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RÉSUMÉ
Dans cet article nous présentons une étude sur l’authentification

du locuteur à partir d’un signal téléphonique en mode dépen-
dant et indépendant du texte. L’approche retenue consisteà mo-
déliser le locuteur par une source markovienne de phones asso-
ciée à des contraintes phonotactiques (mode indépendant du texte)
ou à un lexique (mode dépendant du texte). Dans les deux cas
les phones sont représentés par des modèles de Markov cachés
gauche-droite à 3 états. Une serie d’experiences a été effec-
tuée sur un corpus téléphonique enregistré spécifiquement pour
l’évaluation d’algorithmes d’authentification du locuteur. Les ré-
sultats expérimentaux sont présentés pour différentes quantités de
données d’apprentissage et de test, et pour de la parole spontanée
et des textes lus. Sur ces données, le taux d’égale erreur le plus
faible est 1% dans le mode dépendant du texte lorsque deux essais
sont autorisés par tentative avec une durée minimale de 1.5s de
parole par essai.

ABSTRACT
In this paper we present a study on speaker verification us-

ing telephone speech and for two operational modes, i.e. text-
dependent and text-independent speaker verification. A statisti-
cal modeling approach is taken, where for text-independentveri-
fication the talker is viewed as a source of phones, modeled bya
fully connected Markov chain and for text-dependent verification,
a left-to-right HMM is built by concatenating the phone mod-
els corresponding to the transcription. A series of experiments
were carried out on a large telephone corpus recorded specifically
for speaker verification algorithm development assessing perfor-
mance as a function of the type and amount of data used for train-
ing and for verification. Experimental results are presented for
both read and spontaneous speech. On this data, the lowest equal
error rate is 1% for the text-dependent mode when 2 trials areal-
lowed per attempt and with a minimum of 1.5s of speech per trial.

INTRODUCTION
Speaker verification has been the subject of active re-

search for many years, and has many potential applications
where propriety of information is a concern [6, 7]. De-
spite these efforts and promising results using laboratory
data, speaker verification performance over the telephone
remains below that required for many applications. In this
paper, we present an experimental study on speaker veri-
fication over the telephone for two operational modes, i.e.�This work was carried out in collaboration with the Vecsys company
in the context of a research contract with France Telecom.

text-dependent and text-independent verification. Achiev-
able performance levels are given for both the known and
unknown-text conditions, using a large corpus of read and
spontaneous speech.

A statistical modeling approach is taken, where the talker
is viewed as a source of phones, modeled by a fully con-
nected Markov chain[1, 3]. The lexical and syntactic struc-
tures of the language are approximated by local phonotac-
tic constraints, and each phone is in turn modeled by a 3
state left-to-right HMM. For text-dependent identification,
a left-to-rightHMM is built by concatenating phone models
according to the lexical pronunciations of words in an or-
thographic transcription. When this approach is applied to
speaker identification[1, 3] a set of phone models is trained
for each speaker and identification of a speaker from the
signalx is performed by computing the phone-based like-
lihood f(xj�) for each speaker�. The speaker identity
corresponding to the model with the highest likelihood is
then hypothesized. The same speaker model can be applied
to speaker verification by comparing the likelihood ratiof(xj�)=f(x) to a speaker independent threshold in order
to decide acceptance or rejection.

METHODOLOGY
Speaker-specific models are generated from a set of

speaker-independent (SI) seed models using Maximum a
posteriori (MAP) estimation. The speaker-independent
seed models provide estimates of the parameters of the prior
densities and also serve as an initial estimate for the seg-
mental MAP algorithm[2]. This approach allows a large
number of parameters to be estimated from a small amount
of speaker-specific adaptation data. A set of context-
independent phone models are built for each speaker.

Assuming no prior knowledge about the speaker distribu-
tion, thea posterioriprobabilityPr(�jx) is approximated
by the scoreL(x;�) defined asL(x;�) = f(xj�)
=X�0 f(xj�0)

where the�0 are the speaker-specific models for all speak-
ers known to the system and the normalization coefficient
 was empirically determined as 0.02. (This coefficient is
needed to compensate for independency approximations in
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Multi-style training Type-specific training
Conditions Average Digits SEPT Sentences Digits SEPT Sentences
SID rate 93.5 90.5 95.5 94.5 91.4 96.4 94.1
1 trial, 3.3 4.2 2.3 2.6 4.1 2.3 2.7
1 trial,�1.2s 2.6 2.9 1.8 2.6 2.9 1.8 2.7
2 trials, 2.7 3.1 1.7 2.0 3.2 1.8 2.2
2 trials,�1.2s 2.0 2.0 1.2 2.0 2.2 1.3 2.2
2 trials,�1.5s 1.8 1.4 1.0 1.9 1.6 1.1 2.1

