algorithm [26], algorithms which were developed forML

estimation.

4.1 Forward-Backward MAP Estimate

From equation (24) it is straightforward to show that the auxiliary function of the EM algorithm applied

to ML estimation of�,Q(�; �̂) = E[logh(yj�)jx; �̂], can be decomposed into a sum of three auxiliary

functions:Q�(�; �̂),QA(A; �̂) andQ�(�; �̂) such that they can be independently maximized [15]. The

three functions take the following forms:Q�(�; �̂) = NXi=1 
i0 log �i (27)QA(A; �̂) = TXt=1 NXi=1 NXj=1Pr(st�1 = i; st = jjx; �̂) log aij (28)= NXi=1Qai(ai; �̂) (29)Q�(�; �̂) = TXt=1 NXi=1 KXk=1Pr(st = i; `t = kjx; �̂) log!ikf(xtj�ik) (30)= NXi=1Q�i(�ij�̂) (31)

with Qai(ai; �̂) = TXt=1 NXj=1 �ijt log aij (32)Q�i(�i; �̂) = TXt=1 KXk=1 
it !̂ikf(xtj�̂ik)PKl=1 !̂ilf(xtj�̂il) log!ikf(xtj�ik) (33)
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where�ijt = Pr(st�1 = i; st = jjx; �̂) is the probability of making a transition from statei to statej at timet given that the model̂� generatesx, and
it = Pr(st = ijx; �̂) is the probability of being

in statei at timet given that the model̂� generatesx. Both probabilities can be computed at each EM

iteration using the forward-backward algorithm [2].

As for the mixture Gaussian case, estimating the mode of the posterior density requires the max-

imization of the auxiliary functionR(�; �̂) = Q(�; �̂) + logG(�). The form chosen forG(�) in

(26) permits independent maximization of each of the following2N + 1 parameter sets:f�1; :::; �Ng,fai1; :::; aiNgi=1;:::;N andf�igi=1;:::;N . The MAP auxiliary functionR(�; �̂) can thus be written as the

sumR�(�; �̂)+PiRai(ai; �̂)+PiR�i(�i; �̂), where each term represents the MAP auxiliary function

associated with the respective indexed parameter sets.

We can recognize in (33) the same form as was seen forQ(�; �̂) in (10) for the mixture Gaussian

case. It follows that ifckt in equation (11) is replaced bycikt defined ascikt = 
it !̂ikN (xtjm̂ik; r̂ik)PKl=1N (xtjm̂il; r̂il) (34)

which is the probability of being in statei with the mixture component labelk at timet given that the

model�̂ generatesxt, then the reestimation formulas (21-23) can be used to maximizeR�i(�i; �̂).
It is straightforward to derive the reestimations formulasfor � andA by applying the same deriva-

tions as were used for the mixture weights. The EM iteration for the three parameter set� = (�;A; �)
is: ~�i = (�i � 1) + 
i0PNj=1(�j � 1) +PNj=1 
j0 (35)~aij = (�ij � 1) +PTt=1 �ijtPNj=1(�ij � 1) +PNj=1PTt=1 �ijt (36)~!ik = (�ik � 1) +PTt=1 ciktPKk=1(�ik � 1) +PKk=1PTt=1 cikt (37)~mik = �ik�ik +PTt=1 ciktxt�ik +PTt=1 cikt (38)~r�1ik = uik +PTt=1 cikt(xt � ~mik)(xt � ~mik)t + �ik(�ik � ~mik)(�ik � ~mik)t(�ik � p) +PTt=1 cikt : (39)

For multiple independent observation sequencesfxvgv=1;:::;V , with xv = (x(v)1 ; :::; x(v)Tv ), we must

maximizeG(�)QVv=1 f(xvj�), wheref(�j�) is defined by equation (25). The EM auxiliary function

is thenR(�; �̂) = logG(�) +PVv=1E[logh(yvj�)jxv; �̂], whereh(�j�) is defined by equation (24).

It follows that the reestimation formulas forA and� still hold if the summations overt (
PTt=1) are

replaced by summations overv and t (
PVv=1PTvt=1). The values�(v)ijt and
(v)it are then obtained by

applying the forward-backward algorithm for each observation sequence. The reestimation formula for

the initial probabilities becomes~�i = (�i � 1) +PVv=1 
(v)i0PNj=1(�j � 1) +PNj=1PVv=1 
(v)j0 : (40)
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Reestimation formulation similar to equations (36-39) canalso be derived. Just like for the mixture

parameter case, it can be shown that asV ! 1, the MAP reestimation formulas approach the ML

ones, exhibiting the asymptotical similarity of the two estimates.

