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Abstract

Spoken Language Dialog Systems (SLDSs) aim to use natwkéesgnput for performing
an information processing task such as call routing or tiaket reservation (Lamedt al, 1995).
The main functionality of an SLDS are speech recognitiomyrad language understanding, di-
alog management, response generation and the speechsigntiikis article summarizes key
aspects of the current practice in the design, implementaind evaluation of speech recognition
components for spoken language dialogue systems. It igll@as¢he frameworke used in the
European project DISC.

1 Introduction

Recent years have seen the development of an increasingenwhi$poken Language Dialogue
Systems (SLDSs), including both commercial and researstesys (Peckham, 1993; Gussal,
1998; ETRW 1999).

Most SLDSs are designed to enable a dialogue between a humsar) and a computer (the
SLDS) with no outside intervention of any kind, but when thelal fails some systems provide
operator fallback. This means that the system functionedjuires not only an accurate transcription
or recognition of the words uttered by the user but also thgetstanding of the utterances in the
context of the application. In the end, such system must mai&sponse as appropriate as possible, be
it dialing the correct telephone number, making the coreth reservation or translating a sentence.
In many cases several exchanges between the user and theteoame required justifying the term
spoken language dialogue system

The DISC project (Dybkjaeet al, 1998; Bernseret al, 1999) aims at building an in-depth de-
scription of the state-of-the-art in SLDSs developmentaraduation with the purpose of developing
a first best practice methodology in this field accompanied bgries of development and evaluation

'This paper is based on research carried out within the ESB&IFramework LTR Concerted action projects 24823
and 29597 DISC - Spoken Language Dialogue Systems and Ca@ngsoBest Practice in Development and Evaluation.
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In a SLDS, the role of speech recognition is to translate #e’'s utterances (audio signal) into
a form that other system components can process (text). ridepgeon the application and the per-
formance level required, it may be possible to build a SLD8wib or rather limited functionality
for semantic analysis, dialogue management or responssaemn. However, it is impossible to
imagine designing a SLDS without the speech recognitiontfanality, as it is the first module in the
analysis process.

However, there exist applications based on speech redogaibne where it is sufficient to tran-
scribe the uttered speech and/or to identify the speakem$tance voice dictation, video indexing,
voice command or speaker verification. Other applicatisnsh as call routing (Abella & Gorin,
1997), information retrieval (Lamel, 1998d; Rossetal, 1999) and real-time machine translation
systems (Maier, 1997) require additional understandif@dpdue management and response genera-
tion components in order to allow the system to react acogiyli

2 General Architecture of a Spoken Language Dialogue System

The speech recognizer transforms the acoustic signal iigartost probable word sequence. The
recognizer output is passed to natural language undeisnghich extracts the meaning of the
spoken query. The response generation component outpatsi@iHanguage response based on the
dialogue state, the user utterance, and the informatiomretl from the database. The dialogue man-
ager maintains both the dialogue and the response genehagimry. Information can be returned to
the user in the form of synthesized speech or by using any dtalgue modality depending on the
requirement made by the application. Natural-soundingratices are synthesized by concatenation
of variable-sized speech units that are stored in dictiesarAn overview of a generic SLDS archi-
tecture (Lamekt al, 1998a) is shown in Figure 1. On the basis of this generidtaciure, DISC has
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Figure 1: SLDS architecture.

identified six different aspects, that are considered toslsertial for SLDSs development. These are
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Currently available speech recognizers are advanced énsaghat users can speak continuously,
without placing pauses between words. But the performaaceedses rapidly in noisy environments.
The recognizers are also generally able to handle any nggpigaker of the language in question,
and are thus referred to as speaker-independent. Makiogmeers robust against various kinds of
environmental noise (Matrouf & Gauvain, 1998; Bipptsl/, 1999) and channel distortion problems
(Miksic & Horvat, 1997; Das 1999) is still an active reseaarha.

