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Abstract

Spoken Language Dialog Systems (SLDSs) aim to use natural spoken input for performing
an information processing task such as call routing or trainticket reservation (Lamelet al., 1995).
The main functionality of an SLDS are speech recognition, natural language understanding, di-
alog management, response generation and the speech synthesis. This article summarizes key
aspects of the current practice in the design, implementation and evaluation of speech recognition
components for spoken language dialogue systems. It is based on the frameworke used in the
European project DISC.

1 Introduction

Recent years have seen the development of an increasing number of Spoken Language Dialogue
Systems (SLDSs), including both commercial and research systems (Peckham, 1993; Gusset al.,
1998; ETRW 1999).

Most SLDSs are designed to enable a dialogue between a human (user) and a computer (the
SLDS) with no outside intervention of any kind, but when the dialog fails some systems provide
operator fallback. This means that the system functionality requires not only an accurate transcription
or recognition of the words uttered by the user but also the understanding of the utterances in the
context of the application. In the end, such system must makea response as appropriate as possible, be
it dialing the correct telephone number, making the correcttrain reservation or translating a sentence.
In many cases several exchanges between the user and the computer are required justifying the term
spoken language dialogue system.

The DISC project (Dybkjaeret al., 1998; Bernsenet al., 1999) aims at building an in-depth de-
scription of the state-of-the-art in SLDSs development andevaluation with the purpose of developing
a first best practice methodology in this field accompanied bya series of development and evaluationyThis paper is based on research carried out within the ESPRIT4th Framework LTR Concerted action projects 24823
and 29597 DISC - Spoken Language Dialogue Systems and Components Best Practice in Development and Evaluation.
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velopers both from industry and research. Special focus is given on packaging in order to ensure a
common representation and a user-friendly access to information.

In a SLDS, the role of speech recognition is to translate the user’s utterances (audio signal) into
a form that other system components can process (text). Depending on the application and the per-
formance level required, it may be possible to build a SLDS with no or rather limited functionality
for semantic analysis, dialogue management or response generation. However, it is impossible to
imagine designing a SLDS without the speech recognition functionality, as it is the first module in the
analysis process.

However, there exist applications based on speech recognition alone where it is sufficient to tran-
scribe the uttered speech and/or to identify the speaker, for instance voice dictation, video indexing,
voice command or speaker verification. Other applications,such as call routing (Abella & Gorin,
1997), information retrieval (Lamel, 1998d; Rossetet al., 1999) and real-time machine translation
systems (Maier, 1997) require additional understanding, dialogue management and response genera-
tion components in order to allow the system to react accordingly.

2 General Architecture of a Spoken Language Dialogue System

The speech recognizer transforms the acoustic signal into the most probable word sequence. The
recognizer output is passed to natural language understanding, which extracts the meaning of the
spoken query. The response generation component outputs a natural language response based on the
dialogue state, the user utterance, and the information returned from the database. The dialogue man-
ager maintains both the dialogue and the response generation history. Information can be returned to
the user in the form of synthesized speech or by using any other dialogue modality depending on the
requirement made by the application. Natural-sounding utterances are synthesized by concatenation
of variable-sized speech units that are stored in dictionaries. An overview of a generic SLDS archi-
tecture (Lamelet al., 1998a) is shown in Figure 1. On the basis of this generic architecture, DISC has
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identified six different aspects, that are considered to be essential for SLDSs development. These are
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human factors and systems integration.
Currently available speech recognizers are advanced enough, so that users can speak continuously,

without placing pauses between words. But the performance decreases rapidly in noisy environments.
The recognizers are also generally able to handle any nativespeaker of the language in question,
and are thus referred to as speaker-independent. Making recognizers robust against various kinds of
environmental noise (Matrouf & Gauvain, 1998; Bippuset al., 1999) and channel distortion problems
(Miksic & Horvat, 1997; Das 1999) is still an active researcharea.

