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Abstract. This work addresses automatic transcription of television and radio
broadcasts in multiple languages. Transcription of such types of data is a major
step in developing automatic tools for indexation and retrieval of the vast amounts
of information generated on a daily basis. Radio and television broadcasts consist
of a continuous data stream made up of segments of different linguistic and acoustic
natures, which poses challenges for transcription. Prior to word recognition, the data
is partitioned into homogeneous acoustic segments. Non-speech segments are iden-
tified and removed, and the speech segments are clustered and labeled according to
bandwidth and gender. Word recognition is carried out with a speaker-independent
large vocabulary, continuous speech recognizer which makes use of n-gram statistics
for language modeling and of continuous density HMMs with Gaussian mixtures for
acoustic modeling. This system has consistently obtained top-level performance in
DARPA evaluations. Over 500 hours of unpartitioned unrestricted American English
broadcast data have been partitioned, transcribed and indexed, with an average word
error of about 20%. With current IR technology there is essentially no degradation
in information retrieval performance for automatic and manual transcriptions on
this data set.

Keywords: audio segmentation, speech recognition, audio indexation

1. Introduction

With the rapid expansion of different media sources for information
dissemination, there is a need for automatic processing of the data.
For the most part todays methods for transcription and indexation
are manual, with humans reading, listening and watching, annotating

topics and selecting items of interest for the user. Automation of some of
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these activities can allow more information sources to be covered and
significantly reduce processing costs while eliminating tedious work.
Radio and television broadcast shows are challenging to transcribe
as they contain signal segments with various acoustic and linguistic
natures. The signal may be of studio quality or have been transmitted
over a telephone or other noisy channel (i.e., corrupted by additive noise
and nonlinear distortions), it can contain speech in the presence of back-
ground music and pure music segments. Gradual transitions between
segments occur when there is background music or noise with changing
volume, whereas abrupt changes are common when there is switching
between speakers in different locations. The speech is produced by a
wide variety of speakers: news anchors and talk show hosts, reporters
in remote locations, interviews with politicians and common people,
unknown speakers, new dialects, non-native speakers, etc. Speech from
the same speaker may occur in different parts of the broadcast, and with
different channel conditions. The linguistic style ranges from prepared
speech to spontaneous speech.

Two principle types of problems are encountered in transcribing
broadcast news data: those relating to the varied acoustic properties of
the signal, and those related to the linguistic properties of the speech.
Problems associated with the acoustic signal properties are handled
using appropriate signal analyses, by classifying the signal according
to segment type and by training specific acoustic models for the dif-
ferent acoustic conditions. This process, known as audio partitioning
is described in the next section. Section 3 describes the process for
automatically transcribing the speech data. Section 4 presents an eval-
uation of the word transcription quality and the performance of an
information retrieval system using the automatic transcriptions of the
data from the 1999 TREC-8 Spoken Document Retrieval task [5].

2. Data Partitioning

While it is evidently possible to transcribe the continuous stream of
audio data without any prior segmentation, partitioning offers several

advantages over this straight-forward solution. First, in addition to
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Figure 1. Partitioning algorithm.

the transcription of what was said, other interesting information can
be extracted such as the division into speaker turns and the speaker
identities. Prior segmentation can avoid problems caused by linguistic
discontinuity at speaker changes. By using acoustic models trained on
particular acoustic conditions, overall performance can be significantly
improved, particularly when cluster-based adaptation is performed. Fi-
nally by eliminating non-speech segments and dividing the data into
shorter segments (which can still be several minutes long), reduces the