Today’s best performing speech recognition systems usistital models of speech generation.
From this point of view, the message generation is represeby a language model (Katz, 1987;
Kneser & Ney, 1995) which provides estimateshof(w) for all word stringsw, and the acoustic
channel encoding the messagein the signalz is represented by a probability density function
f(z]w). The speech decoding problem then consists of finding the probable word sequence
given the input signal. This is equivalent to maximizing #hposterioriprobability of w, or equiva-
lently, maximizing the produd®r(w) f(z|w). The principles on which these systems are based have
been known for many years. They include the application fadrmation theory to speech recogni-
tion, the use of a spectral representation of the speechlsidie use of dynamic programming for
decoding and the use of context-dependent acoustic mo&titly speaking, the aim of decod-
ing is to determine the word sequence with the highest hioeld given the lexicon and the acoustic
and language models. In pratice, however, it is common tchdar the best path through a trellis
(the search space) where each node associates an HiddekoMafkdel state with given time in-
formation. Since an exhaustive search for the best pathduoilprohibitive, techniques have been
developed to reduce the computational load by limiting #reeh to a small part of the search space.
The most commonly used approach for small and medium voagbsize systems is the one-pass
frame-synchronous Viterbi beam search which uses a dynpragramming algorithm. This basic
strategy has been extended to deal with large vocabulayiesitiing features such as dynamic de-
coding, multipass search and N-best rescoring. Despit&atiiehat some of these techniques were
proposed well over a decade ago, considerable progressdeasrbade recently making speaker-
independent, continuous speech dictation feasible fatively large vocabularies. The substantial
progress in this domain are due to the availability of langeexh and text corpora and by significant
advances made in computational processing power fagiliggihe implementation of more complex
models and algorithms.

Depending on the size of the vocabulary they can handle, welistinguish three major classes
of speech recognizers:

1. Small size vocabulary systems (e.g., voice commandfaues) which recognize from 10 to
several hundred of words.

2. Medium size vocabulary systems (e.g., SLDSs) which us® & few hundred up to several
thousand words.

3. Large size vocabulary (e.g., dictation systems, brastdeaws transcribers) with vocabulary of
64,000 words and more.

Speaker independent medium size vocabulary speech reesgire difficult to bring to an ap-
propriate performance level because training data aressard costly to produce and training is one
of the main factor which determines the future quality of siggtem. Small vocabulary independent
or connected word recognition systems can usually be degigmbe robust by using word specific
models. Usually these words can be selected to reduce @hwifitie Note that it is very hard to rec-
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For dictation tasks, it is relatively easy to obtain textadt build the language model. Usually,
it is done by first normalizing the text material and then sfanming it until its language emulates
an observed reading style. After this process, a task vdanbis selected and language models are
trained. A subset of texts can be selected to ensure goocefibapverage and be used as prompts to
obtain spoken data. Obtaining representative data fortapeonus speech is much more difficult and
expensive. It is almost impossible to control the conterthefspeech data, either at the semantic,
lexical or phonetic level, or for whatever concerns the &pegnstyle.

Speaker-independence can be obtained by recording speectmfany different speakers, in or-
der to cover the speaker population. Phonetic models aagvely task-independent, if many differ-
ent phonetic contexts are covered in the training corpua.nore general perspective, it is difficult to
design and to train accurate task-independent modelsahdieused for various applications without
the need for additional data collection.

3 Development of Speech Recognition Components

Two sources of influence may guide the development of anyiegin. The first one regroups the
intrinsic properties of the application and of its compaisexs well as their various inter-relationships.
The second deals with the development process itself. Eneiglly called life cycle or development
cycle in software engineering (Gilbert, 1983).

The DISC project decided to stick to this division and addweo different points of view (Heid,
1998). Agrid is used to locate and reference element cafleéd propertiesvhich document issues
associated with the realization of the modules and of thetfanalities of the SLDS under devel-
opment, while issues associated with the other point of \aesvsimply listed under the labéfe
cycle propertiesThis dichotomy has been refined for each of the six diffeaspiects that have been
introduced previously with the SLDS generic architectuaniel et al, 1998a).

