
Audio Partitioning and Transcription for Broadcast DataIndexationJ.L. Gauvain (gauvain@limsi.fr), L. Lamel (lamel@limsi.fr) andG. Adda (gadda@limsi.fr)Spoken Language Processing GroupLIMSI-CNRS, BP 133, 91403 Orsay, Francehttp://www.limsi.fr/tlpFebruary 2000Abstract. This work addresses automatic transcription of television and radiobroadcasts in multiple languages. Transcription of such types of data is a majorstep in developing automatic tools for indexation and retrieval of the vast amountsof information generated on a daily basis. Radio and television broadcasts consistof a continuous data stream made up of segments of di�erent linguistic and acousticnatures, which poses challenges for transcription. Prior to word recognition, the datais partitioned into homogeneous acoustic segments. Non-speech segments are iden-ti�ed and removed, and the speech segments are clustered and labeled according tobandwidth and gender. Word recognition is carried out with a speaker-independentlarge vocabulary, continuous speech recognizer which makes use of n-gram statisticsfor language modeling and of continuous density HMMs with Gaussian mixtures foracoustic modeling. This system has consistently obtained top-level performance inDARPA evaluations. Over 500 hours of unpartitioned unrestricted American Englishbroadcast data have been partitioned, transcribed and indexed, with an average worderror of about 20%. With current IR technology there is essentially no degradationin information retrieval performance for automatic and manual transcriptions onthis data set.Keywords: audio segmentation, speech recognition, audio indexation1. IntroductionWith the rapid expansion of di�erent media sources for informationdissemination, there is a need for automatic processing of the data.For the most part todays methods for transcription and indexationare manual, with humans reading, listening and watching, annotatingtopics and selecting items of interest for the user. Automation of some ofc
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2 Gauvain Lamel Addathese activities can allow more information sources to be covered andsigni�cantly reduce processing costs while eliminating tedious work.Radio and television broadcast shows are challenging to transcribeas they contain signal segments with various acoustic and linguisticnatures. The signal may be of studio quality or have been transmittedover a telephone or other noisy channel (i.e., corrupted by additive noiseand nonlinear distortions), it can contain speech in the presence of back-ground music and pure music segments. Gradual transitions betweensegments occur when there is background music or noise with changingvolume, whereas abrupt changes are common when there is switchingbetween speakers in di�erent locations. The speech is produced by awide variety of speakers: news anchors and talk show hosts, reportersin remote locations, interviews with politicians and common people,unknown speakers, new dialects, non-native speakers, etc. Speech fromthe same speaker may occur in di�erent parts of the broadcast, and withdi�erent channel conditions. The linguistic style ranges from preparedspeech to spontaneous speech.Two principle types of problems are encountered in transcribingbroadcast news data: those relating to the varied acoustic properties ofthe signal, and those related to the linguistic properties of the speech.Problems associated with the acoustic signal properties are handledusing appropriate signal analyses, by classifying the signal accordingto segment type and by training speci�c acoustic models for the dif-ferent acoustic conditions. This process, known as audio partitioningis described in the next section. Section 3 describes the process forautomatically transcribing the speech data. Section 4 presents an eval-uation of the word transcription quality and the performance of aninformation retrieval system using the automatic transcriptions of thedata from the 1999 TREC-8 Spoken Document Retrieval task [5].2. Data PartitioningWhile it is evidently possible to transcribe the continuous stream ofaudio data without any prior segmentation, partitioning o�ers severaladvantages over this straight-forward solution. First, in addition tomtap00.tex; 11/01/2001; 16:33; p.2
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Figure 1. Partitioning algorithm.the transcription of what was said, other interesting information canbe extracted such as the division into speaker turns and the speakeridentities. Prior segmentation can avoid problems caused by linguisticdiscontinuity at speaker changes. By using acoustic models trained onparticular acoustic conditions, overall performance can be signi�cantlyimproved, particularly when cluster-based adaptation is performed. Fi-nally by eliminating non-speech segments and dividing the data intoshorter segments (which can still be several minutes long), reduces thecomputation time and simpli�es decoding.mtap00.tex; 11/01/2001; 16:33; p.3