computation time and simplifies decoding.
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The segmentation and labeling procedure introduced in [9] is shown
in Figure 1. First, the non-speech segments are detected (and rejected)
using Gaussian mixture models. The GMMs, each with 64 Gaussians,
serve to detect speech, pure-music and other (background). The acous-
tic feature vector used for segmentation contains 38 parameters. It is
the same as the recognition feature vector described in the next section,
except that it does not include the energy, although the delta energy
parameters are included. The GMMs were each trained on about 1h of
acoustic data, extracted from the training data after segmentation with
the transcriptions. The speech model was trained on data of all types,
with the exception of pure music segments and the silence portions of
segments transcribed as speech over music. In order to detect speech
in noisy conditions a second speech GMM was trained only on noisy
speech segments. These model are expected to match all speech seg-
ments. The music model was trained only on portions of the data that
were labeled as pure music, so as to avoid mistakenly detecting speech
over music segments. The silence model was trained on the segments
labeled as silence during forced alignment, after excluding silences in
segments labeled as containing speech in the presence of background
music. All test segments labeled as music or silence are removed prior
to further processing.

A maximum likelihood segmentation/clustering iterative procedure
is then applied to the speech segments using GMMs and an agglom-
erative clustering algorithm. Given the sequence of cepstral vectors
corresponding to a show (z1,...,27), the goal is to find the number
of sources of homogeneous data (modeled by the p.d.f. f(:|\x) with
a known number of parameters) and the places of source changes.
The result of the procedure is a sequence of non-overlapping segments
(s1,...,sn) with their associated segment cluster labels (cq,...,cn),
where ¢; € [1, K] and K < N. Each segment cluster is assumed to
represent one speaker in a particular acoustic environment. In absence
of any prior knowledge about the stochastic process governing (K, N)
and the segment lengths, we use as objective function a penalized

log-likelihood of the form
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N
Y log f(si|Ae) —aN — BK
=1

where « > 0 and 3 > 0. The terms N and K, which can be
seen as segment and cluster penalties, correspond to the parameters of
exponential prior distributions for N and K. It is easy to prove that
starting with overestimates of N and K, alternate Viterbi re-estimation
and agglomerative clustering gives a sequence of estimates of (K, N, A)
with non decreasing values of the objective function. In the Viterbi step
we reestimate (IV, Ag) so as to increase Y . log f(s;|A¢;) —aN (i.e. adding
a segment penalty « in the Viterbi search) whereas in the clustering
step two or more clusters can be merged as long as the resulting log-
likelihood loss per merge is less than 3.} Since merging two models can
reduce the number of segments, the change in segment penalty is taken
into account during clustering.

The process is initialized using a simple segmentation algorithm
based on the detection of spectral change (similar to the first step
used in [17]). The threshold is set so as to over-generate segments,
roughly 5 times as many segments as true speaker turns. Initially, the
cluster set consists of a cluster per segment. This is followed by Viterbi
training of the set of GMMs (one 8-component GMM per cluster).
This procedure is controlled by 3 parameters: the minimum cluster size
(10s), the maximum log-likelihood loss for a merge («), and the segment
boundary penalty (3). When no more merges are possible, the segment
boundaries are refined using the last set of GMMs and an additional
relative energy-based boundary penalty, within a 1s interval. This is
done to locate the segment boundaries at silence portions, attempting
to avoid cutting words (but sometimes this still occurs).

Speaker-independent GMMs corresponding to wide-band speech and
telephone speech (each with 64 Gaussians) are then used to identify
telephone segments. This is followed by segment-based gender identi-
fication, using 2 sets of GMMs with 64 Gaussians (one for each band-

width). The result of the partitioning process is a set of speech segments

! This clustering criterion is closely related to the MDL or BIC criterion.

mtap00.tex; 11/01/2001; 16:33; p.5



6 Gauvain Lamel Adda

¥ I § i |
) et s !
4 R 54 i
i &::g[:: AR A éii‘;&'{ﬁflﬁh- #ﬂ,m,:{i‘:: I i

o o5 85 12 ] )

= 50 _ ‘ : o]

K 1 L) TN

i e A

g oM A o
1209 1odos 1211 1212 1213 1214 12k

At
it X BT & W Rl i T ey
1216 1217 1218 1219 12él)s

! 1 !
Speech | Husic | Speech | Husic
SF17 Shid

Displaying filed.wav,1208,500+15.500

Figure 2. Spectrograms illustrating results of data partitioning on sequences ex-
tracted from broadcasts. The upper transcript is the automatically generated
segment type: Speech, Music, or Noise. The lower transcript shows the clustering
results for the speech segments, after bandwidth (T=telephone-band/S=wide-band)
and gender (M=male/F=female) identification. The number identifies the cluster.

with cluster, gender and telephone/wide-band labels, as illustrated in
Figure 2.