3.1 Speech recognition grid elements

The DISC grid model intends to give a full generic descripfiitting both the complete system, as
well as their different components and the way these compusrieteract. The grid model consists
of a set of questions pertaining to the relevant factual @rigs of the system or component under
scrutiny.

Speech recognizers (c.f. Figure 2) vary in the details of tlogy are implemented. However,
most of them can be accurately described by discussing dable &llowing grid elements (Lamel
et al, 1998b): signal capture, feature analysis, basephonglegitsons, acoustic models, language
models and, finally decoding (search organization and ofntrhe specification of these elements
depends on the application. However, their mutual intevaadecides, to what extent they are used.

In (Lamel et al, 1998b) the grid elements are presented in details. Herezaerithe three speech
recognition grid elements, the first one was chosen becaismidependent of the application for a
given language, the others were chosen for the oppositerreas

Phone set: State-of-the-art systems use phone-based models for wottishort phrases rather than
word-level models. Since phone sets are application-iadéent, they allow new vocabulary
items to be added without requiring training for the new vgor@he selection of a phone set
to be used in a language is still more an art than a sciencdieasotrrespondence between
phonemes and phone models is generally close but not exact.
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Figure 2: SR architecture.

In general, a set adbasephoneare used that correspond roughly to the phonemes used in the
language in question. A typical basephone list will havedeein 35 and 50 elements. The
optimal number of basephones used is determined expeithebased on the language, and
for each task. Silence is generally modeled as a single ph@iker common non-speech
sounds, such as lip smacks, coughs or breath noises and ldows sr beeps may also be
included as distinct elementary units.

Lexicons: For spontaneous speech, lexical entries contain, in atditi words from the written lan-
guage, specific entries fdifler words such as hesitations or false starts, and for typidakso
made by speakers such esugh The definition of words is constrained by the development
data and some systems associate frequent word sequena@emymas, such asdon’'t know,
Roissy Charles de Gaules, to a single lexical entry. For most of the current tasks thécbn
used cover in general more than 90% of the utterances even thieevocabulary is a priori
unrestricted (for instance in transcribing broadcast nlewlketins a vocabulary of around 64k
entries is enough). The list of lexical entries is usuallied®mined by automatic processing of
the training material transcripts followed by additionahidl editing olobviouslymissing items
from the task domain such as numbers, days of the week, atie-8f-the-art large vocabulary
speech recognizers are in general capable of handling u#,096 words and sometime a bit
more. Newer version are expected to work with double thatriear future. All lexicon entries
are labeled with one or more pronunciations (sequences arigghdrawn from the phone set
described above). Many pronunciations are drawn from o@gronouncing dictionaries or are
generated by grapheme-to-phoneme systems that are deehadder Hand editing of these
entries is frequently carried out, especially for commorrdgoand important words that have
multiple pronunciations.

Language Model: N-gram backoff language models represent the state of tl{geppenfeld 1997;
Lamel 1998c) . The statistics for these models are estimegieg) training material (transcrip-
tion from data collected either from system log files or fronz®vd of Oz (WOz) experiments
(Life et al, 1996; Pirkeret al, 1999), in which the automated system is secretly replaged b
a human, often completed by large amount of textual majeiakious smoothing algorithms
are employed, with the (Katz, 1987) and (Kneser and Ney, 1®@dels being most common.
Some systems use class-based models for common entitbsasalates and times, where the
training data may not be representative. Because the anoblemiguage model training data
is small, some grammatical classes such as cities, dayshmatc. are used to provide more
robust estimates of the N-gram probabilities (in generafjiNads 2 or 3). Nowadays most lan-
guage models allow the user to speak in partial sentencetodelfree of constraints such as
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3.2 Lifecycle modelsfor speech recognition components

The DISC dialogue engineering life cycle model draws on aegaErsoftware engineering life cycle
model, but the development process for speech applicatiiffiess from that of most other software
in that the user interface is significantly more complex aads#tive to underlying system errors.
Furthermore, speech applications require the additioregillar tests and final deployments, since
tuning performance to user behavior is critical. This reguoient introduces several iterations of
usabilityanalysis and tuning to improve the performance of the spasehinterface. Thus, the life
cycle for speech recognition is characterized by a higldsaiive nature, both within and across the
development phases (Bernsetal, 1998). Note that whatever the level of performance acliéye

a systems, speech recognition will never be perfect, tbegedrror recovery mechanisms need to be
provided.