These reestimation equations give estimates of the HMM parameters which correspond to a local

maximum of the posterior density. The choice of the initial estimates is therefore critical to ensure a

solution close to the global maximum and to minimize the number of EM iterations needed to attain

the local maximum. When using an informative prior, a natural choice for the initial estimates is the

mode of the prior density, which represents all the available information about the parameters when no

data has been observed. The corresponding values are simplyobtained by applying the reestimation

formulas withT equal to 0 (i.e. without any observed data). Unlike the case of discrete HMMs where it

is possible to use uniform initial estimates, there is no trivial initial solution for the continuous density

HMM case. Therefore, in practice, the statistician adds information in the training process such as a

uniform or manual segmentation of the observation sequenceinto states from which it is possible to

obtain raw estimates of the HMM parameters by direct computation of the mode of the complete-data

likelihood.

4.2 Segmental MAP Estimate

By analogy with the segmentalk-means algorithm [26], a similar optimization criterion can be adopted.

Instead of maximizingG(�jx), the joint posteriordensity of parameter� and state sequences,G(�; sjx),
is maximized. The estimation procedure becomes~� = argmax� maxs G(�; sjx) = argmax� maxs f(x; sj�)G(�): (41)

where~� is refered to as thesegmental MAP estimateof �. As for the segmentalk-means algorithm [16],

it is straightforward to prove that starting with any estimate �(m), alternate maximization overs and� gives a sequence of estimates with non-decreasing values ofG(�; sjx), i.e.G(�(m+1); s(m+1)jx) �G(�(m); s(m)jx) with s(m+1) = argmaxs f(x; sj�(m)) (42)�(m+1) = argmax� f(x; s(m+1)j�)G(�): (43)

The most likely state sequences(m+1) is decoded by the Viterbi algorithm [9]. Maximization over�
can also be replaced by anyhill climbing procedure over� subject to the constraint thatf(x; s(m+1)j�(m+1))G(�(m+1)) � f(x; s(m+1)j�(m))G(�(m)). The EM algorithm is once again a

good candidate to perform this maximization using�(m) as an initial estimate. The EM auxiliary

function is thenR(�; �̂) = logG(�) + E[logh(yj�)jx; s(m); �̂] whereh(�j�) is defined by equation

(24). It is straightforward to show that the reestimation equations (35-39) still hold with�ijt = �(s(m)t�1�i)�(s(m)t � j) and
it = �(s(m)t � i), where� denotes the Kronecker delta function.
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5 Prior density estimation

In the previous sections it was assumed that the prior densityG(�) is a member of a preassigned family

of prior distributions defined by (26). In a strictly Bayesian approach the vector parameter' of this

family of p.d.f.’sfG(�j'); ' 2 �g is also assumed known based on common or subjective knowledge

about the stochastic process. An alternate solution is to adopt an empirical Bayes approach [29] where

the prior parameters are estimated directly from data. The estimation is then based on the marginal

distribution of the data given the estimated prior parameters.

In fact, part of the available prior knowledge can be directly incorporated in the model by assuming

some of the parameters to be fixed and known and/or by tying some of the parameters. As for the

prior distribution, this information will reduce the uncertainty during the training process and increase

the robustness of the estimates. However, in contrast to theprior distribution, such deterministic prior

information by definition cannot be changed even if a large amount of training data is available.

Adopting the empirical Bayes approach, it is assumed that the sequence of observations,X, is

composed of multiple independent sequences associated with different unknown values of the HMM

parameters. Let(X;�) = [(x1; �1); (x2; �2); :::; (xQ; �Q)] be such a multiple sequence of observa-

tions, where each pair is independent of the others and the�q have a common prior distributionG(�j').
Since the�q are not directly observed, the prior parameter estimates must be obtained from the marginal

densityf(Xj') defined as f(Xj') = Z� f(Xj�)G(�j')d� (44)

wheref(Xj�) = Qq f(xqj�q) andG(�j') = QqG(�qj'). However, maximum likelihood esti-

mation based onf(Xj') appears rather difficult. To alleviate the problem, we can choose a simpler

optimization criterion of maximizing the joint p.d.f.f(X;�j') over� and' instead of maximizing

the marginal p.d.f. ofX given'. Starting with an initial estimate of'(m), a hill climbing procedure is

obtained by alternate maximization over� and', i.e.�(m) = argmax� f(X;�j'(m)) (45)'(m+1) = argmax' G(�(m)j') (46)