Today’s best performing speech recognition systems use statistical models of speech generation.
From this point of view, the message generation is represented by a language model (Katz, 1987;
Kneser & Ney, 1995) which provides estimates ofPr(w) for all word stringsw, and the acoustic
channel encoding the messagew in the signalx is represented by a probability density functionf(xjw). The speech decoding problem then consists of finding the most probable word sequence
given the input signal. This is equivalent to maximizing thea posterioriprobability ofw, or equiva-
lently, maximizing the productPr(w)f(xjw). The principles on which these systems are based have
been known for many years. They include the application of information theory to speech recogni-
tion, the use of a spectral representation of the speech signal, the use of dynamic programming for
decoding and the use of context-dependent acoustic models.Strictly speaking, the aim of decod-
ing is to determine the word sequence with the highest likelihood given the lexicon and the acoustic
and language models. In pratice, however, it is common to search for the best path through a trellis
(the search space) where each node associates an Hidden Markkov Model state with given time in-
formation. Since an exhaustive search for the best path would be prohibitive, techniques have been
developed to reduce the computational load by limiting the search to a small part of the search space.
The most commonly used approach for small and medium vocabulary size systems is the one-pass
frame-synchronous Viterbi beam search which uses a dynamicprogramming algorithm. This basic
strategy has been extended to deal with large vocabularies by adding features such as dynamic de-
coding, multipass search and N-best rescoring. Despite thefact that some of these techniques were
proposed well over a decade ago, considerable progress has been made recently making speaker-
independent, continuous speech dictation feasible for relatively large vocabularies. The substantial
progress in this domain are due to the availability of large speech and text corpora and by significant
advances made in computational processing power facilitating the implementation of more complex
models and algorithms.

Depending on the size of the vocabulary they can handle, we can distinguish three major classes
of speech recognizers:

1. Small size vocabulary systems (e.g., voice command interfaces) which recognize from 10 to
several hundred of words.

2. Medium size vocabulary systems (e.g., SLDSs) which use from a few hundred up to several
thousand words.

3. Large size vocabulary (e.g., dictation systems, broadcast news transcribers) with vocabulary of
64,000 words and more.

Speaker independent medium size vocabulary speech recognizers are difficult to bring to an ap-
propriate performance level because training data are sparse and costly to produce and training is one
of the main factor which determines the future quality of thesystem. Small vocabulary independent
or connected word recognition systems can usually be designed to be robust by using word specific
models. Usually these words can be selected to reduce confusability. Note that it is very hard to rec-
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consonants. In general, speech recognition for SLDS uses medium sized vocabulary.
For dictation tasks, it is relatively easy to obtain text data to build the language model. Usually,

it is done by first normalizing the text material and then transforming it until its language emulates
an observed reading style. After this process, a task vocabulary is selected and language models are
trained. A subset of texts can be selected to ensure good phonetic coverage and be used as prompts to
obtain spoken data. Obtaining representative data for spontaneous speech is much more difficult and
expensive. It is almost impossible to control the content ofthe speech data, either at the semantic,
lexical or phonetic level, or for whatever concerns the speaking style.

Speaker-independence can be obtained by recording speech from many different speakers, in or-
der to cover the speaker population. Phonetic models are relatively task-independent, if many differ-
ent phonetic contexts are covered in the training corpus. Ina more general perspective, it is difficult to
design and to train accurate task-independent models that can be used for various applications without
the need for additional data collection.

3 Development of Speech Recognition Components

Two sources of influence may guide the development of any application. The first one regroups the
intrinsic properties of the application and of its components as well as their various inter-relationships.
The second deals with the development process itself. It is generally called life cycle or development
cycle in software engineering (Gilbert, 1983).

The DISC project decided to stick to this division and adopted two different points of view (Heid,
1998). Agrid is used to locate and reference element calledgrid propertieswhich document issues
associated with the realization of the modules and of the functionalities of the SLDS under devel-
opment, while issues associated with the other point of vieware simply listed under the labellife
cycle properties. This dichotomy has been refined for each of the six differentaspects that have been
introduced previously with the SLDS generic architecture (Lamelet al., 1998a).