We evaluated the frame level segmentation error (similar to [11])
on the 4 half-hour shows in the DARPA Hub-4E eval96 test data [4]
using the manual segmentation found in the reference transcriptions.
The NIST transcriptions of the test data contain segments that are not
scored, since they contain overlapping or foreign speech, and occasion-
ally there are small gaps between consecutive transcribed segments.
Since we consider that the partitioner should also work correctly on
these portions, we relabeled all excluded segments as speech, music or
other background.

Table I(top) shows the segmentation frame error rate and speech /non-
speech errors for the 4 shows. The average frame error is 3.7%, but is
much higher for show 1 than for the others. This is due to a long
and very noisy segment that was deleted. Averaged across shows the
gender labeling has a 1% frame error. The bottom of Table I shows
measures of the cluster homogeneity. The first entry gives the total
number of speakers and identified clusters per file. In general there are

more clusters than speakers, as a cluster can represent a speaker in a
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Table 1. Top: Speech/non-speech frame segmentation error
(%), using NIST labels, where missing and excluded seg-
ments were manually labeled as speech or non-speech. Bottom:

Cluster purity and best cluster coverage (%).

Show 1 2 3 4 Avg.
Frame Error 7.9 2.3 3.3 2.3 3.7
M/F FError 0.4 0.6 0.6 2.2 1.0

#spkrs/#clusters  7/10  13/17 15/21  20/21 -
Cluster Purity 99.5 93.2 96.9 94.9 95.9
Coverage 87.6 71.0 78.0 81.1 78.7

given acoustic environment. The second measure is the cluster purity,
defined as the percentage of frames in the given cluster associated with
the most represented speaker in the cluster. (A similar measure was
proposed in [3], but at the segment level.) The table shows the weighted
average cluster purities for the 4 shows. On average 96% of the data in
a cluster comes from a single speaker. When clusters are impure, they
tend to include speakers with similar acoustic conditions. The “best
cluster” coverage is a measure of the dispersion of a given speaker’s data
across clusters. We averaged the percentage of data for each speaker
in the cluster which has most of his/her data. On average, 80% of the
speaker’s data goes to the same cluster. In fact, this average value is a
bit misleading as there is a large variance in the best cluster coverage
across speakers. For most speakers the cluster coverage is close to 100%,
i.e., a single cluster covers essentially all frames of their data. However,
for a few speakers (for whom there is a lot of data), the speaker is
covered by two or more clusters, each containing comparable amounts
of data.

3. Transcribing Partitioned Broadcast Data

The speech recognizer uses continuous density hidden Markov models

(CD-HMMs) with Gaussian mixture for acoustic modeling and n-gram
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statistics estimated on large text corpora for language modeling [8]. For
acoustic modeling, 39 cepstral parameters are derived from a Mel fre-
quency spectrum estimated on the 0-8kHz band (0-3.5kHz for telephone
speech models) every 10 ms. The LPC-based cepstrum coefficients
are normalized on a segment cluster basis using cepstral mean re-
moval and variance normalization. Each resulting cepstral coefficient
for each cluster has a zero mean and unity variance. Each context-
dependent phone model is a tied-state left-to-right CD-HMM with
Gaussian mixture observation densities (about 32 components) where
the tied states are obtained by means of a phonemic decision tree.
Gender-dependent acoustic models were built using MAP adaptation
of speaker-independent seed models for wide-band and telephone band
speech [6]. The acoustic models for American English were trained on
about 150 hours of Broadcast News data.