Table 1: Speaker identification rate (single trial) and equal error rates (EER) for different test data types with multistyle training (left)
and type-specific training (right), based on 21775 user attempts and 10908�91 imposter attempts. The text is known.

the model.) Calculating the denominator of this expression
is very costly as the number of operations is proportional to
the number of speakers used in the calculation, or as in our
case, the number of target speakers. We can significantly
reduce the required computation by using a Viterbi beam
search on all the speakers’ models in parallel.

This decoder, which was developed for speaker identifi-
cation and the identification of other non-linguistic speech
features [1, 3] provides not only the likelihood of the most
probable speaker,f(xj�), but the likelihoods for theN
most probable speakers. The neccessary computation is re-
duced by approximating the above summation by a sum-
mation over a short list of the most probable speakers. In
our implementation, the Viterbi algorithm is used to com-
pute the joint likelihoodf(x; sj�) of the incoming signal
and the most likely state sequence instead off(xj�).

If a verification attempt is unsuccessful, it is common
practice to allow a second trial in order to reduce the false
rejection of known users. A straight-forward approach is to
base the decision only on the scoreL(x;�) of the second
attempt, ignoring the preceding trial. This approach can be
justified on the ground that the actual test data is potentially
invalid. An aternative it is to base the decision on the scores
of both trials.1 Making use of this second approach reduced
the error rate by 21%, compared to a 13% error reduction
using only the score of the last attempt.

For these experiments we make use of a corpus especially
designed to evaluate speaker recognition algorithms.2 This
corpus contains data from 100 target speakers or users, and
from 1000 impostors[8]. Each user completed 10 training
sessions, and 25 verification calls, from a variety of tele-
phone handsets and calling locations. Each call provides a
variety of speech data, including a variety of read speech
material and ellicited and spontaneous speech so as to be
able to assess the effects of data type on the verification
accuracy. The read test data consist of three types: digit
strings, 5 phonetically controlled sentences (SEPT), and
sentences from theLe Mondenewspaper selected to cover1It is evidently possible to allow more than 2 trials per attempt, in
which case the score would take into account scores from all previous
trials.2The corpus, concievedand designed jointly by CNET and LIMSI, was
recorded over the French telephone network and transcribedby Vecsys.

a large number of phonetic contexts. The spontaneous
speech data contain responses to fixed questions (such as
the type of handset, calling environment, calling area code,
dates, times, etc) and to more general open questions so
as to obtain short monologues. The acoustic feature vec-
tor contains 13 cepstrum coefficients derived from a Mel-
frequency spectrum (0-3.5kHz bandwidth) and their first
order derivatives was computed every 10 ms. In order to
minimize effects due to channel differences, cepstral-mean
removal was performed for each sentence.

MULTISTYLE VS TYPE-SPECIFIC TRAINING

Experiments were carried out to assess the influence of
the amount and type of data used for training speaker-
specific models and for the authorization attempts.3 The
first row in Table 1 compares text-dependent speaker iden-
tification rates as a function of the utterance type and the
training condition (multi-styleor type-specific). Multi-style
training makes use of all types of read-speech training data
for the 10 training calls. Type-specific training makes use
of only one of these data types in training, i.e. digits, SEPT
sentences orLe Mondesentences.

Using multi-style training, the average identification rate
across the 21775 test samples from the 25 test sessions is
93.5%. If a minimal duration of 1.2s is required (not shown
in table), the average identification rate is 94.7%, and about
10% of the data (mostly 3 digit sequences) are not used. For
longer durations (minimum 2s) the average identification
rate is 95.6%. Comparing the different types of test data,
the highest identification rates are obtained for the SEPT
sentences. When type-specific training is used, and testing
is carried out on the same type of data, the speaker identifi-
cation rates are slightly higher for the digits and the SEPT
sentences, and slightly lower for theLe Mondesentences.