3.1 Speech recognition grid elements

The DISC grid model intends to give a full generic description fitting both the complete system, as
well as their different components and the way these components interact. The grid model consists
of a set of questions pertaining to the relevant factual properties of the system or component under
scrutiny.

Speech recognizers (c.f. Figure 2) vary in the details of howthey are implemented. However,
most of them can be accurately described by discussing each of the following grid elements (Lamel
et al., 1998b): signal capture, feature analysis, basephone sets, lexicons, acoustic models, language
models and, finally decoding (search organization and control). The specification of these elements
depends on the application. However, their mutual interaction decides, to what extent they are used.

In (Lamelet al., 1998b) the grid elements are presented in details. Here we describe three speech
recognition grid elements, the first one was chosen because it is independent of the application for a
given language, the others were chosen for the opposite reason.

Phone set:State-of-the-art systems use phone-based models for wordsand short phrases rather than
word-level models. Since phone sets are application-independent, they allow new vocabulary
items to be added without requiring training for the new words. The selection of a phone set
to be used in a language is still more an art than a science, as the correspondence between
phonemes and phone models is generally close but not exact.
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In general, a set ofbasephonesare used that correspond roughly to the phonemes used in the
language in question. A typical basephone list will have between 35 and 50 elements. The
optimal number of basephones used is determined experimentally based on the language, and
for each task. Silence is generally modeled as a single phone. Other common non-speech
sounds, such as lip smacks, coughs or breath noises and door slams or beeps may also be
included as distinct elementary units.

Lexicons: For spontaneous speech, lexical entries contain, in addition to words from the written lan-
guage, specific entries forfiller words such as hesitations or false starts, and for typical noises
made by speakers such ascough. The definition of words is constrained by the development
data and some systems associate frequent word sequences or acronyms, such asI don’t know,
Roissy Charles de Gaules, to a single lexical entry. For most of the current tasks the lexicon
used cover in general more than 90% of the utterances even when the vocabulary is a priori
unrestricted (for instance in transcribing broadcast newsbulletins a vocabulary of around 64k
entries is enough). The list of lexical entries is usually determined by automatic processing of
the training material transcripts followed by additional hand editing ofobviouslymissing items
from the task domain such as numbers, days of the week, etc. State-of-the-art large vocabulary
speech recognizers are in general capable of handling up to 64,000 words and sometime a bit
more. Newer version are expected to work with double that in anear future. All lexicon entries
are labeled with one or more pronunciations (sequences of phones drawn from the phone set
described above). Many pronunciations are drawn from on-line pronouncing dictionaries or are
generated by grapheme-to-phoneme systems that are deemed reliable. Hand editing of these
entries is frequently carried out, especially for common words and important words that have
multiple pronunciations.

Language Model: N-gram backoff language models represent the state of the art (Zeppenfeld 1997;
Lamel 1998c) . The statistics for these models are estimatedusing training material (transcrip-
tion from data collected either from system log files or from Wizard of Oz (WOz) experiments
(Life et al., 1996; Pirkeret al., 1999), in which the automated system is secretly replaced by
a human, often completed by large amount of textual material). Various smoothing algorithms
are employed, with the (Katz, 1987) and (Kneser and Ney, 1997) models being most common.
Some systems use class-based models for common entities, such as dates and times, where the
training data may not be representative. Because the amountof language model training data
is small, some grammatical classes such as cities, days, months, etc. are used to provide more
robust estimates of the N-gram probabilities (in general N equals 2 or 3). Nowadays most lan-
guage models allow the user to speak in partial sentences andto be free of constraints such as
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3.2 Life cycle models for speech recognition components

The DISC dialogue engineering life cycle model draws on a general software engineering life cycle
model, but the development process for speech applicationsdiffers from that of most other software
in that the user interface is significantly more complex and sensitive to underlying system errors.
Furthermore, speech applications require the addition of regular tests and final deployments, since
tuning performance to user behavior is critical. This requirement introduces several iterations of
usabilityanalysis and tuning to improve the performance of the speechuser interface. Thus, the life
cycle for speech recognition is characterized by a highly iterative nature, both within and across the
development phases (Bernsenet al., 1998). Note that whatever the level of performance achieved by
a systems, speech recognition will never be perfect, therefore error recovery mechanisms need to be
provided.

