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Abstract—The goal of this work is to assess the capacity of
random forest language models estimated on a very large text
corpus to improve the performance of an STT system. Previous
experiments with random forests were mainly concerned with
small or medium size data tasks. In this work the development
version of the 2009 LIMSI Mandarin Chinese STT system
was chosen as a challenging baseline to improve upon. This
system is characterized by a language model trained on a very
large text corpus (over 3.2 billion segmented words) making
the baseline 4-gram estimates particularly robust. We observed
moderate perplexity and CER improvements when this model
is interpolated with a random forest language model. In order
to attain the goal we tried different strategies to build random
forests on the available data and introduced a Forest of Random
Forests language modeling scheme. However, the improvements
we get for large data over a well-tuned baseline N-gram model
are less impressive than those reported for smaller data tasks.

I. INTRODUCTION

This paper is concerned with large-scale experiments with

random forest (RF) language models (LMs). A random forest

is a collection of decision trees (DTs) that include random-

ization in the tree-growing algorithm. Our earlier experiments

with RFLMs on small data showed improvements over the N-

gram LM [1]. In the current work we investigate performance

of RFLMs on a large data set. Random forest LMs were

shown to consistently outperform word-based N-gram LMs for

relatively small-scale tasks [2], [3], [4]. There were attempts

to use RFLMs on a larger dataset of about 600-700 million

words for Mandarin Chinese GALE task [4], [5]. An absolute

0.6% reduction in character error rate (CER) over a 18.9%

N-gram baseline CER was shown. However, it is not fully

clear how the 4-gram LM that serves as a baseline in these

experiments was trained and tuned.

The setup we use is similar to the one used in the above-

mentioned experiments but our work is characterized by much

larger training data size (3.2 vs. 0.6-0.7 billion words) and

twice higher recognition accuracy baseline (9.8% vs. 18.9%

CER) attained with a fine-tuned baseline 4-gram model trained

without any pruning and cutoff.

Our goal was to improve the performance of a competitive

speech-to-text (STT) system with RFLMs trained on several

billion words of data. This imposes several types of peculiar-

ities we had to deal with:

1) The brute-force baseline 4-gram LM is trained on very

large amounts of text data (over 3 billion of word tokens)

without any pruning and cut-off. This model is thus

robust and challenging to improve upon.

2) The speech recognizer we use is a development version

of the LIMSI STT system component used in the AGILE

participation in the GALE’09 evaluation. It provides us

with a high recognition accuracy baseline over 90%.

Improving over such a baseline is challenging and every

small gain is welcome.

3) Training of random forest models is a very computation-

ally expensive process. It is hardly feasible to perform

RFLM training in the same fashion it is done for N-gram

models for the amounts of data we deal with. Reasonable

simplifications should be figured out.

II. DECISION TREES AND RANDOM FORESTS

The decision tree mechanism for estimating probabilities of

words given contexts has long been known as an alternative

to the N-gram approach [6].

With the help of DTs it is possible to cluster together

similar histories (i.e. possible previous words regarding the

one being predicted) at the leaves of a tree. Each leaf forms

an equivalence class of the histories that share the same

probability distribution over words to predict. Usually binary

decision trees are implemented with sets of possible histories

split at every node with a yes/no question. If the predictor

(i.e. position in N-gram history we ask questions about) is the

previous word, a question looks like “Is the previous word in

the set S?”

A DT is constructed in a way to reduce the uncertainty about

the event predicted. Thus, entropy can be used to measure how

good the question that splits the data at each node is. Entropy

of a decision tree can always be decreased by increasing the

number of leaves. However, such a tree will not be able to

generalize well on unseen data. Stopping criteria should be

used for a reasonable termination of the branching. There

are a number of possible criteria, for example the minimum

entropy reduction threshold. An alternative to such empirical

thresholds may be measuring the entropy reduction on heldout

data under the same split as for training data. Thus, one might

grow a tree on training data and then check the entropy on

heldout data in order to prune the tree.

The whole process of DT construction in its simplest and

unrestricted form can be formulated in several steps:
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1) Propagate training data down the nodes starting from the

root of the tree.

2) At each node for each predictor variable find the set of

values which minimizes the average conditional entropy

of training data at a given node. This set of values

constitutes the question that splits the data in two parts

at a given node.

3) Find the predictor-question pair that leads to the lowest

entropy and calculate the entropy reduction.

4) Check the entropy reduction on heldout data with that

question and make decision if this split is retained in the

tree or the node is not branched and turned into a leaf.

