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RESUME text-dependent and text-independent verification. Achiev
Dans cet article nous présentons une étude sur l'auffeatibpn ~ able performance levels are given for both the known and
du locuteur a partir d'un signal télephonique en modpette  unknown-text conditions, using a large corpus of read and
dant et indépendant du texte. L'approche retenue corisisie-  spontaneous speech.
déliser le locuteur par une source markovienne de phorss as A statistical modeling approach is taken, where the talker
ciee ades c_ontraintes phonotactiques (mode indépedda@exte) s viewed as a source of phones, modeled by a fully con-
ou a un lexique (mode dépendant du texte). Dans les deux Cagycred Markov chain[, 3]. The lexical and syntactic struc-
les phones sont representes par des modéles de Markbesac v\ o5 of the language are approximated by local phonotac-
gauche-droite a 3 états. Une serie d'experiences a flte-e tic constraints, and each phone is in turn modeled by a 3

tuée sur un corpus téléphonique enregistré spécifirgune pour ) . 7
I'évaluation d’algorithmes d’authentification du locute Les ré- state left-to-right HMM. For text-dependent identificatjo

sultats expérimentaux sont présentés pour diffeeegtantites de @ left-to-right HMM is built by concatenating phone models
données d’apprentissage et de test, et pour de la parmm according to the IeXicaI pronunciations Of Words in an or-
et des textes lus. Sur ces données, le taux d'égale eeqaius  thographic transcription. When this approach is applied to
faible est 1% dans le mode dépendant du texte lorsque deaises speaker identification[1, 3] a set of phone models is trained
sont autorisés par tentative avec une durée minimale siede  for each speaker and identification of a speaker from the
parole par essai. signalx is performed by computing the phone-based like-
ABSTRACT lihood f(x|A) for each speakek. The speaker identity

In this paper we present a study on speaker verification uscorresponding to the model with the highest likelihood is

ing telephone speech and for two operational modes, i.et- texthen hypothesized. The same speaker model can be applied

dependent and text-independent speaker verification. #ststa 0 speaker verification by comparing the likelihood ratio

cal modeling approach is taken, where for text-independent  f(x|A)/f(x) to a speaker independent threshold in order

fication the talker is viewed as a source of phones, modele by to decide acceptance or rejection.

fully connected Markov chain and for text-dependent veatfimn,

a left-to-right HMM is built by concatenating the phone mod- METHODOLOGY

els corresponding to the transcription. A series of experita Speaker-specific models are generated from a set of

were carried out on a large telephone corpus recorded spalbifi  speaker-independent (Sl) seed models using Maximum a

for speaker verification algorithm development assessérpp  posteriori (MAP) estimation. The speaker-independent

mance as a function of the type and amount of data used fof trai seed models provide estimates of the parameters of the prior

ing and for verification. Experimental results are preséri®  jensities and also serve as an initial estimate for the seg-

both read _and spontaneous speech. On this data, the I_owfait €dmental MAP algorithm[2]. This approach allows a large

error rate is 1% for the text-dependent mode when 2 trialsabre .

lowed per attempt and with a minimum of 1.5s of speech pdr tria number of param_e_ters to be _estlmated from a small amount

of speaker-specific adaptation data. A set of context-
INTRODUCTION independent phone models are built for each speaker.

Speaker verification has been the subject of active re- Assuming no prior knowledge about the speaker distribu-

search for many years, and has many potential applicatiorion, thea posterioriprobability Pr(A|x) is approximated

where propriety of information is a concern [6, 7]. De- by the scorel(x; ) defined as

spite these efforts and promising results using laboratory

data, speaker verification performance over the telephone L(x;A) = f(x|/\)7/2f(x|/\’)7

remains below that required for many applications. In this A

paper, we present an experimental study on speaker vefjyhere the\’ are the speaker-specific models for all speak-

fication over the telephone for two operational modes, i.eers known to the system and the normalization coefficient
*This work was carried out in collaboration with the Vecsysngmny 7 Was empirically determined as 0.02. (This coefficient is