3.3 Stages of a development in life cycle model

In the following, we present the place of speech recognitiondevelopment activities in the different
development phases.

Specification Phase:It begins with a requirement analysis that has two primary goals. The first one is
to develop a preliminary user interface design that will identify the framework for building the
linguistic coverage of speech recognition (i.e. the grammars and vocabularies to be recognized
and understood by the system). Various techniques can be applied to quickly create the user
interface design, including interactive role-playing andWizard of Oz (WOz) testing (Lifeet
al., 1996; Pirkeret al., 1999). Concurrent with the user interface design, identification of the
functional components of the overall system design should be done with a particular attention
to the database and telephony system integration requirements. This approach allows parallel
development paths for the speech application development and systems integration, which will
converge in the next phase of the development life cycle (denOset al., 1999).

Development Phase:It consists of first, the creation of the speech application completed in a series
of rapid prototyping loops and second, the interaction withhardware and software (e.g. hosts
database or telephony middleware). These two paths converge at the systems integration stage,
which is the first point in the development life cycle where the application can be subjected
a functional end-to-end test. The output of the developmentphase is a complete and func-
tionality tested application, integrated with the database transaction engine and the telephony
network. The functional tests include both user interface and application validation; i.e. they
verify whether the interaction logic executes the steps as defined and whether it returns the data
requested (Lamelet al., 1996). At this point, the system is ready to take on live interactions,
albeit in a controlled fashion, and the project moves into the final phase: the deployment.

Deployment Phase:This final phase of development addresses performance testing, user interface
tuning and recognition accuracy tuning. At this stage, the tested system is confronted to end-
users in deployment conditions. Based upon user experienceand the collection of spoken
utterances, both the user interface and the recognition models are tuned in general to balance
the highest possible transaction completion rate with the shortest possible dialogue duration.
This development may take up to several months.

submitted toNatural Language Engineering 6



and deployment. An ideal development team is composed of a Project Manager, Speech User In-
terface Designer, Speech Recognition Scientist, Application Developer, Systems Integrator, and an
Operations Manager.

In a similar way as for thegrid properties, DISC has identified a set oflife cycle propertiesto
document aspects of the development life cycle which are specific to speech recognition. These
aspects cover a much larger domain that thegrid propertiesas they range from purely development
cycle specific consideration like those attached to the development team, to functional requirements
like the overall design goal or the constraints deriving from end-user specificity.

Development time, teams and problems:The recognizers are generally special case configurations
of systems built within the framework of relatively long-term programs, sometimes spaning
several generations of a system. Configuration for new tasksand specific development is highly
dependent on the previous experience of the team and may require specific knowledge about the
application, especially for commercially available systems. The size of the development teams
vary from four to fifteen persons, including support staff for data collection and transcription.
Average mastery level before starting is highest among the smaller teams. Debugging and
problem handling are generally carried out through informal communication, as the size of the
teams is generally suitable for this approach.

Overall design goals:Most state-of-the-art speech recognizers are designed as continuous speech,
speaker-independent small-to-medium vocabulary systemsto be embedded in a spoken lan-
guage system. They are also designed to run in real-time (or close enough so as to be perceived
as real-time) with a minimum word error rate.

The set oflife cycle propertiesis particularly useful for planning the deployment of SLDS devel-
opment activities and for auditing speech recognition development activities.

4 Evaluation of Speech Recognition Components

Most of the protocols currently used for the evaluation of continuous speech recognition systems have
been developed while considering the recognizer as a stand-alone application without any specific
thought for its use in a SLDS. These methods are principally corpus-based. In this section, we first
review fundamental aspects of corpus utilization (Chaseet al., 1999), and present less formal methods
specific for the evaluation of speech recognition in SLDSs.