Just as N-gram probabilities, DT probabilities should be

smoothed. This can be done both by means of the techniques

developed for language modeling or with a recursive in-tree

smoothing with parent node probabilities as proposed in [7].

We do not present thorough mathematical formulations for

all the issues concerned with DT-based LMs due to lack of

space in this paper and advise to refer to [2] for the the details.

Despite the appealing idea of DT language modeling, sev-

eral studies showed that stand-alone DTs do not outperform

traditional smoothed N-gram models [3]. However, with the

recent advances in language modeling that extended the use

of decision trees to that of random forests, this direction was

brought back in the research spotlight.

The underlying assumption of RFs is that while one DT

does not generalize well on unseen data, a set of randomized

DTs interpolated together might perform better. First, greedy

algorithms are used at the stage of DT construction for

choosing the best questions to split data. Second, questions

in other nodes are not taken into consideration when we try

to find the best question at a given node. As a result, trees are

not globally optimal. A collection of trees with randomization

introduced at the phase of tree construction may be - and

actually is - closer to the global optimum.

Different schemes may be used to randomize DTs in order

to form a RF. The most commonly used are the random

predictor selection and the random initialization of greedy

algorithms used to find the “best” question at a node.

It should also be noted that the RF approach is a promising

framework to incorporate different sources of information

such as syntax and morphology into a language model [2],

[8]. Random forest LMs that take account of morphological

features were shown to improve the recognition performance

for inflectional languages [1].

III. EXPERIMENTS

A. Chinese Mandarin STT system

1) Recognition vocabulary and acoustic models: Words are

not separated by white spaces in Chinese. The solution is thus

either to make use of character-based LMs or perform word

segmentation as a pre-processing step. The former was shown

to be inferior to the latter thus the segmentation approach

was taken in this work [9]. We make use of the simple

longest-match segmentation algorithm based on 56052 word

vocabulary used in previous LIMSI Mandarin Chinese STT

systems [9]. However, character error rate is conventionally

used to evaluate final recognition performance.

Word recognition has one decoding chain with three passes.

The first decoding pass generates a word lattice with cross-

word, position-dependent, gender-independent acoustic mod-

els, followed by consensus decoding with 4-gram and pronun-

ciation probabilities [10], [11]. Unsupervised acoustic model

adaptation is performed for each segment cluster using the

CMLLR and MLLR techniques prior to the next decoding

pass. The first decoding pass is done with an MLP+PLP+f0

acoustic model, the second uses a PLP+F0 based model, and

the third pass also uses an MLP+PLP+f0 acoustic model. The

acoustic models all use speaker-adaptive (SAT) and Maximum

Mutual Information Estimation (MMIE) training.

Models were trained on 1400 hours of manually transcribed

broadcast news and broadcast conversation data distributed by

LDC for use in the GALE program, using both standard PLP

and concatenated MLP+PLP features. For the PLP models,

a maximum-likelihood linear transform (MLLT) is also used.

The model sets cover about 49k phone contexts, with 11.5k

tied states and 32 Gaussians per state. Silence is modeled by

a single state with 2048 Gaussians.

2) Training data: The language model of 2009 LIMSI

Mandarin STT system is trained on large amounts of Mandarin

Chinese data thus providing the system with robust LM

estimates. This makes improvement of the results attained with

this system a challenging task. The language model training

data consists of 48 different text sources in Mandarin Chinese

available by the end of 2009. These sources are collected by

different institutions and are diverse in size, genre and internal

structure. The total amount of data available for training is 3.2

billion word tokens (after segmentation).

3) Baseline LM: The baseline LM is a word-based 4-

gram LM. Individual LMs are first build for each of the

48 corpora. These models are smoothed according to the

unmodified interpolated Kneser-Ney discount scheme. No cut-

offs and pruning is imposed thus making the LMs to take

account of all possible information. These individual models

are subsequently linearly interpolated with the interpolation

weights tuned on dev09 data.

4) Test data: The GALE Phase 4 dev09 sets were used

in this study to evaluate the performance of different models.