4 Gauvain Lamel AddaThe segmentation and labeling procedure introduced in [9] is shownin Figure 1. First, the non-speech segments are detected (and rejected)using Gaussian mixture models. The GMMs, each with 64 Gaussians,serve to detect speech, pure-music and other (background). The acous-tic feature vector used for segmentation contains 38 parameters. It isthe same as the recognition feature vector described in the next section,except that it does not include the energy, although the delta energyparameters are included. The GMMs were each trained on about 1h ofacoustic data, extracted from the training data after segmentation withthe transcriptions. The speech model was trained on data of all types,with the exception of pure music segments and the silence portions ofsegments transcribed as speech over music. In order to detect speechin noisy conditions a second speech GMM was trained only on noisyspeech segments. These model are expected to match all speech seg-ments. The music model was trained only on portions of the data thatwere labeled as pure music, so as to avoid mistakenly detecting speechover music segments. The silence model was trained on the segmentslabeled as silence during forced alignment, after excluding silences insegments labeled as containing speech in the presence of backgroundmusic. All test segments labeled as music or silence are removed priorto further processing.A maximum likelihood segmentation/clustering iterative procedureis then applied to the speech segments using GMMs and an agglom-erative clustering algorithm. Given the sequence of cepstral vectorscorresponding to a show (x1; : : : ; xT ), the goal is to �nd the numberof sources of homogeneous data (modeled by the p.d.f. f(�j�k) witha known number of parameters) and the places of source changes.The result of the procedure is a sequence of non-overlapping segments(s1; : : : ; sN) with their associated segment cluster labels (c1; : : : ; cN),where ci 2 [1; K] and K � N . Each segment cluster is assumed torepresent one speaker in a particular acoustic environment. In absenceof any prior knowledge about the stochastic process governing (K;N)and the segment lengths, we use as objective function a penalizedlog-likelihood of the form
mtap00.tex; 11/01/2001; 16:33; p.4



Audio Partitioning and Transcription for Broadcast Data Indexation 5NXi=1 log f(sij�ci)� �N � �Kwhere � > 0 and � > 0. The terms �N and �K, which can beseen as segment and cluster penalties, correspond to the parameters ofexponential prior distributions for N and K. It is easy to prove thatstarting with overestimates ofN and K, alternate Viterbi re-estimationand agglomerative clustering gives a sequence of estimates of (K;N; �k)with non decreasing values of the objective function. In the Viterbi stepwe reestimate (N; �k) so as to increasePi log f(sij�ci)��N (i.e. addinga segment penalty � in the Viterbi search) whereas in the clusteringstep two or more clusters can be merged as long as the resulting log-likelihood loss per merge is less than �.1 Since merging two models canreduce the number of segments, the change in segment penalty is takeninto account during clustering.The process is initialized using a simple segmentation algorithmbased on the detection of spectral change (similar to the �rst stepused in [17]). The threshold is set so as to over-generate segments,roughly 5 times as many segments as true speaker turns. Initially, thecluster set consists of a cluster per segment. This is followed by Viterbitraining of the set of GMMs (one 8-component GMM per cluster).This procedure is controlled by 3 parameters: the minimum cluster size(10s), the maximum log-likelihood loss for a merge (�), and the segmentboundary penalty (�). When no more merges are possible, the segmentboundaries are re�ned using the last set of GMMs and an additionalrelative energy-based boundary penalty, within a 1s interval. This isdone to locate the segment boundaries at silence portions, attemptingto avoid cutting words (but sometimes this still occurs).Speaker-independent GMMs corresponding to wide-band speech andtelephone speech (each with 64 Gaussians) are then used to identifytelephone segments. This is followed by segment-based gender identi-�cation, using 2 sets of GMMs with 64 Gaussians (one for each band-width). The result of the partitioning process is a set of speech segments1 This clustering criterion is closely related to the MDL or BIC criterion.mtap00.tex; 11/01/2001; 16:33; p.5