in the context of a research contract with France Telecom. needed to compensate for independency approximations in
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Multi-style training Type-specific training
Conditions Average| Digits | SEPT| Sentenceg Digits | SEPT| Sentenceg
SID rate 93.5 90.5 | 955 94.5 914 | 96.4 94.1
1 trial, 3.3 4.2 23 2.6 4.1 23 2.7
1 trial,>1.2s 2.6 29 1.8 2.6 29 1.8 2.7
2 trials, 2.7 3.1 1.7 2.0 3.2 1.8 2.2
2 trials,>1.2s 20 2.0 1.2 20 2.2 13 2.2
2 trials,>1.5s 1.8 14 1.0 1.9 1.6 11 21

Table 1: Speaker identification rate (single trial) and equal erates (EER) for different test data types with multistylértieg (left)
and type-specific training (right), based on 21775 usengite and 1090891 imposter attempts. The text is known.

the model.) Calculating the denominator of this expressiom large number of phonetic contexts. The spontaneous
is very costly as the number of operations is proportional tespeech data contain responses to fixed questions (such as
the number of speakers used in the calculation, or as in odhe type of handset, calling environment, calling area code
case, the number of target speakers. We can significantijates, times, etc) and to more general open questions so
reduce the required computation by using a Viterbi beanas to obtain short monologues. The acoustic feature vec-
search on all the speakers’ models in parallel. tor contains 13 cepstrum coefficients derived from a Mel-
This decoder, which was developed for speaker identififrequency spectrum (0-3.5kHz bandwidth) and their first
cation and the identification of other non-linguistic sgeec order derivatives was computed every 10 ms. In order to
features [1, 3] provides not only the likelihood of the mostminimize effects due to channel differences, cepstralrmea
probable speakerf(x|}\), but the likelihoods for thev  removal was performed for each sentence.
most probable sp_eakgrs. The neccessary co_mputatlon IS TRIULTISTYLE VS TYPE-SPECIFIC TRAINING
duced by approximating the above summation by a sum-
mation over a short list of the most probable speakers. In Experiments were carried out to assess the influence of
our implementation, the Viterbi algorithm is used to com-the amount and type of data used for training speaker-
pute the joint likelihoodf(x,s|\) of the incoming signal Specific models and for the authorization atteniptEhe
and the most likely state sequence instead(af ). first row in Table 1 compares text-dependent speaker iden-
If a verification attempt is unsuccessful, it is commontification rates as a function of the utterance type and the
practice to allow a second trial in order to reduce the falsdraining condition (multi-style or type-specific). Mulstyle
rejection of known users. A straight-forward approach is tofraining makes use of all types of read-speech training data
base the decision only on the scdréx; \) of the second for the 10 training calls. Type-specific training makes use
attempt, ignoring the preceding trial. This approach can b&f only one of these data types in training, i.e. digits, SEPT
justified on the ground that the actual test data is potéptial Sentences dre Mondesentences.
invalid. An aternative it is to base the decision on the ssore  Using multi-style training, the average identificatiorerat
of both trials! Making use of this second approach reduceddcross the 21775 test samples from the 25 test sessions is
the error rate by 21%, compared to a 13% error reductiof3.5%. If a minimal duration of 1.2s is required (not shown
using only the score of the last attempt. in table), the average identification rate is 94.7%, and tbou
For these experiments we make use of a corpus especialhp% of the data (mostly 3 digit sequences) are not used. For
designed to evaluate speaker recognition algorithrilkis ~ 10nger durations (minimum 2s) the average identification
corpus contains data from 100 target speakers or users, afRf€ is 95.6%. Comparing the different types of test data,
from 1000 impostors[8]. Each user completed 10 trainindhe highest identification rates are obtained for the SEPT
sessions, and 25 verification calls, from a variety of tele-Sentences. When type-specific training is used, and testing
phone handsets and calling locations. Each call providesig carried out on the same type of data, the speaker identifi-
variety of speech data, including a variety of read speeckation rates are slightly higher for the digits and the SEPT
material and ellicited and spontaneous speech so as to B&ntences, and slightly lower for the Mondesentences.
able to assess the effects of data type on the verification The lower part of Table 1 gives the known-text equal er-
accuracy. The read test data consist of three types: digir rates (EER) for the different data types for multistyle
strings, 5 phonetically controlled sentences (SEPT), an@nd type-specific training. Results are given for 1 and 2 user

sentences from thee Mondenewspaper selected to cover attempts, with and without a minimal duration constraint.
With one trial per attempt, the average EER is 3.3%. This