A subset of dev09 called dev09s was also defined for this

evaluation. It constitutes about half of dev09 data. The dev09

was used to compute the interpolation weights for individual

4-gram LMs while constructing the baseline N-gram LM. As

the number of individual models is 48 (one model is trained

for each available corpus), this small number of parameters do

not result in a bias towards this data. This is supported by the

consistent improvements on the previous GALE evaluations

dev and test sets. In our experiments dev09 is used in the

same way i.e. we use it only to tune the LM interpolation

weights but never use it for RF tuning (e.g. as heldout data

at the DT growing phase). This is done in order to keep the

same test conditions and to not introduce any biases.
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TABLE I
PERPLEXITY OF DIFFERENT RF CONFIGURATIONS ON DEV09

DT depth 50 DT 100 DT 50 DT int 100 DT int

fully grown 279.4 276.1 206.8 206.4
10000 nodes 299.1 295.7 207.9 207.7
1000 nodes 358.1 356.1 210.7 210.7

B. Training of RF Models

We used the SRILM-compatible RF toolkit in the current

experiments [12].

1) RF on restricted data: Decision tree training may be

performed on restricted data to evaluate RF parameters. The

crucial point is thus to choose the training and heldout data that

is likely to be representative regarding the test data. For current

task this is broadcast news (bnm) and broadcast conversations

(bcm) Mandarin transcribed data as it constitutes the target

type of data in the evaluation. Training data were chosen to

contain all available bnm and bcm transcribed data except for

the recent bcm and bnm data released during previous year.

The latter were chosen as the heldout data used as a stopping

criterion at the DT training phase.

After the structures of constituent DTs are defined, the

training data together with additional data are poured down to

the leaves to get more robust probability estimates. Additional

data contain remaining top four (according to the interpolation

weights assigned to component N-gram LMs) text sources.

These text sources are characterized by large sizes and thus

were downsampled in such a manner that the resulting size

corresponds to the weights inferred during the interpolation.

The total size of the restricted data are 30M word tokens.

Heldout data are usually used as a stopping criterion (or

for post-pruning) during the DT training phase. However, it

was shown that shallow RFs that contain DTs of limited

“depth” have performance close to the RFs consisting of “fully

grown” DTs [5]. We thus first compare the performance of RFs

consisting of fully grown and shallow DTs. Another issue that

needs evaluation is the number of DTs to form a RF. Usually

100 or 50 randomized DTs are sufficient.

The perplexity results for different RF configurations are

presented in Table I. The numbers 50 and 100 correspond

to the number of randomized DTs that constitute a RF. The

second and the third columns correspond to the performance

of RFs as stand-alone models while the last two columns

show perplexity of RFs interpolated with the baseline 4-gram

LM. As can be seen from this table while the RFs with

DTs of maximum 1000 nodes appear to be too shallow, the

ones with 10000 nodes perform close to fully grown (and

subsequently pruned) trees. There is also no really significant

difference between RFs consisting of 50 and 100 trees trained

on restricted data.

2) RF trained on all available data: The baseline 4-gram

LM is obtained as a result of interpolation of many sub-

LMs each being trained on one of 48 available Mandarin

text sources. The interpolation weights are tuned on dev09.

Applying the same strategy to RF construction seems a natural

thing to do. The problem that occurred to us is the size of the

corpora. There are corpora that contain hundreds million words

we found infeasible to train RFs straightforwardly. Training

RFs for specific sources consumes a lot of computational

time and puts high demands on memory usage. Training about

50 full-grown RFs consisting of hundred DTs on large data

may keep busy a modern computational cluster with several

dozens of nodes for months. The performance of DTs with

maximum 10000 nodes was shown to be close to that of full-

grown DTs on restricted data. At the same time such trees

are much faster to train. As a result we train maximum 10000

nodes shallow DTs for each individual corpus and consider 50

randomized DTs enough to form a RF. The final RF is obtained

by interpolation of the RFs corresponding to different sources.

We call such a RF a Forest of Random Forests (FRF).

We found it feasible to directly train RFs for 34 sources.

Thus the largest corpora were subdivided into 2-4 smaller parts

and a 25 DTs random forest is trained for each subpart. RFs

for all the subparts corresponding to a given source form the

final RF for this source.

Modified Kneser-Ney 4-gram model is trained for each data

source. This model serves as a backoff and bailout model for

a corresponding RFLM. Modified Kneser-Ney discounting pa-

rameters are calculated for each of the models independently.

The models were slightly pruned to fit into memory in 32-bit

framework. A threshold of 1e-8 was used (similar to -prune

parameter in SRILM).

IV. RESULTS

Decision tree probabilities were discounted according to

the modified Kneser-Ney scheme. Tree-based LMs are used

together with the corresponding lower-order Kneser-Ney

smoothed N-gram LMs that serve as backoff models.