6 Gauvain Lamel Adda
Figure 2. Spectrograms illustrating results of data partitioning on sequences ex-tracted from broadcasts. The upper transcript is the automatically generatedsegment type: Speech, Music, or Noise. The lower transcript shows the clusteringresults for the speech segments, after bandwidth (T=telephone-band/S=wide-band)and gender (M=male/F=female) identi�cation. The number identi�es the cluster.with cluster, gender and telephone/wide-band labels, as illustrated inFigure 2.We evaluated the frame level segmentation error (similar to [11])on the 4 half-hour shows in the DARPA Hub-4E eval96 test data [4]using the manual segmentation found in the reference transcriptions.The NIST transcriptions of the test data contain segments that are notscored, since they contain overlapping or foreign speech, and occasion-ally there are small gaps between consecutive transcribed segments.Since we consider that the partitioner should also work correctly onthese portions, we relabeled all excluded segments as speech, music orother background.Table I(top) shows the segmentation frame error rate and speech/non-speech errors for the 4 shows. The average frame error is 3.7%, but ismuch higher for show 1 than for the others. This is due to a longand very noisy segment that was deleted. Averaged across shows thegender labeling has a 1% frame error. The bottom of Table I showsmeasures of the cluster homogeneity. The �rst entry gives the totalnumber of speakers and identi�ed clusters per �le. In general there aremore clusters than speakers, as a cluster can represent a speaker in amtap00.tex; 11/01/2001; 16:33; p.6



Audio Partitioning and Transcription for Broadcast Data Indexation 7Table I. Top: Speech/non-speech frame segmentation error(%), using NIST labels, where missing and excluded seg-ments were manually labeled as speech or non-speech. Bottom:Cluster purity and best cluster coverage (%).Show 1 2 3 4 Avg.Frame Error 7.9 2.3 3.3 2.3 3.7M/F Error 0.4 0.6 0.6 2.2 1.0#spkrs/#clusters 7/10 13/17 15/21 20/21 -ClusterPurity 99.5 93.2 96.9 94.9 95.9Coverage 87.6 71.0 78.0 81.1 78.7given acoustic environment. The second measure is the cluster purity,de�ned as the percentage of frames in the given cluster associated withthe most represented speaker in the cluster. (A similar measure wasproposed in [3], but at the segment level.) The table shows the weightedaverage cluster purities for the 4 shows. On average 96% of the data ina cluster comes from a single speaker. When clusters are impure, theytend to include speakers with similar acoustic conditions. The \bestcluster" coverage is a measure of the dispersion of a given speaker's dataacross clusters. We averaged the percentage of data for each speakerin the cluster which has most of his/her data. On average, 80% of thespeaker's data goes to the same cluster. In fact, this average value is abit misleading as there is a large variance in the best cluster coverageacross speakers. For most speakers the cluster coverage is close to 100%,i.e., a single cluster covers essentially all frames of their data. However,for a few speakers (for whom there is a lot of data), the speaker iscovered by two or more clusters, each containing comparable amountsof data. 3. Transcribing Partitioned Broadcast DataThe speech recognizer uses continuous density hidden Markov models(CD-HMMs) with Gaussian mixture for acoustic modeling and n-grammtap00.tex; 11/01/2001; 16:33; p.7