Language models (LMs) were obtained by interpolation of back-
off n-gram language models trained on different data sets: Broadcast
news transcriptions, North American Business newspapers and Asso-
ciated Press Wordstream texts, and transcriptions of the broadcast
news acoustic training data. The interpolation coefficients of these 4
LMs were chosen so as to minimize the perplexity on a set of devel-
opment texts. The recognition vocabulary contains 65122 words and
has a lexical coverage of about 99% on the development and test data.
The pronunciations are based on a 48 phone set (3 of them are used
for silence, filler words, and breath noises). A pronunciation graph is
associated with each word so as to allow for alternate pronunciations,
including optional phones. Compound words for about 300 frequent
word sequences subject to reduced pronunciations were included in the
lexicon as well as the representation of frequent acronyms as words.

In order to address variability observed in the linguistic properties,
we analyzed differences in read and spontaneous speech, with regard to
lexical items, word and word sequence pronunciations, and the frequen-
cies and distribution of hesitations, filler words, and respiration noises.
As a result of this analysis, these phenomena were explicitly modeled
in both the acoustic and language models as described in [8].

The word decoding procedure is shown in Figure 3. Prior to decod-

ing, segments longer than 30s are chopped into smaller pieces so as to
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Figure 3. Word decoding.

a bimodal distribution is estimated by fitting a mixture of 2 Gaussians
to the log-RMS power for all frames of the segment. This distribution
is used to determine locations which are likely to correspond to pauses,
thus being reasonable places to cut the segment. Cuts are made at the
most probable pause 15s to 30s from the previous cut. Word recognition
is performed in three steps: 1) initial hypothesis generation, 2) word
graph generation, 3) final hypothesis generation. The initial hypothesis
are used for cluster-based acoustic model adaptation using the MLLR
technique [14] prior to the 2nd and 3rd decoding passes. The final
hypothesis is generated using a 4-gram language model.

The first step generates initial hypotheses which are used for cluster-

based acoustic model adaptation. This single pass decoding makes use
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of a trigram backoff language model (about 8M trigrams and 17M bi-
grams) and gender-specific sets of 5416 position-dependent, cross word
triphones with about 11500 tied states. Band-limited acoustic models
are used for the telephone speech segments.

The second decoding step generates accurate word graphs. Unsu-
pervised acoustic model adaptation (both means and variances) is per-
formed for each segment cluster using the MLLR technique [14]. The
mean vectors are adapted using a single block-diagonal regression ma-
trix, and a diagonal matrix is used to adapt the variances. Each segment
is decoded with the trigram language model and an adapted version of
the larger set of acoustic models 28000 position-dependent, cross word
triphones with about 11500 tied states (350K Gaussians).

The final hypothesis is generated using a 4-gram language model,
and the large set of acoustic models adapted with the hypothesis from
the second decoding step.

Broadcast news transcription systems have been also developed for
the French and German languages, partially supported by the L4
OLIVE project. The same partitioning and recognition algorithms have
been successfully applied in conjunction with language-specific lexicons.
and acoustic and language models. The French and German lexicons
are represented with 37 and 51 phones respectively, including specific
phones for silence, breath and fillers. The acoustic models for each
language were trained on about 20 hours of audio data from radio and
television broadcasts. Trigram backofl language models are formed by
interpolation of individual LMs estimated on the transcriptions of the
acoustic training data and on texts from newspapers and newswires.
The out-of-vocabulary (OOV) rate is 1.15% for the French 65k lexicon,
and 4.5% for the German 65k lexicon. The lower lexical coverages than
for English are due to the large number of verb forms, and number and
gender agreement for French and German and for case declension and

compounding in German.
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Table II. Summary of broadcast news transcrip-
tion word error rates for 3 test sets. *Only the
1996 system used a manual partition. All other

results are with an automatic partition.