3.3 Stagesof adevelopment in life cycle model

In the following, we present the place of speech recognitievelopment activities in the different
development phases.

Specification Phaselt begins with a requirement analysis that has two primaslgor he first one is
to develop a preliminary user interface design that wilhity the framework for building the
linguistic coverage of speech recognition (i.e. the gramsmaad vocabularies to be recognized
and understood by the system). Various techniques can bizapp quickly create the user
interface design, including interactive role-playing amnizard of Oz (WOz) testing (Lifeet
al., 1996; Pirkeret al, 1999). Concurrent with the user interface design, idexifon of the
functional components of the overall system design shoelddne with a particular attention
to the database and telephony system integration requmtsmehis approach allows parallel
development paths for the speech application developnmehgystems integration, which will
converge in the next phase of the development life cycle @®et al, 1999).

Development Phaselt consists of first, the creation of the speech applicatiomgleted in a series
of rapid prototyping loops and second, the interaction \wiihdware and software (e.g. hosts
database or telephony middleware). These two paths caneethe systems integration stage,
which is the first point in the development life cycle where #pplication can be subjected
a functional end-to-end test. The output of the developrpbase is a complete and func-
tionality tested application, integrated with the databmansaction engine and the telephony
network. The functional tests include both user interface application validation; i.e. they
verify whether the interaction logic executes the stepssfised and whether it returns the data
requested (Lamedt al, 1996). At this point, the system is ready to take on liverat&ons,
albeit in a controlled fashion, and the project moves intofthal phase: the deployment.

Deployment PhaseThis final phase of development addresses performancedesier interface
tuning and recognition accuracy tuning. At this stage, #sted system is confronted to end-
users in deployment conditions. Based upon user experiandethe collection of spoken
utterances, both the user interface and the recognitiorefa@dte tuned in general to balance
the highest possible transaction completion rate with tieetest possible dialogue duration.
This development may take up to several months.
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terface Designer, Speech Recognition Scientist, ApptinadDeveloper, Systems Integrator, and an
Operations Manager.

In a similar way as for therid propertiesDISC has identified a set dife cycle propertieso
document aspects of the development life cycle which areispéo speech recognition. These
aspects cover a much larger domain thatdghe propertiesas they range from purely development
cycle specific consideration like those attached to theldpweent team, to functional requirements
like the overall design goal or the constraints derivingrirend-user specificity.

Development time, teams and problem$he recognizers are generally special case configurations
of systems built within the framework of relatively long#te programs, sometimes spaning
several generations of a system. Configuration for new t@séspecific development s highly
dependent on the previous experience of the team and mayeesgecific knowledge about the
application, especially for commercially available sysse The size of the development teams
vary from four to fifteen persons, including support staif data collection and transcription.
Average mastery level before starting is highest among thaller teams. Debugging and
problem handling are generally carried out through infdroeanmunication, as the size of the
teams is generally suitable for this approach.

Overall design goals:Most state-of-the-art speech recognizers are designedrasigous speech,
speaker-independent small-to-medium vocabulary systerbe embedded in a spoken lan-
guage system. They are also designed to run in real-timddse enough so as to be perceived
as real-time) with a minimum word error rate.

The set ofiife cycle propertiess particularly useful for planning the deployment of SLD&vdl-
opment activities and for auditing speech recognition iguaent activities.

4 Evaluation of Speech Recognition Components

Most of the protocols currently used for the evaluation aftoauous speech recognition systems have
been developed while considering the recognizer as a stime application without any specific
thought for its use in a SLDS. These methods are principalipus-based. In this section, we first
review fundamental aspects of corpus utilization (Chets#, 1999), and present less formal methods
specific for the evaluation of speech recognition in SLDSs.