Such a procedure provides a sequence of estimates with non-decreasing values off(X;�j'(m)).
The solution of (45) is the MAP estimate of� based on the current prior parameter'(m), which

can be obtained by applying the forward-backward MAP reestimation formulas to each observation

sequencexq. The solution of (46) is the maximum likelihood estimate of' based on the current values

of the HMM parameters. It should be noted that this proceduregives not only an estimate of the prior

parameters but also MAP estimates of the HMM parameters for each independent observation sequencexq.
Finding the solution of equation (46) poses two problems. First, due to the Wishart and Dirichlet

components, maximum likelihood estimation for the densitydefined by (26) is not trivial. Second,

since more parameters are needed for the prior density than for the HMM itself, there can be a problem

of overparametrization when the number of pairs(xq; �q) is small. One way to simplify the estimation
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problem is to use moment estimates to approximate the ML estimates. For the overparametrization

problem, it is possible to reduce the size of the prior familyby adding some constraints on the prior

parameters. For example, the prior family can be limited to the family of the kernel density of the

complete-data likelihood, i.e. the posterior density family of the complete-data model when no prior

information is available. Doing so, it is easy to show that the following constraints on the prior param-

eters hold �ik = �ik (47)�ik = �ik + p: (48)

Parameter tying can also be used to further reduce the size ofthe prior family and is useful for parameter

smoothing purposes. Finally, another practical constraint is to impose the prior mode to be equal to the

parameters of a given HMM, resulting in a scheme for model adaptation.

This approach can be used for two classes of applications: parameter smoothing and adaptive learn-

ing. For parameter smoothing, the goal is to estimatef�1; �2; :::; �Qg. The abovementioned algorithm

offers a direct solution to “smooth” these different estimates by assuming a common prior density

for all the models. For adaptive learning, we observe a new sequence of observationsxq associated

with the unobserved vector parameter value�q. The required specification of the prior parameters for

finding the MAP estimate of�q can be obtained as a point estimate'̂ computed with the proposed iter-

ative algorithm. Such a training process can be seen as the adaptation of a less specific a priori model�̂ = argmax�G(�j'̂) (when no training data are available) to more specific conditions which match

well with the new observation sequencexq. Some experimental results for these applications are given

in the next section.

6 Experimental Results

Bayesian learning of Gaussian densities has been widely used for sequential learning of the mean

vectors of feature- and template-based recognizers (see for example, Zelinski and Class [31], Stern

and Lasry [30]). Ferretti and Scarci [8] used Bayesian estimation of mean vectors to build speaker-

specific codebooks in an HMM framework. In all these cases, the precision parameter was assumed to

be known and the prior density limited to a Gaussian. Brownet al. [3] used Bayesian estimation for

speaker adaptation of CDHMM parameters in a connected digitrecognizer. More recently, Leeet al.

[20] investigated various training schemes of Gaussian mean and variance parameters using normal-

gamma prior densities for speaker adaptation. They showed that on the alpha-digit vocabulary, with

only a small amount of speaker specific data (1 to 3 utterancesof each word), the MAP estimates gave

better results than the ML estimates.

Using the theoretical developments presented in this paper, Bayesian estimation has been success-

fully applied to CDHMM with Gaussian mixture observation densities for four speech recognition

applications: parameter smoothing, speaker adaptation, speaker group modeling and corrective train-

ing. We have previously reported experimental results for these applications in [10, 11, 12, 22]. In order

to demonstrate the effectiveness of Bayesian estimation for such applications, some results are given
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here. In all cases, the HMM parameters were estimated using the segmental MAP algorithm. The prior

parameters, subject to the conditions (47-48), were obtained by forcing the prior mode to be equal to

the parameters of a given HMM [10]. These constraints leave free the parameters�ik which can either

be estimated using the algorithm described in Section 5, or can be arbitrarily fixed. For model adapta-

tion,�ik can be regarded as a weight associated with thek-th Gaussian of statei as shown in equations

(35) and (39). When this weight is large, the prior density issharply peaked around the values of the

seed HMM parameters which are only slightly modified by the adaptation process. Conversely, if�ik
is small, adaptation is fast and the MAP estimates depend mainly on the observed data.

The applications discussed here are parameter smoothing and speaker adaptation. It is well known

that HMM training requires smoothing (or tying), particularly if a large number of context-dependent

(CD) phone models are used with limited amounts of training data. While several solutions have

been investigated to smooth discrete HMMs, such as model interpolation, co-occurrence smoothing,

and fuzzy VQ, only variance smoothing has been proposed for continuous density HMMs. In [10,

11] we have shown that MAP estimation can be used to solve thisproblem for CDHMMs by tying

the parameters of the prior density. Performance improvement has been reported by tying the prior

parameters in two ways. For CD model smoothing, the same prior density was used for all CD models

corresponding to the same phone [10], and for p.d.f. smoothing the same marginal prior density was

used for all the components of a given mixture [11]. In experiments using the DARPA Naval Resource

Management (RM) [24] and the TI connected digit corpora, MAPestimation always outperformed ML

estimation, with error rate reductions on the order of 10 to 25%.