8 Gauvain Lamel Addastatistics estimated on large text corpora for language modeling [8]. Foracoustic modeling, 39 cepstral parameters are derived from a Mel fre-quency spectrum estimated on the 0-8kHz band (0-3.5kHz for telephonespeech models) every 10 ms. The LPC-based cepstrum coe�cientsare normalized on a segment cluster basis using cepstral mean re-moval and variance normalization. Each resulting cepstral coe�cientfor each cluster has a zero mean and unity variance. Each context-dependent phone model is a tied-state left-to-right CD-HMM withGaussian mixture observation densities (about 32 components) wherethe tied states are obtained by means of a phonemic decision tree.Gender-dependent acoustic models were built using MAP adaptationof speaker-independent seed models for wide-band and telephone bandspeech [6]. The acoustic models for American English were trained onabout 150 hours of Broadcast News data.Language models (LMs) were obtained by interpolation of back-o� n-gram language models trained on di�erent data sets: Broadcastnews transcriptions, North American Business newspapers and Asso-ciated Press Wordstream texts, and transcriptions of the broadcastnews acoustic training data. The interpolation coe�cients of these 4LMs were chosen so as to minimize the perplexity on a set of devel-opment texts. The recognition vocabulary contains 65122 words andhas a lexical coverage of about 99% on the development and test data.The pronunciations are based on a 48 phone set (3 of them are usedfor silence, �ller words, and breath noises). A pronunciation graph isassociated with each word so as to allow for alternate pronunciations,including optional phones. Compound words for about 300 frequentword sequences subject to reduced pronunciations were included in thelexicon as well as the representation of frequent acronyms as words.In order to address variability observed in the linguistic properties,we analyzed di�erences in read and spontaneous speech, with regard tolexical items, word and word sequence pronunciations, and the frequen-cies and distribution of hesitations, �ller words, and respiration noises.As a result of this analysis, these phenomena were explicitly modeledin both the acoustic and language models as described in [8].The word decoding procedure is shown in Figure 3. Prior to decod-ing, segments longer than 30s are chopped into smaller pieces so as to
mtap00.tex; 11/01/2001; 16:33; p.8
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Figure 3. Word decoding.limit the memory required for the 4-gram decoding pass [8]. To do soa bimodal distribution is estimated by �tting a mixture of 2 Gaussiansto the log-RMS power for all frames of the segment. This distributionis used to determine locations which are likely to correspond to pauses,thus being reasonable places to cut the segment. Cuts are made at themost probable pause 15s to 30s from the previous cut. Word recognitionis performed in three steps: 1) initial hypothesis generation, 2) wordgraph generation, 3) �nal hypothesis generation. The initial hypothesisare used for cluster-based acoustic model adaptation using the MLLRtechnique [14] prior to the 2nd and 3rd decoding passes. The �nalhypothesis is generated using a 4-gram language model.The �rst step generates initial hypotheses which are used for cluster-based acoustic model adaptation. This single pass decoding makes usemtap00.tex; 11/01/2001; 16:33; p.9



10 Gauvain Lamel Addaof a trigram backo� language model (about 8M trigrams and 17M bi-grams) and gender-speci�c sets of 5416 position-dependent, cross wordtriphones with about 11500 tied states. Band-limited acoustic modelsare used for the telephone speech segments.The second decoding step generates accurate word graphs. Unsu-pervised acoustic model adaptation (both means and variances) is per-formed for each segment cluster using the MLLR technique [14]. Themean vectors are adapted using a single block-diagonal regression ma-trix, and a diagonal matrix is used to adapt the variances. Each segmentis decoded with the trigram language model and an adapted version ofthe larger set of acoustic models 28000 position-dependent, cross wordtriphones with about 11500 tied states (350K Gaussians).The �nal hypothesis is generated using a 4-gram language model,and the large set of acoustic models adapted with the hypothesis fromthe second decoding step.Broadcast news transcription systems have been also developed forthe French and German languages, partially supported by the LE4Olive project. The same partitioning and recognition algorithms havebeen successfully applied in conjunction with language-speci�c lexicons.and acoustic and language models. The French and German lexiconsare represented with 37 and 51 phones respectively, including speci�cphones for silence, breath and �llers. The acoustic models for eachlanguage were trained on about 20 hours of audio data from radio andtelevision broadcasts. Trigram backo� language models are formed byinterpolation of individual LMs estimated on the transcriptions of theacoustic training data and on texts from newspapers and newswires.The out-of-vocabulary (OOV) rate is 1.15% for the French 65k lexicon,and 4.5% for the German 65k lexicon. The lower lexical coverages thanfor English are due to the large number of verb forms, and number andgender agreement for French and German and for case declension andcompounding in German.
mtap00.tex; 11/01/2001; 16:33; p.10