When evaluating speech recognition components, we first tieeonsider whether we have in-
sight to the functionality of the recognizer. In this cases @an then applyvhite box evaluation
techniques in order to determine which subcomponent caagsae particular error types. In most of
the cases, this issue resolves itselfs into choosing tgagisé blame to either the accoustic modeling
or language modeling. Adding confidence annotations tar#imescription has been proposed to solve
this problem by (Chase, 1998). It should also be noted, thédreas evaluation is concerned, the vo-
cabulary size of the recognizer has almost no influence otygeeof evaluation methodology. Speech
recognizers are generally evaluated by comparing thefopaance on pre-recorded and manually
transcribed corpora. A corpus is a collection of spokerrattees, each which is typically not longer
than about thirty seconds. They are the result of humandraot®n at the word level. The corpus is
usually divided into three sections:

Training data: Itis a typically quite large data subset used to train théesys Often separate bodies
of training data are available for the development of adowastd language models.
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development sub-corpus is typically not as large as theitrgisub-corpus.

Independent test datalt is taken from the same source as the training and developmaterial.
The independent test sub-corpus is typically about the siwees the development sub-corpus
and used for independent tests of the tuned system. Thissdh&et must be used sparingly,
otherwise unreliable results may be generated due to ovéng of the system. (After an
evaluation cycle, the test data set is often used a developmegterial, and new independent
test data is obtained for the next iteration.)

System evaluation aims at comparing algorithms and/oegysin controlled tests, at assessing
performance on specific tasks, sometimesuircontrolledor real deployments, and at measuring
progress both in the laboratory and in the deployment enwirent.

In practice there are difficulties with each of these goalsr é&xample, a detailed comparison
of algorithms or systems requires a potentially large nunatbeontrasts to be measured. This is at
odds with the need to produce statistically significant ltesthat can only be obtained if large test
sets are used. Meeting both goals is be computationallynskwee Evaluating the performance of a
deployed system generally adds to the already significadelouof system maintenance. All of these
competing demands must be considered when evaluatinglspssagnition components.

4.1 Componentsfor systemsevaluation

This section reviews the key components required to evalaapeech recognizer. These are:
e corpora, and possibly the means to dud data collected from deployed systems,
e appropriate transcription protocols and/or text nornatian routines,
e scoring methods and analysis tools to determine the signifie of the results, and

e for live deployed systems, tools for parallel listening and/or aignchiving as well as creation
of log files for analysis of caller/system interactions.

Data The acoustic data must be annotated at the level where thgmnition is supposed to take
place (e.g. words or characters). Any artifacts, like noismusic, must be marked.

Data used for training of models should normally be takemftbe same domain as the test ma-
terial. Data for a development test is essential for preparand system tuning. These development
data is best sampled from the same corpus as the test sultdedyb a different epoch in the case of
time-sensitive materials.

In order to track the technology improvement in controlleddratory conditions, the evaluation
data should keep the level of difficulty constant from on¢ tesnother. For continuous speech, the
test set word perplexity is often used as the primary metrimaking this judgement. However, there
are two problems with word perplexity. The first one is thatpbexity is sensitive to the average
word length. The second is that perplexity is calculatedhwéspect to a particular language model,
implying that the task difficulty can only be evaluated wigispect to a particular reference point.

Other measures which correlate with the level of difficultyagecognition task include the qual-
ity of lexical coverage for the task in question, the speexth,rthe disfluency rate, the amount of
mumbling or faint speech, of foreign words and the numberasf-native speakers of the language
employed in the sample data.
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They can also be used to control the match in difficulty betwadevelopment and evaluation data,
and to ensure a smooth transition in difficulty for succeseiditions of official tests.

For measuring improvement in deployed systems, the gendeais to consider any and all data
that is collected under real conditions as part of the evalndest set. While this may not lead to
easy analysis of results, it often leads to identificatiomgdortant system improvements.