Test set
FEval’96 FEval’97  Fval’98
System 1.8 hours 8 hours 3 hours

1996 system 27.1*
1997 system 25.3 18.3
1998 system 19.8 13.9 13.6

4. Evaluation

This section presents an evaluation of the broadcast news transcrip-
tion system both in terms of transcription accuracy, and the potential
for using the automatic transcription for information indexing and

retrieval.

4.1. SPEECH RECOGNIZER WORD ACCURACY

In Table II reports the word recognition results on DARPA evalua-
tion test sets from the last three years. Each data set contains a few
hours of broadcast audio data selected by NIST [4]. The commonly
used error metric is the “word error” rate defined as: %word error =
%substitutions + %insertions + %deletions. The results shown in bold
are the official NIST scores obtained by the different systems. For the
1997 system our main development effort was devoted to moving from a
manual to an automatic partitioning process. This system nevertheless
achieved a performance improvement of 6% on the eval’96 test data.
The 1998 system [10] has more accurate acoustic and language models,
and achieves a relative word error reduction of over 20% compared to
the 1997 system. These tests were carried out without any restriction
on the computation time and required over 100 hours to process each

hour of data.
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Even though it is usually assumed that processing time is not a
major issue since computer processing power increase continuously,?
it is also known that the amount of data appearing on information
channels is increasing at a close rate. Therefore processing time is an
important factor in making a speech transcription system viable for
audio data mining. Transcribing “found” data requires significantly
higher processing power than what is needed to transcribed read speech
data by speaker adapted dictation systems. This is due to the lack of
control of the recordings and linguistic content, which on average results
in lower SNR ratios, a poorer fit of the acoustic and language models
to the data, and as a consequence a need for larger models. Processing
time constraints significantly change the way we select our models. For
each operating point, the right balance between model complexity and
search pruning level must be found. Two fast systems were optimized
for decoding at 10 and 1.4 times real-time (RT), including audio par-
titioning. On the eval’98 data set the word error rates are 14.2% for
the 10xRT system and 24.7% for the 1.4xRT on a Compaq XP1000
500MHz machine.

Figure 4 shows an example portion of an SGML file created from
the automatically generated word transcription, taking into account
the information available from the partitioning process. Each audio
segment starts with a <segment> tag with its start and end times
as well as labels for the signal type, gender and speaker. The word
transcription is given, with an illustration of the word time codes.
Although not shown, a word level confidence score can optionally be
associated with each word.

The French and German transcription systems have been evaluated
on about 1.5 hours of data. The French data come from television
news shows (ARTE) and radio station (France Inter). The German
data consist of TV news and documentaries from ARTE. The average
word error on the French data is under 20%. The average word error
on the German news data is about 20%, and lower than the error on

documentaries which is closer to 35%. This difference can be partially

2 1t is common practice to develop systems that run in 100 times real-time or

more, especially to evaluate the absolute quality of the acoustic and language models.
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<audiofile filename=CSPAN-WJ-960917 language=English>
<segment type=wideband gender=female spkr=5 stime=81.6 etime=84.2>
do you know if that mr. nader’s on the ballot in florida
</segment >
<segment type=telephone gender=male spkr=1 stime=84.72 etime=86.09>
<wtime stime=84.72 etime=84.97> i
<wtime stime=84.97 etime=85.22> don’t
<wtime stime=85.22 etime=85.47> know
<wtime stime=85.47 etime=85.63> i’m
<wtime stime=85.63 etime=86.09> sorry
</segment >
<segment type=wideband gender=female spkr=5 stime=86.09 etime=87.59>
<wtime stime=86.09 etime=86.21> if
<wtime stime=86.21 etime=86.41> he
<wtime stime=86.41 etime=86.67> is
<wtime stime=86.67 etime=86.79> will
<wtime stime=86.79 etime=86.94> you
<wtime stime=86.94 etime=87.16> vote
<wtime stime=87.16 etime=87.32> for
<wtime stime=87.32 etime=87.59> him
</segment >
<segment type=telephone gender=male spkr=1 stime=87.59 etime=106.22>
i would if it
</segment >
</audiofile>

Figure 4. Example SGML format for the system output. For each segment the signal
type, gender and speaker labels, and start and end times are given, as well as the

word transcription. For simplicity not all time codes are shown.

attributed to the better language model representivity for the news
data.