When evaluating speech recognition components, we first need to consider whether we have in-
sight to the functionality of the recognizer. In this case, we can then applywhite box evaluation
techniques in order to determine which subcomponent causessome particular error types. In most of
the cases, this issue resolves itselfs into choosing to assign the blame to either the accoustic modeling
or language modeling. Adding confidence annotations to the transcription has been proposed to solve
this problem by (Chase, 1998). It should also be noted, that as far as evaluation is concerned, the vo-
cabulary size of the recognizer has almost no influence on thetype of evaluation methodology. Speech
recognizers are generally evaluated by comparing their performance on pre-recorded and manually
transcribed corpora. A corpus is a collection of spoken utterances, each which is typically not longer
than about thirty seconds. They are the result of human transcription at the word level. The corpus is
usually divided into three sections:

Training data: It is a typically quite large data subset used to train the system. Often separate bodies
of training data are available for the development of acoustic and language models.
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ative fashion to tune the system’s performance to the characteristics of the data source. The
development sub-corpus is typically not as large as the training sub-corpus.

Independent test data:It is taken from the same source as the training and development material.
The independent test sub-corpus is typically about the samesize as the development sub-corpus
and used for independent tests of the tuned system. This datasubset must be used sparingly,
otherwise unreliable results may be generated due to over-tuning of the system. (After an
evaluation cycle, the test data set is often used a development material, and new independent
test data is obtained for the next iteration.)

System evaluation aims at comparing algorithms and/or systems in controlled tests, at assessing
performance on specific tasks, sometimes inuncontrolledor real deployments, and at measuring
progress both in the laboratory and in the deployment environment.

In practice there are difficulties with each of these goals. For example, a detailed comparison
of algorithms or systems requires a potentially large number of contrasts to be measured. This is at
odds with the need to produce statistically significant results, that can only be obtained if large test
sets are used. Meeting both goals is be computationally expensive. Evaluating the performance of a
deployed system generally adds to the already significant burden of system maintenance. All of these
competing demands must be considered when evaluating speech recognition components.

4.1 Components for systems evaluation

This section reviews the key components required to evaluate a speech recognizer. These are:� corpora, and possibly the means to addlive data collected from deployed systems,� appropriate transcription protocols and/or text normalization routines,� scoring methods and analysis tools to determine the significance of the results, and� for live deployed systems, tools for parallel listening and/or signal archiving as well as creation
of log files for analysis of caller/system interactions.

Data The acoustic data must be annotated at the level where the recognition is supposed to take
place (e.g. words or characters). Any artifacts, like noiseor music, must be marked.

Data used for training of models should normally be taken from the same domain as the test ma-
terial. Data for a development test is essential for preparation and system tuning. These development
data is best sampled from the same corpus as the test subset, but from a different epoch in the case of
time-sensitive materials.

In order to track the technology improvement in controlled laboratory conditions, the evaluation
data should keep the level of difficulty constant from one test to another. For continuous speech, the
test set word perplexity is often used as the primary metric in making this judgement. However, there
are two problems with word perplexity. The first one is that perplexity is sensitive to the average
word length. The second is that perplexity is calculated with respect to a particular language model,
implying that the task difficulty can only be evaluated with respect to a particular reference point.

Other measures which correlate with the level of difficulty of a recognition task include the qual-
ity of lexical coverage for the task in question, the speech rate, the disfluency rate, the amount of
mumbling or faint speech, of foreign words and the number of non-native speakers of the language
employed in the sample data.
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curacy. Measures of these can be used as the basis of contrastconditions to further study their impact.
They can also be used to control the match in difficulty between development and evaluation data,
and to ensure a smooth transition in difficulty for successive editions of official tests.

For measuring improvement in deployed systems, the generalrule is to consider any and all data
that is collected under real conditions as part of the evaluation test set. While this may not lead to
easy analysis of results, it often leads to identification ofimportant system improvements.