Audio Partitioning and Transcription for Broadcast Data Indexation 11Table II. Summary of broadcast news transcrip-tion word error rates for 3 test sets. *Only the1996 system used a manual partition. All otherresults are with an automatic partition.Test setEval'96 Eval'97 Eval'98System 1.8 hours 3 hours 3 hours1996 system 27.1*1997 system 25.3 18.31998 system 19.8 13.9 13.64. EvaluationThis section presents an evaluation of the broadcast news transcrip-tion system both in terms of transcription accuracy, and the potentialfor using the automatic transcription for information indexing andretrieval.4.1. Speech recognizer word accuracyIn Table II reports the word recognition results on DARPA evalua-tion test sets from the last three years. Each data set contains a fewhours of broadcast audio data selected by NIST [4]. The commonlyused error metric is the \word error" rate de�ned as: %word error =%substitutions + %insertions + %deletions. The results shown in boldare the o�cial NIST scores obtained by the di�erent systems. For the1997 system our main development e�ort was devoted to moving from amanual to an automatic partitioning process. This system neverthelessachieved a performance improvement of 6% on the eval'96 test data.The 1998 system [10] has more accurate acoustic and language models,and achieves a relative word error reduction of over 20% compared tothe 1997 system. These tests were carried out without any restrictionon the computation time and required over 100 hours to process eachhour of data. mtap00.tex; 11/01/2001; 16:33; p.11



12 Gauvain Lamel AddaEven though it is usually assumed that processing time is not amajor issue since computer processing power increase continuously,2it is also known that the amount of data appearing on informationchannels is increasing at a close rate. Therefore processing time is animportant factor in making a speech transcription system viable foraudio data mining. Transcribing \found" data requires signi�cantlyhigher processing power than what is needed to transcribed read speechdata by speaker adapted dictation systems. This is due to the lack ofcontrol of the recordings and linguistic content, which on average resultsin lower SNR ratios, a poorer �t of the acoustic and language modelsto the data, and as a consequence a need for larger models. Processingtime constraints signi�cantly change the way we select our models. Foreach operating point, the right balance between model complexity andsearch pruning level must be found. Two fast systems were optimizedfor decoding at 10 and 1.4 times real-time (RT), including audio par-titioning. On the eval'98 data set the word error rates are 14.2% forthe 10xRT system and 24.7% for the 1.4xRT on a Compaq XP1000500MHz machine.Figure 4 shows an example portion of an SGML �le created fromthe automatically generated word transcription, taking into accountthe information available from the partitioning process. Each audiosegment starts with a <segment> tag with its start and end timesas well as labels for the signal type, gender and speaker. The wordtranscription is given, with an illustration of the word time codes.Although not shown, a word level con�dence score can optionally beassociated with each word.The French and German transcription systems have been evaluatedon about 1.5 hours of data. The French data come from televisionnews shows (ARTE) and radio station (France Inter). The Germandata consist of TV news and documentaries from ARTE. The averageword error on the French data is under 20%. The average word erroron the German news data is about 20%, and lower than the error ondocumentaries which is closer to 35%. This di�erence can be partially2 It is common practice to develop systems that run in 100 times real-time ormore, especially to evaluate the absolute quality of the acoustic and language models.mtap00.tex; 11/01/2001; 16:33; p.12



Audio Partitioning and Transcription for Broadcast Data Indexation 13<audiofile filename=CSPAN-WJ-960917 language=English><segment type=wideband gender=female spkr=5 stime=81.6 etime=84.2>do you know if that mr. nader's on the ballot in florida</segment><segment type=telephone gender=male spkr=1 stime=84.72 etime=86.09><wtime stime=84.72 etime=84.97> i<wtime stime=84.97 etime=85.22> don't<wtime stime=85.22 etime=85.47> know<wtime stime=85.47 etime=85.63> i'm<wtime stime=85.63 etime=86.09> sorry</segment><segment type=wideband gender=female spkr=5 stime=86.09 etime=87.59><wtime stime=86.09 etime=86.21> if<wtime stime=86.21 etime=86.41> he<wtime stime=86.41 etime=86.67> is<wtime stime=86.67 etime=86.79> will<wtime stime=86.79 etime=86.94> you<wtime stime=86.94 etime=87.16> vote<wtime stime=87.16 etime=87.32> for<wtime stime=87.32 etime=87.59> him</segment><segment type=telephone gender=male spkr=1 stime=87.59 etime=106.22>i would if it ...</segment></audiofile>Figure 4. Example SGML format for the system output. For each segment the signaltype, gender and speaker labels, and start and end times are given, as well as theword transcription. For simplicity not all time codes are shown.attributed to the better language model representivity for the newsdata.4.2. Experiments with Spoken Document RetrievalOne of the main motivations for automatic processing of the audiochannels of broadcast data is to serve as a basis for automatic disclosureand indexation for information retrieval (IR) purposes. The aim of themtap00.tex; 11/01/2001; 16:33; p.13