The lower part of Table 1 gives the known-text equal er-
ror rates (EER) for the different data types for multistyle
and type-specific training. Results are given for 1 and 2 user
attempts, with and without a minimal duration constraint.
With one trial per attempt, the average EER is 3.3%. This3Results are reported for speaker identification or for verification some-
what interchangably, as we have found that speaker identification error
rates are directly related to speaker verification error rates, yet the speaker
identification error is much easier to measure.
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Test data
Training data Digits SEPT Sentences
Digits 8.6 68.6 35.6
SEPT 64.1 3.6 24.3
Sentences 21.1 14.3 5.9

Table 2: Speaker identification error rates with type-specific train-
ing for same-type and cross-type test data.

is reduced to 1.8% if a miminal duration of 1.5s is required
and two trials per attempt are allowed. Under all conditions
the SEPT sentences have the lowest EER. This performance
is attributed to the limited phonetic contexts found in the
SEPT sentences, enabling them to be well-modeled using
the 25 repetitions occurring in the complete set of training
data.

In order to evaluate the importance of the linguistic con-
tent of the training data, we investigated the performance
under crossed training/test conditions. The speaker identi-
fication error rates are given in Table 2. There is a large
degradation in performance when the training and test data
are of different types. TheLe Mondesentences have the
least degradation as they have the largest variety of pho-
netic contexts. The highest errors occur between the SEPT
sentences and the digit strings, where there is a large differ-
ence in linguistic content.

AMOUNT & RECENCY OF TRAINING DATA

The amount and recency of the training data are well
known factors that influence speaker verification perfor-
mance. These effects are quantified here by comparing 3
session training with single session training (first or lastses-
sion), and with 1/3 of the training data taken from each of
the 3 training sessions. The entries in Table 3 correspond
to known-text EER results for the 3 session training, single
(last) session training, and training on one-third of the data
from each of 3 sessions. As expected, the EER is seen to
significantly increase when the training data is reduced to
one session. Training on the same amount of data (1/3 from
each of 3 sessions) reduces this performance degradation.

Conditions Digits SEPT Sentences
1 trial, 2.9/4.8/3.8 1.9/3.1/2.3 3.2/3.5/3.2
1 trial,�1.0s 2.8/4.5/3.6 1.9/3.1/2.3 3.2/3.5/3.2
2 trials, 1.7/3.1/2.6 1.3/2.2/1.7 2.5/2.6/2.6
2 trials,�1.0s 1.8/3.0/2.5 1.3/2.3/1.7 2.5/2.6/2.6
2 trials,�1.5s 1.7/2.5/2.5 1.3/1.9/1.6 2.5/2.6/2.6

Table 3: Equal error rates as a function of the amount of training
data, using type-specific training. For each condition the 3EERs
correspond to training on 3 sessions, the last session, and 1/3 of
each of 3 sessions. The text is known.

Table 4 gives the speaker identification error as a func-
tion of the amount of training data, and the proximity to
the test data. Although not new, these results quantify the
need for multiple training sessions. Additionally, speaker-

adaptation techniques can be used to reduce the effects of
model ageing.

Training Digits SEPT Sentences
3 sessions 4.8 3.2 6.7
1/3 of 3 sessions 6.4 4.1 6.6
1 session (last) 10.8 6.3 8.3
1 session (first) 19.7 11.5 16.7

Table 4: Speaker identification error rates for different training
conditions. Known text.

SPONTANEOUS SPEECH

Experiments were carried out to measure the speaker
identification and verification rates on spontaneous speech
using the fixed and open questions. The responses to the
fixed questions were much shorter (1.5s on average) than
to the open questions (8.2s on average). These experiments
compare known and unknown text conditions. In the un-
known text mode, a speaker-independent phone recognizer
is used to provide a phone transcription of the utterance,
which is then used for identification or verification.

Questions Avg. duration Known text Unknown text
calling place 1.3s 74.4 66.4
telephone type 1.7s 84.1 72.6
handset type 1.3s 77.7 66.0
city/country 0.9s 65.5 53.6
postal code 1.3s 75.2 61.7
telephone no. 1.6s 86.0 79.8
date 2.3s 82.8 73.7
time 1.6s 73.2 61.3

Table 5: Speaker identification rates for the fixed questions with
multistyle training.

Table 5 shows the speaker identification rates for the dif-
ferent types of fixed questions (about 1200 trials for each
type). There is a clear correspondance between the average
duration of the response and the identification rate, with the
lowest rates being obtained on the shortest responses, such
as “city/country” where the callers often gave a single word
response.