4.2. EXPERIMENTS WITH SPOKEN DOCUMENT RETRIEVAL

One of the main motivations for automatic processing of the audio
channels of broadcast data is to serve as a basis for automatic disclosure

and indexation for information retrieval (IR) purposes. The aim of the
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OLIVE project® was to develop an archiving and retrieval system for
broadcast data to enable efficient access to large multimedia libraries,
such as the French INA audio-visual archive [13]. Disclosure of video
material plays an important role for the user organizations, but is too
costly to carry out manually for all broadcast data. As a result, the
vast majority of data is archived with only minimal annotations. The
audio stream is automatically partitioned and the speech segments
transcribed and time-coded using the methods described above. The
transcription is used to generate an index which is linked to the appro-
priate portions of the audio or video data. OLIVE also developed tools
for users to query the database, as well as cross-lingual access based
on off-line machine translation of the archived documents, and online
query translation.

We have assessed the performance in spoken document retrieval
(SDR) on 600 hours of audio data (100 hours from TREC-7 SDR’98
and 500 hours from TREC-8 SDR’98). Although for IR purposes the
story boundaries are assumed to be known, this information is not used
by the speech recognizer. Most of the development work was carried out
using the SDR’98 test data (100h), consisting of about 2800 documents
with the associated 23 queries. The SDR’99 test data (500h) consists
of 21750 documents with an associated set of 50 queries. It should be
noted that the reference transcripts of the SDR’98 data are detailed
manual transcriptions, whereas for the SDR’99 data these are closed
captions.

In order for the same IR system to be applied to different text
data types (automatic transcriptions, closed captions, additional texts
from newspapers or newswires), all of the documents were preprocessed
in a homogeneous manner. This preprocessing, or tokenization, is the
same as the text source preparation for training the speech recognizer
language models [7], and attempts to transform them to be closer to
the observed American speaking style. The basic operations include
translating numbers and sums into words, removing all the punctua-

tion symbols, removing case distinctions and detecting acronyms and

® The LE4-8364 OLIVE project (http://twentyone.tpd.tno.nl/olive) was funded
by the European Commission under the Telematics Application Programme in the

sector Language Engineering.
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spelled names. However removing all punctuations implies that certain
hyphenated words such as anti-communist, non-profit are rewritten as
anti communist and non profit. While this offers advantages for speech
recognition, it can lead to IR errors. To avoid IR problems due to this
transformation, the output of the tokenizer (and recognizer) is checked
for common prefixes, in order to rewrite a sequence of words as a single
word. The prefixes that are handled include anti, co, bi, counter. A set
of rewrite rules covering compound words formed with these prefixes
and a limited number of named entities (such as Los-Angeles) is used
to transform the texts. Similarly all numbers less than one hundred are
treated as a single entity (such as twenty-seven).

In order to reduce the number of lexical items for a given word
sense, each word is mapped to its stem (as defined in [2, 16]) or,
more generally, into a form that is chosen as being representative of
its semantic family.

The text of the query may or may not include the index terms associ-
ated with relevant documents. One way to cope with this problem is to
do query expansion based on terms present in retrieved documents on
the same (Blind Relevance Feedback) or other (Parallel Blind Relevance
Feedback) data collections [19]. We combined the two approaches in our
system. For the latter 6 months of commercially available broadcast
news transcripts from the period of June through December 1997 [1]
were used. This corpus contains 50 000 stories and 49.5 M words. For a
given query, the terms found in the top 15 documents from the baseline
search are ranked by their offer weight [18], and the top 10 terms are
added to the query. Since only the terms with best offer weights are
kept, the terms are filtered using a stop list of 144 common words, in
order to increase the likelihood that the resulting terms are relevant.