14 Gauvain Lamel AddaOlive project3 was to develop an archiving and retrieval system forbroadcast data to enable e�cient access to large multimedia libraries,such as the French INA audio-visual archive [13]. Disclosure of videomaterial plays an important role for the user organizations, but is toocostly to carry out manually for all broadcast data. As a result, thevast majority of data is archived with only minimal annotations. Theaudio stream is automatically partitioned and the speech segmentstranscribed and time-coded using the methods described above. Thetranscription is used to generate an index which is linked to the appro-priate portions of the audio or video data. Olive also developed toolsfor users to query the database, as well as cross-lingual access basedon o�-line machine translation of the archived documents, and onlinequery translation.We have assessed the performance in spoken document retrieval(SDR) on 600 hours of audio data (100 hours from TREC-7 SDR'98and 500 hours from TREC-8 SDR'98). Although for IR purposes thestory boundaries are assumed to be known, this information is not usedby the speech recognizer. Most of the development work was carried outusing the SDR'98 test data (100h), consisting of about 2800 documentswith the associated 23 queries. The SDR'99 test data (500h) consistsof 21750 documents with an associated set of 50 queries. It should benoted that the reference transcripts of the SDR'98 data are detailedmanual transcriptions, whereas for the SDR'99 data these are closedcaptions.In order for the same IR system to be applied to di�erent textdata types (automatic transcriptions, closed captions, additional textsfrom newspapers or newswires), all of the documents were preprocessedin a homogeneous manner. This preprocessing, or tokenization, is thesame as the text source preparation for training the speech recognizerlanguage models [7], and attempts to transform them to be closer tothe observed American speaking style. The basic operations includetranslating numbers and sums into words, removing all the punctua-tion symbols, removing case distinctions and detecting acronyms and3 The LE4-8364 Olive project (http://twentyone.tpd.tno.nl/olive) was fundedby the European Commission under the Telematics Application Programme in thesector Language Engineering. mtap00.tex; 11/01/2001; 16:33; p.14



Audio Partitioning and Transcription for Broadcast Data Indexation 15spelled names. However removing all punctuations implies that certainhyphenated words such as anti-communist , non-pro�t are rewritten asanti communist and non pro�t . While this o�ers advantages for speechrecognition, it can lead to IR errors. To avoid IR problems due to thistransformation, the output of the tokenizer (and recognizer) is checkedfor common pre�xes, in order to rewrite a sequence of words as a singleword. The pre�xes that are handled include anti , co, bi , counter . A setof rewrite rules covering compound words formed with these pre�xesand a limited number of named entities (such as Los-Angeles) is usedto transform the texts. Similarly all numbers less than one hundred aretreated as a single entity (such as twenty-seven).In order to reduce the number of lexical items for a given wordsense, each word is mapped to its stem (as de�ned in [2, 16]) or,more generally, into a form that is chosen as being representative ofits semantic family.The text of the query may or may not include the index terms associ-ated with relevant documents. One way to cope with this problem is todo query expansion based on terms present in retrieved documents onthe same (Blind Relevance Feedback) or other (Parallel Blind RelevanceFeedback) data collections [19]. We combined the two approaches in oursystem. For the latter 6 months of commercially available broadcastnews transcripts from the period of June through December 1997 [1]were used. This corpus contains 50 000 stories and 49.5 M words. For agiven query, the terms found in the top 15 documents from the baselinesearch are ranked by their o�er weight [18], and the top 10 terms areadded to the query. Since only the terms with best o�er weights arekept, the terms are �ltered using a stop list of 144 common words, inorder to increase the likelihood that the resulting terms are relevant.The information retrieval system relies on a unigram model perstory. The score of a story is obtained by summing the query termweights which are the log probabilities of the terms given the storymodel once interpolated with a general English model. This term weight-ing has been shown to perform as well as the popular TF�IDFweightingscheme [12, 15].Table III gives the IR results in terms of mean average precision(MAP), as is done for the TREC benchmarks. Four experimental con-
mtap00.tex; 11/01/2001; 16:33; p.15