Scoring The key measure of continuous speech recognition systethe igercentage word error
rate (V F'R). Itis a proportional count of word errors made with resged¢he human-produced word
transcripts. This is usually computed while respectingratice boundaries, but the errors are usually
aggregated across the whole test set to give the overaltsesu

Given a reference word string containifdg words and a recognition hypothesis, tHeF' R is
determined by first aligning both word strings and then cmgnthe number of substitutions,
deletions ) and insertionsk).

WER = WTJFD X 100% (1)

A more detailled presentation of the measure is availabteerDISC deliverable: (Chasst al,
1999). Toolkits for scoring speech transcription are al##, some of them are even freely available,
for instance the National Institute of Standards and Teldgyo(NIST) standard scoring packdge

This simple alignment scheme performs well for read spetechyhich theWW F' R is generally
small. However, it inappropriately minimizes the errorerait high values ofV F'R (Hunt, 1988).
Consequently, a method which depends on the phonologgtaldie between words was investigated.
It uses distinctive features derived from a set of assumaddbword base forms (Fischet al, 1995).
This method did yield improved diagnostic capabilities esdliced biased measurement errors (Hunt,
1988). But because it requires a dictionary (backed up byfauttegeneral-purpose text-to-phone
function) it is much more complex to use. More detailed mdthbave been investigated in the
past, for instance in the context of the 1996 Switchboard BARvaluation, where time stamps were
used. Automatic alignments of reference transcripts waggd too inaccurate, and human annotators
were employed, in spite of the much higher cost. Followirig &xperiment, it was decided that the
potential benefits of the more detailed scoring method wetesabstantial enough to justify their
adoption in the DARPA speech recognition evaluation prottoc

Statistical analysis Evaluation gives an idea of the speech recognition perfoomavith respect

to other systems, to different versions of the same systeto arpredefined target. But are these
answers significant? Here, statistical analysis is of atdrelp to ensure, within a certain margin
of certainty, that the results measured are really congempseof the system characteristics and not
arbitrary results. In the same spirit as for the kappa stesi§Cohen, 1960, 1968; Krippendorff, 1980)
which is now widely used in computational linguistics to s inter-annotator agreement, a series
of tests are currently used when evaluating speech reéogniThe most representative are those
which have been used in the DARPA evaluation of large vo@akudontinuous speech recognizer
evaluations (Gillick & Cox, 1989).

MP: Matched Pair Sentence Segment (Word Error) Test

Sl: Signed Paired Comparison (Speaker Word Accuracy) Test

lavailable at http://www.itl.nist.gov/div894/894.01fseare.htm.
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MN: McNemar (Sentence Error) Test

These tests are applied between pairs of contrast conslibiosystems. Th&/P test is based on
the null hypothesis that the mean difference in the numbeooél errors per sentence is zet®l. and
Wi are standard statistical nonparametric tests to deterwiveher or not two pairs of samples are
from the same distribution, where in this case the sampkes@gaker word error rates. TMN test
is based on the count of the errors made by one of the pair luhemther compared to the total
number of errors that are not common to both systems. Thehgpbthesis is that this ratio should
be divided by two.

Adapting Transcription and Scoring Practices The scoring methods discussed in the previous
paragraph rely on the presence of an accurate referencgtition. It is clearly important to decide
what exactly should be captured during transcription and ihehould be represented.

When working in a given language, some words are bound toaagpethe training and test
sections of the corpus with multiple spellings, includingspellings. Many languages include ho-
mophones which are distinct as written words. These are algymot treated as equivalent under the
weighted error metric and must be correctly spelled in otddye scored as correct. In English, for
example, three homophones appear in the senté&dée to write to Mr. Wright right now. Each of
these would have to be spelled correctly in the recognizgyudun order to be judged as correct. In
the European SQALE project (Yourgg al, 1997) the relatively high homophone rate in French was
an important issue.

For languages such as English that commonly use contractibmust be decided whether or
not to define the reference transcription by expanding eatibns to their underlying form often
with mapping rules applied to both the reference and hymisheutput of a system) data. But this
operation changes the number of words compared. There ismerg practice in this matter, decision
depend on the context of the evaluation.