Scoring The key measure of continuous speech recognition systems isthe percentage word error
rate (WER). It is a proportional count of word errors made with respectto the human-produced word
transcripts. This is usually computed while respecting utterance boundaries, but the errors are usually
aggregated across the whole test set to give the overall results.

Given a reference word string containingN words and a recognition hypothesis, theWER is
determined by first aligning both word strings and then counting the number of substitutions (S),
deletions (D) and insertions (I). WER = S + I +DN � 100% (1)

A more detailled presentation of the measure is available inthe DISC deliverable: (Chaseet al.,
1999). Toolkits for scoring speech transcription are available, some of them are even freely available,
for instance the National Institute of Standards and Technology (NIST) standard scoring package1.

This simple alignment scheme performs well for read speech,for which theWER is generally
small. However, it inappropriately minimizes the error rate at high values ofWER (Hunt, 1988).
Consequently, a method which depends on the phonological distance between words was investigated.
It uses distinctive features derived from a set of assumed lexical word base forms (Fischeret al., 1995).
This method did yield improved diagnostic capabilities andreduced biased measurement errors (Hunt,
1988). But because it requires a dictionary (backed up by a default general-purpose text-to-phone
function) it is much more complex to use. More detailed methods have been investigated in the
past, for instance in the context of the 1996 Switchboard DARPA evaluation, where time stamps were
used. Automatic alignments of reference transcripts was judged too inaccurate, and human annotators
were employed, in spite of the much higher cost. Following this experiment, it was decided that the
potential benefits of the more detailed scoring method were not substantial enough to justify their
adoption in the DARPA speech recognition evaluation protocol.

Statistical analysis Evaluation gives an idea of the speech recognition performance with respect
to other systems, to different versions of the same system orto a predefined target. But are these
answers significant? Here, statistical analysis is of a great help to ensure, within a certain margin
of certainty, that the results measured are really consequences of the system characteristics and not
arbitrary results. In the same spirit as for the kappa statistics (Cohen, 1960, 1968; Krippendorff, 1980)
which is now widely used in computational linguistics to measure inter-annotator agreement, a series
of tests are currently used when evaluating speech recognition. The most representative are those
which have been used in the DARPA evaluation of large vocabulary continuous speech recognizer
evaluations (Gillick & Cox, 1989).

MP: Matched Pair Sentence Segment (Word Error) Test

SI: Signed Paired Comparison (Speaker Word Accuracy) Test

1available at http://www.itl.nist.gov/div894/894.01/software.htm.
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MN: McNemar (Sentence Error) Test

These tests are applied between pairs of contrast conditions or systems. TheMP test is based on
the null hypothesis that the mean difference in the number ofword errors per sentence is zero.SI and
WI are standard statistical nonparametric tests to determinewhether or not two pairs of samples are
from the same distribution, where in this case the samples are speaker word error rates. TheMN test
is based on the count of the errors made by one of the pair but not the other compared to the total
number of errors that are not common to both systems. The nullhypothesis is that this ratio should
be divided by two.

Adapting Transcription and Scoring Practices The scoring methods discussed in the previous
paragraph rely on the presence of an accurate reference transcription. It is clearly important to decide
what exactly should be captured during transcription and how it should be represented.

When working in a given language, some words are bound to appear in the training and test
sections of the corpus with multiple spellings, including misspellings. Many languages include ho-
mophones which are distinct as written words. These are normally not treated as equivalent under the
weighted error metric and must be correctly spelled in orderto be scored as correct. In English, for
example, three homophones appear in the sentence,I’d like to write to Mr. Wright right now. Each of
these would have to be spelled correctly in the recognizer output in order to be judged as correct. In
the European SQALE project (Younget al., 1997) the relatively high homophone rate in French was
an important issue.

For languages such as English that commonly use contractions, it must be decided whether or
not to define the reference transcription by expanding contractions to their underlying form often
with mapping rules applied to both the reference and hypothesis (output of a system) data. But this
operation changes the number of words compared. There is no general practice in this matter, decision
depend on the context of the evaluation.