Figure 1 compares the ROC curves with (left) and with-
out (right) the use of transcriptions. The ROC curves for the
digits, SEPT andLe Mondesentences are given for compar-
ison. The error rates are significantly higher for the spon-
taneous speech than for the read texts. The equal error rate
when the transcription is known is about 5.0% compared
to about 6.5% in text-independent mode for spontaneous
speech.

DISCUSSION AND CONCLUSION

Several observations can be made concerning these ex-
periments. As expected, there is a correlation between the
amount of training data and the system performance, with
more data yielding higher performance. Similarly, for com-
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Figure 1: ROC curves for spontaneous speech fixed responsesr and open questionsq using transcriptions (left, text known) and without
transcriptions (right, unknown text, phone recognition).Multi-style training. (Fixed questions: 8823 user attempts, 794070 imposter
attempts (simulated); Open questions: 4691 user attempts,422190 imposter attempts (simulated).) Maximum of two trials allowed for
each attempt with an average of 1.1 trials/attempt. ROC curves for the digits, SEPT andLe Mondesentences are given for comparison.

parable amounts of training data, better performance is ob-
tained when the data is taken from several training sessions,
as opposed to all from a single call. Type-specific training
results in better performance when the same type of test
data is used. If the test data is different in linguistic con-
tent (or uncontrolled), multistyle training is to be prefered.
The importance of phonetic content was illustrated for the
crossed-type conditions, which led to significant degrada-
tion in performance (see Table 2).

Better performance is obtained for the SEPT sentences,
with controlled linguistic content, than for digit stringsor
the more variableLe Mondesentences. This can be partially
attributed to the smaller number of phonetic contexts, for
which more accurate acoustic models can be estimated for
a given amount of training data. Another contributing fac-
tor is that there are only a few (5) different forms and they
are easy to remember and pronounce. As a result, speakers
tend to say these naturally without hesitation. In contrast,
reading aloud theLe Mondesentences sometimes caused
difficulty for the users.

Identification and verification performances on sponta-
neous speech (for both text-dependent and text-independent
modes) are substantially worse than performance on read
speech. This significantly higher error rate can be partly
attributed to a larger variation in speaking style, the short
duration of the responses, and the larger variability in pho-
netic contexts. Another factor which has not yet been in-
vestigated is that the acoustic models were trained only on
the read-speech data. Training on spontaneous speech may
reduce the performance difference. Although better perfor-
mance is obtained in the known-text condition, that is using
the transcription of the data, this is not very realistic, asin
general one cannot assume that the transcriptions of spon-
taneous speech are available.

Concerning the amount of data needed, estimation of
speaker-specific models requires a minimum of about 25
sentences, corresponding to about 1 minute of speech. For
the test utterances, performance is better for longer dura-
tions, indicating that it is advantageous to ensure a minimal
duration of at least 1.5 or 2s. An equal error rate of 1%
was obtained on the SEPT sentences, in the text-dependent
mode with 2 trials per verifcation attempt and with a mini-
mum of 1.5s of speech per trial.

REFERENCES
[1] J.L. Gauvain, L.F. Lamel, “Identification of Non-Linguistic

Speech Features,”Proc. ARPA Human Language Technol-
ogy Workshop, March 1993.

[2] J.L. Gauvain, C.H. Lee, “Maximuma PosterioriEstimation
for Multivariate Gaussian Mixture Observations of Markov
Chains,”IEEE Trans. on Speech & Audio, 2(2), April 1994.

[3] L.F. Lamel and J.L. Gauvain, “A Phone-based Approach
to Non-Linguistic Speech Feature Identification,”Computer
Speech and Language, 9(1), pp. 87-103, Jan. 1995.

[4] A.L. Higgins, L. Bahler, J. Porter, “Speaker Verification Us-
ing Randomized Phrase Prompting,”Digital Signal Process-
ing, 1, 1991.

[5] A.E. Rosenberg, “The Use of Cohort Normalized Scores for
Speaker Verification.”ICSLP-92.

[6] J.M. Naik, “Speaker Verification: A Tutorial,”IEEE Com-
munication Magazine, pp.42-48, Jan 1990.

[7] H. Gish, M. Schmidt, “Text-Independent Speaker Identifi-
cation,” IEEE Signal Processing Magazine, pp. 18-32, Oct
1994.

[8] J.L. Gauvain, L.F. Lamel, B. Prouts, “Experiments with
speaker verification over the telephone,”Eurospeech’95.

[9] J.L. Gauvain, L.F. Lamel, B. Prouts, Final report March´e
France Telecom No. 94 6M 714, ”Authentification vocale
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