In the case of model adaptation, MAP estimation may be viewedas a process for adjusting seed

models to form more specific ones based on a small amount of adaptation data. The seed models

are used to estimate the parameters of the prior densities and to serve as an initial estimate for the EM

algorithm. Here experimental results are presented on speaker-adaptation as an example of model adap-

tation (Bayesian learning was also demonstrated as a schemefor sex-dependent training in [10, 11, 12].)

The experiments used a set of context-independent (CI) phone models, where each model is a left-to-

right HMM with Gaussian mixture state observation densities, with a maximum of 32 mixture com-

ponents per state. Diagonal covariance matrices are used and the transition probabilities are assumed

fixed and known. Details of the recognition system and the basic assumptions for acoustic modeling of

subword units can be found in [19]. As described in [21], a 38-dimensional feature vector composed

of LPC-derived cepstrum coefficients, and first and second order time derivatives was computed after

the data were down-sampled to 8kHz to simulate the telephonebandwidth.

In Table 1, speaker adaptation using MAP estimation is compared to ML training of speaker-

dependent (SD) models, using a set of 47 CI phone models. For MAP estimation speaker-independent

(SI) and sex-dependent (M/F) seed models were trained on thestandard RM SI-109 training set consist-

ing of 3990 utterances from 109 native American talkers (31 females and 78 males), each providing 30

or 40 utterances. The test material consisted of the RM FEB91-SD test data with 25 testing utterances

from each of the 12 testing speakers (7 males and 5 females). Results are reported using 40, 100 and

600 utterances (or equivalently about two, five and thirty minutes of speech material) of the speaker-

specific data (taken from RM SD data) for training and adaptation. The MLE (SD) and MAP (SI) word
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Training 0 min 2 min 5 min 30 min

MLE — 31.5 12.1 3.5

MAP (SI) 13.9 8.7 6.9 3.4

MAP (M/F) 11.5 7.5 6.0 3.5

Table 1: Summary of SD, SA (SI), and SA (M/F) results on FEB91-SD test. Results are given as word

error rate (%).

error rates using the standard RM word pair grammar are givenin the two first rows of the table. The

MLE (SD) word error rate for 2 minutes of training data is 31.5%. The SI word error rate (0 minutes of

adaptation data) is 13.9%, somewhat comparable to the MLE result with 5 minutes of speaker-specific

training data. While the MAP models are seen to outperform MLE models when only relatively small

amounts of data were used for training or adaptation, the MAPand MLE results are comparable when

all the available training data were used. This result is consistent with the Bayesian formulation that the

MAP estimate and the MLE are asymptotically similar as demonstrated in equations (35) - (39) withT ! 1. Compared to the SI results, the word error reduction is 37% with 2 minutes of adaptation

data. A larger improvement was observed for the female speakers (51%) than for the male speakers

(22%), presumably because there are fewer female speakers in the SI-109 training data.

Speaker adaptation can also be done using sex-dependent seed models if the gender of the new

speaker is known or can be estimated prior to the adaptation process. In the case of estimation, the

gender-dependent model set that best matches the gender of the new speaker is then used as the seed

model set instead of the SI seed models. Results for speaker adaptation using sex-dependent seed mod-

els are given in the third row of Table 1. The word error rate without speaker adaptation is 11.5%. The

error rate is reduced to 7.5% with 2 minutes, and 6.0% with 5 minutes, of adaptation data. Comparing

the last 2 rows of the table it can be seen that speaker adaptation is more effective when sex-dependent

seed models are used. The error reduction with 2 minutes of training data is 35% compared to the

sex-dependent model results and 46% compared to the SI modelresults.

More details on experimental results using MAP estimation for parameter smoothing and model

adaptation can be found in [10, 11, 12, 22] including application to speaker clustering and corrective

training. MAP estimation has also been applied to task adaptation[22]. In this case task-independent

SI models, trained from 10,000 utterance of a general English corpus[13], served as seed models for

speaker and task adaptation. Another use of MAP estimation has recently been proposed for text-

independent speaker identification[18] using a small amount of speaker-specific training data.

7 Conclusion

The theoretical framework for MAP estimation of multivariate Gaussian mixture density and HMM

with Gaussian mixture state observation densities was presented. By extending the two well-known

ML estimation algorithms to MAP estimation, two corresponding MAP training algorithms, namely the
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forward-backward MAP estimationand thesegmental MAP estimation, were formulated. The proposed

Bayesian estimation approach provides a framework to solvevarious HMM estimation problems posed

by sparse training data. It has been applied successfully toacoustic modeling in automatic speech

recognition, where Bayesian learning serves as a unified approach for speaker adaptation, speaker group

modeling, parameter smoothing and corrective training. The same framework can also be adopted for

the smoothing and adaptation of discrete and tied-mixture hidden Markov models (also known as semi-

continuous hidden Markov models) andN -gram stochastic language models.
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