All of these variations indicate the flexibility brought iy bsing the weighted error metric. They
also show that this metric should carefully be used. Attanshould be paid in advance to the issues
that might arise for any new application.

4.2 Lessformal evaluation methods

Especially when dealing with deployed systems, it is oftepartant to employ less formal evaluation
methods in order to truly understand how well the speechgmeizer is working.

There are several phases involved in evaluating a speecgnizer under these conditions, each
with its own set of important issues:

Specification Phase:The specification phase begins the development of a predimimser interface
design that will identify the framework for building the sgh recognition contexts (i.e., the
grammars and vocabularies to be recognized and undersydabd bystem). Several techniques
may be employed to quickly create the user interface desigjading interactive role-plays and
WOz testing (Fraser & Gilbert, 1991), in which the automadgdtem is secretly replaced by
a human. This specification phase should include laboraiyfg formal evaluations of the
newly specified recognizer, with tests performed on whatewepora seem to best match the
deployment environment.

Development PhaseThe development phase should involve the creation of thecspapplication
itself which is both accuracy tested in isolation and thesbilgy tested during integration in
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or effects(1ISO9126, 1991) and usability is defined by the same norm astaare quality
characteristic composed @&f set of attributes that bear on the effort needed for use,and
the individual assessment of such use, by a stated or impdéiedf user{King et al, 1996).
Tools for listening to test users and analyzing error in b@rare essential in this phase for
identifying unexpected problems or weak points in the reiogy. After this evaluation step
(Gauvainet al, 1996; Lamel 1998d, Lamel 1999), the system is ready to béogeg in the
environment for which it was designed.

Deployment PhaseThe final phase addresses performance testing, user tedtfaing and recog-
nition accuracy tuning. This stage involves testing of gitem components in parallel with
the speech recognizer. Based upon user experience andlibetion of spoken utterances,
both the user interface and the recognition models have tortegl in parallel. The sanisten
and analyzéools that were used in the development phase can be usedduagreto improve
the recognizer accuracy along with the performance of atberponents, thus increasing the
global performance of the overall SLDS.

5 Conclusion

Even though rapid progress has been made in large vocalagieech recognition components, many
factors may influence the speech recognition performan@ayMutstanding problems still remain to
be resolved, for instance, inter-speaker variabilityadqbeg rate, and lexical and language modeling.

Due to inter-speaker variability, even today’s best systshow a significant difference in per-
formance between the word error of the best speaker (1-2%jrenword error of the worst speaker
(25-30%). These performance variations are often due terdiices in speaking rate, notably if the
locutionary style is much faster or slower than the averdd#dferences in speaking rate affect not
only the acoustic level, but also the phonological and etenviord level. At the lexical level, it
should be possible to choose among pronunciation variaotgding to observed pronunciations for
a given speaker (a person pronouncing a word in a given waetylto produce derived forms,
and other similar words in a similar way). At the cross-woeuddl, different speakers make use of
different phonological rules. Despite the fact that for irsymeakers, the choice of rules is systematic,
no state-of-the-art system is able to make use of this camsig.

These are outstanding problems. More generally, todagteays do not easily adapt to different
accents, either from dialects or from non-native speak#ns.technology needs to make substantial
progress in this area to obtain a performance level compatalthe one achieved by humans. Despite
the fact that attempts at crafting generic best practicdajiries for software development began to
appear early in the history of computer science, nothingdegn done for SLDSs prior to the DISC
project to our knowledge.

Since SLDS and in particular speech recognition moduledhaoeming a common facility in
industry, the DISC results provide essential informatiostablished development teams, auditing
teams and decision planning to use or develop speech tedhnir SLDSs. Of course, the current
guidelines provide a snapshot of the field correspondindp¢ostate-of-the-art at a particular time.
In order to make a live resource of the guidelines (which isrdttion for their long term usability)
the DISC project used the feedback provided by an Indusidllisor Pannel at regular intervals
throughout the project. It is actively seeking a solutiontfee maintenance and upgrading of the
guidelines after completion of the project, for instancedtiaboration with excellency networks like
ELSNET in Europe (Krauwer, 1999).
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