The information retrieval system relies on a unigram model per
story. The score of a story is obtained by summing the query term
weights which are the log probabilities of the terms given the story
model once interpolated with a general English model. This term weight-
ing has been shown to perform as well as the popular TF+IDF weighting
scheme [12, 15].

Table III gives the IR results in terms of mean average precision
(MAP), as is done for the TREC benchmarks. Four experimental con-
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figurations are reported: baseline search (base), query expansion using
blind relevance feedback (BRF), query expansion with parallel blind
relevance feedback (PBRF) and query expansion using both BRF and
PBREF. The results clearly demonstrate the interest of using both BRF
and PBRF expansion techniques, as consistent improvements are ob-
tained over the baseline system for the two conditions (R1 and S1).
Average precisions of 57% and 54% respectively were obtained on the
SDR’98 and SDR’99 test sets using the automatic transcriptions. These
values are quite close to the average precisions obtained on manual
transcripts, even though the 10xRT recognizer transcripts have an es-
timated 20.5% word error rate. Using transcriptions generated with the
1.4xRT system (word error rate of about 32%), the baseline MAP is
41% and the MAP with query expansion is 49% for the SDR’99 test
conditions.

Table III. Mean average precision (%) for the SDR’98 and

SDR’99 data sets using unigram term weightings. R1: refer-

ence transcript. S1: automatic speech transcription obtained
with a 10xRT system.

dataset base BRF PBRF BRF+PBRF
98-R1 46.95 59.36 55.74 58.89
98-S1 45.58 51.21 58.84 57.45
99-R1 46.91 53.54 50.98 54.30
99-S1 44,12 53.02 49.43 53.98

5. Conclusions

In this paper we have presented our recent research in partitioning and
transcribing television and radio broadcasts. These are necessary steps
to enable automated processing of the vast amounts of audio and video
data produced on a daily basis. The data partitioning algorithm makes

use of Gaussian mixture models and an iterative segmentation and
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clustering procedure. The resulting segments are labeled according to
gender and bandwidth using 64-component GMMs. The speech detec-
tion frame error is less than 4%, and gender identification has a frame
error of 1%. Many of the errors occur at the boundary between seg-
ments, and can involve silence segments which can be considered as with
speech or non-speech without influencing transcription performance.

Word recognition is carried out in multiple passes for each speech
segment progressively using more accurate models. The generation of
word graphs with adapted acoustic models is essential for obtaining
word graphs with low word error rates, particularly in light of the
variety of talkers and acoustic conditions. On unrestricted American
English broadcast news shows the word error rate is about 20%. Due
to the availability of large, transcribed corpora available through the
LDC our initial work focused on American English, however, in the
context of the LE4 OLIVE project the transcription system system has
been sucessfully ported to the French and German languages with word
error rates under 20% for news shows.

Our experience is that radio news shows are usually easier to tran-
scribe than television news shows, probably due to the fact that only the
audio channel is used to transmit the information, whereas for television
the audio stream is supported by visual data. Broadcast news data is
also easier to transcribe than documentaries.

A complete indexing system has been built by applying text IR
techniques on the output of our broadcast news speech recognizer.
Quite comparable average precisions were obtained on manual and ref-
erence transcriptions (which for the SDR’99 data were closed captions),
indicating that the transcription quality is not the limiting factor on
IR performance for current IR techniques.

Some existing applications that could greatly benefit from this tech-
nology are the creation and access to digital multimedia libraries (dis-
closure of the information content and content-based indexation), me-
dia monitoring services (selective dissemination of information based
on automatic detection of topics of interest) as well as new emerging

applications such as news-on-demand and Internet watch services.
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