The perplexity on the dev09 and dev09s data sets with

the baseline 4-gram LM are 211 and 207 respectively. For

dev09s set, the perplexity with the RF trained on restricted

data is 293, which is higher than that with the baseline

interpolated N-gram LM trained on all available data. When

these two are interpolated together the perplexity on this

data set decreases to 201, that corresponds to a 3% relative

improvement. Different perplexity results on the whole dev09

set are presented in Table II.

The RF corresponds to the RF trained on restricted data

as described in Section III-B1. According to earlier results

with RFLMs on smaller setups one would expect a perplexity

reduction over the N-gram baseline with standalone RF mod-

els. However, in this restricted data experiment we use much

less data to train the RFLM and also do not make use of

interpolation of LMs corresponding to different data sources.

The FRF in Table II stands for the forest of random forests

trained on all available data. The stand-alone perplexity of

FRF is 15% lower than that of the RF but still higher than the

N-gram baseline. No further improvement was observed after

interpolation of the FRF with the N-gram LM.

Perplexity results on earlier GALE development and evalu-

ations sets presented in Table III show similar small improve-

ments with the RF model described above. The Baseline stands
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TABLE II
PERPLEXITY OF RFLMS OF DIFFERENT KINDS ON DEV09

RF type Stand-alone Interp

RF 299 207
FRF 256 208

TABLE III
PERPLEXITY ON PREVIOUS GALE EVALUATION SETS

Set Baseline RF Interp

dev07 184 237 179
eval07 206 289 203
dev08 192 260 187
dev07+eval07+dev08 194 260 190

TABLE IV
CER WITH RFLM ON DEV09S SET

RF weight 0.0 0.1 0.2 0.3 0.5 1.0

CER 9.81 9.77 9.72 9.75 9.80 10.41

for the perplexity attained with the baseline 4-gram LM, RF

corresponds to the stand-alone RF and the final Interp column

reports on the interpolation of these two kinds of models.

It should be noted that the 2009 LIMSI Mandarin STT also

includes the Neural Network (NN) LM [13]. The interpolation

of NNLMs with the baseline 4-gram model leads to the

perplexity reduction down to 186 on dev09. However, if we

try to interpolate all three sources, namely baseline 4-gram,

NNLM and RFLM, no further improvement is gained over

the interpolated N-gram/NN language model.

Speech recognition experiments were carried out in order

to evaluate performance of the RF model within the STT

system. The lattices generated by the 2009 LIMSI Mandarin

STT system with the baseline 4-gram LM were rescored with

the best RFLM (the first one from the Table II). These results

are presented in Table IV. The column with the zero weight

corresponds to the baseline CER attained with the 4-gram

model. Small but significant improvement in CER over the

baseline N-gram model is observed with the RFLM.

V. CONCLUSION AND FUTURE WORK

Improving over a robust state-of-the-art STT system trained

on large amounts of data is a challenging task. Many ap-

proaches that perform well on small and medium-size tasks

do not scale well to experiments on large data.

In this paper we presented the results on using random forest

language models to improve upon a well-tuned competitive

Mandarin STT system trained on large data. We proposed and

tested Forest of Random Forests scenario for RFLM training

that take account of all available data in a manner similar to

the one used to train the baseline 4-gram LM. The moderate

improvements both in perplexity and character error rate were

observed. However, these improvements we observed are less

impressive as compared to the gains reported for smaller scale

tasks. Moreover, the improvement gained with the RFLM is

outpowered by the application of neural network language

models that provide larger improvement over the baseline

when interpolated with the N-gram LM. One can argue that

the RF approach can be viewed as a sophisticated smoothing

technique. At the same time a baseline 4-gram LM with a

comparatively compact vocabulary of 56k words is trained on

very large corpora of 3.2 billion words without any pruning

and cutoff. That makes the estimates provided by this model

robust and rather reluctant to enhancements. Moreover, the

baseline N-gram LM consisted of 48 sub-LMs with properly

tuned interpolation weights.

It should be noted that the results presented here are still

prone to improvement. Due to very large size of training

data and high computational demands imposed by the random

forest construction process several simplifications had to be

made. E.g. the number of nodes was forced to be not larger

than 10000 and backoff LMs were slightly pruned. These

simplifications may result in losing some of the potential gain

that can be attained with RFLMs. Thus, the major direction of

future work is performing efficient straightforward training of

RF language models on the same amounts of data available for

N-gram LM training. Another direction is the use of different

sources of information e.g. part-of-speech or morphology in

DTs trained on large data.
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