16 Gauvain Lamel Adda�gurations are reported: baseline search (base), query expansion usingblind relevance feedback (BRF), query expansion with parallel blindrelevance feedback (PBRF) and query expansion using both BRF andPBRF. The results clearly demonstrate the interest of using both BRFand PBRF expansion techniques, as consistent improvements are ob-tained over the baseline system for the two conditions (R1 and S1).Average precisions of 57% and 54% respectively were obtained on theSDR'98 and SDR'99 test sets using the automatic transcriptions. Thesevalues are quite close to the average precisions obtained on manualtranscripts, even though the 10xRT recognizer transcripts have an es-timated 20.5% word error rate. Using transcriptions generated with the1.4xRT system (word error rate of about 32%), the baseline MAP is41% and the MAP with query expansion is 49% for the SDR'99 testconditions.Table III. Mean average precision (%) for the SDR'98 andSDR'99 data sets using unigram term weightings. R1: refer-ence transcript. S1: automatic speech transcription obtainedwith a 10xRT system.dataset base BRF PBRF BRF+PBRF98-R1 46.95 59.36 55.74 58.8998-S1 45.58 51.21 58.84 57.4599-R1 46.91 53.54 50.98 54.3099-S1 44.12 53.02 49.43 53.985. ConclusionsIn this paper we have presented our recent research in partitioning andtranscribing television and radio broadcasts. These are necessary stepsto enable automated processing of the vast amounts of audio and videodata produced on a daily basis. The data partitioning algorithm makesuse of Gaussian mixture models and an iterative segmentation andmtap00.tex; 11/01/2001; 16:33; p.16



Audio Partitioning and Transcription for Broadcast Data Indexation 17clustering procedure. The resulting segments are labeled according togender and bandwidth using 64-component GMMs. The speech detec-tion frame error is less than 4%, and gender identi�cation has a frameerror of 1%. Many of the errors occur at the boundary between seg-ments, and can involve silence segments which can be considered as withspeech or non-speech without in
uencing transcription performance.Word recognition is carried out in multiple passes for each speechsegment progressively using more accurate models. The generation ofword graphs with adapted acoustic models is essential for obtainingword graphs with low word error rates, particularly in light of thevariety of talkers and acoustic conditions. On unrestricted AmericanEnglish broadcast news shows the word error rate is about 20%. Dueto the availability of large, transcribed corpora available through theLDC our initial work focused on American English, however, in thecontext of the LE4 Olive project the transcription system system hasbeen sucessfully ported to the French and German languages with worderror rates under 20% for news shows.Our experience is that radio news shows are usually easier to tran-scribe than television news shows, probably due to the fact that only theaudio channel is used to transmit the information, whereas for televisionthe audio stream is supported by visual data. Broadcast news data isalso easier to transcribe than documentaries.A complete indexing system has been built by applying text IRtechniques on the output of our broadcast news speech recognizer.Quite comparable average precisions were obtained on manual and ref-erence transcriptions (which for the SDR'99 data were closed captions),indicating that the transcription quality is not the limiting factor onIR performance for current IR techniques.Some existing applications that could greatly bene�t from this tech-nology are the creation and access to digital multimedia libraries (dis-closure of the information content and content-based indexation), me-dia monitoring services (selective dissemination of information basedon automatic detection of topics of interest) as well as new emergingapplications such as news-on-demand and Internet watch services.
mtap00.tex; 11/01/2001; 16:33; p.17
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