All of these variations indicate the flexibility brought in by using the weighted error metric. They
also show that this metric should carefully be used. Attention should be paid in advance to the issues
that might arise for any new application.

4.2 Less formal evaluation methods

Especially when dealing with deployed systems, it is often important to employ less formal evaluation
methods in order to truly understand how well the speech recognizer is working.

There are several phases involved in evaluating a speech recognizer under these conditions, each
with its own set of important issues:

Specification Phase:The specification phase begins the development of a preliminary user interface
design that will identify the framework for building the speech recognition contexts (i.e., the
grammars and vocabularies to be recognized and understood by the system). Several techniques
may be employed to quickly create the user interface design including interactive role-plays and
WOz testing (Fraser & Gilbert, 1991), in which the automatedsystem is secretly replaced by
a human. This specification phase should include laboratory-style formal evaluations of the
newly specified recognizer, with tests performed on whatever corpora seem to best match the
deployment environment.

Development Phase:The development phase should involve the creation of the speech application
itself which is both accuracy tested in isolation and then usability tested during integration in
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by norm ISO9126 asAttributes of software that bear on the provision of right oragreed results
or effects(ISO9126, 1991) and usability is defined by the same norm as a software quality
characteristic composed ofA set of attributes that bear on the effort needed for use, andon
the individual assessment of such use, by a stated or impliedset of users(King et al., 1996).
Tools for listening to test users and analyzing error in parallel are essential in this phase for
identifying unexpected problems or weak points in the recognizer. After this evaluation step
(Gauvainet al., 1996; Lamel 1998d, Lamel 1999), the system is ready to be deployed in the
environment for which it was designed.

Deployment Phase:The final phase addresses performance testing, user interface tuning and recog-
nition accuracy tuning. This stage involves testing of all system components in parallel with
the speech recognizer. Based upon user experience and the collection of spoken utterances,
both the user interface and the recognition models have to betuned in parallel. The samelisten
and analyzetools that were used in the development phase can be used hereagain to improve
the recognizer accuracy along with the performance of othercomponents, thus increasing the
global performance of the overall SLDS.

5 Conclusion

Even though rapid progress has been made in large vocabularyspeech recognition components, many
factors may influence the speech recognition performance. Many outstanding problems still remain to
be resolved, for instance, inter-speaker variability, speaking rate, and lexical and language modeling.

Due to inter-speaker variability, even today’s best systems show a significant difference in per-
formance between the word error of the best speaker (1-2%) and the word error of the worst speaker
(25-30%). These performance variations are often due to differences in speaking rate, notably if the
locutionary style is much faster or slower than the average.Differences in speaking rate affect not
only the acoustic level, but also the phonological and even the word level. At the lexical level, it
should be possible to choose among pronunciation variants according to observed pronunciations for
a given speaker (a person pronouncing a word in a given way is likely to produce derived forms,
and other similar words in a similar way). At the cross-word level, different speakers make use of
different phonological rules. Despite the fact that for most speakers, the choice of rules is systematic,
no state-of-the-art system is able to make use of this consistency.

These are outstanding problems. More generally, today’s systems do not easily adapt to different
accents, either from dialects or from non-native speakers.The technology needs to make substantial
progress in this area to obtain a performance level comparable to the one achieved by humans. Despite
the fact that attempts at crafting generic best practice guidelines for software development began to
appear early in the history of computer science, nothing hasbeen done for SLDSs prior to the DISC
project to our knowledge.

Since SLDS and in particular speech recognition modules arebecoming a common facility in
industry, the DISC results provide essential information to established development teams, auditing
teams and decision planning to use or develop speech technology for SLDSs. Of course, the current
guidelines provide a snapshot of the field corresponding to the state-of-the-art at a particular time.
In order to make a live resource of the guidelines (which is a condition for their long term usability)
the DISC project used the feedback provided by an IndustrialAdvisor Pannel at regular intervals
throughout the project. It is actively seeking a solution for the maintenance and upgrading of the
guidelines after completion of the project, for instance incollaboration with excellency networks like
ELSNET in Europe (Krauwer, 1999).
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