LIt is evidently possible to allow more than 2 trials per atpgmin

which case the score would take into account scores fromralligus 3Results are reported for speaker identification or for veatfon some-
trials. what interchangably, as we have found that speaker ideattdit error

2The corpus, concieved and designed jointly by CNET and LIMSis rates are directly related to speaker verification errasayet the speaker
recorded over the French telephone network and transchp&gcsys. identification error is much easier to measure.
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Test data adaptation techniques can be used to reduce the effects of

Training data | Digits | SEPT| Sentenceg model ageing.
Digits 8.6 68.6 35.6 — —
SISPT 64.1 3.6 24.3 Tra_mmg Digits | SEPT| Sentenceg
Sentences | 21.1 | 143 | 59 dsessions | 48 | 32 67
1/3 of 3sessiong 6.4 4.1 6.6
Table 2: Speakeridentification error rates with type-specific train 1 session (last) | 10.8 6.3 8.3
ing for same-type and cross-type test data. 1 session (first) | 19.7 | 11.5 16.7

is reduced to 1.8% if a miminal duration of 1.5s is requiredraple 4: Speaker identification error rates for different training
and two trials per attempt are allowed. Under all conditiongonditions. Known text.

the SEPT sentences have the lowest EER. This performance

is attributed to the limited phonetic contexts found in the SPONTANEOUS SPEECH

SEPT sentences, enabling them to be well-modeled using gxperiments were carried out to measure the speaker
the 25 repetitions occurring in the complete set of traininggentification and verification rates on spontaneous speech
data. using the fixed and open questions. The responses to the
In order to evaluate the importance of the linguistic con-fixed questions were much shorter (1.5s on average) than
tent of the training data, we investigated the performancey the open questions (8.2s on average). These experiments
under crossed training/test conditions. The speakeriidentcompare known and unknown text conditions. In the un-
fication error rates are given in Table 2. There is a larg&nown text mode, a speaker-independent phone recognizer
degradation in performance when the training and test datg ysed to provide a phone transcription of the utterance,
are of different types. Thee Mondesentences have the \hich is then used for identification or verification.
least degradation as they have the largest variety of pho-

netic contexts. The highest errors occur between the SEFTQulfS“OTS Avg.ldlsjration Kn(;‘ZTeXt U”kg‘éﬁn text
. . . : calling place .3s . .

sente_nclgs ar}dt_the dl?lt itnngs, where there is a larga-diffe] telephone typel 17s 84.1 796
ence in linguistic content. handsettype 135 777 66.0
AMOUNT & RECENCY OF TRAINING DATA city/country 0.9s 65.5 3.6
o postal code 1.3s 75.2 61.7
The amount and recency of the training dafca are well telephone no. 1.6 86.0 79.8
known factors that influence speaker verification perfor{ gate 213s 82.8 73.7
mance. These effects are quantified here by comparing|3time 1.6s 73.2 61.3

session traln_lng with single session training (first or st Table 5: Speaker identification rates for the fixed questions with
sion), and with 1/3 of the training data taken from each Ofmultistyle training.
the 3 training sessions. The entries in Table 3 correspond

to known-text EER results for the 3 session training, single Table 5 shows the speaker identification rates for the dif-
(last) session training, and training on one-third of theada ferent types of fixed questions (about 1200 trials for each
from each of 3 sessions. As expected, the EER is seen tgpe). There is a clear correspondance between the average
significantly increase when the training data is reduced teluration of the response and the identification rate, wigh th
one session. Training on the same amount of data (1/3 fromwest rates being obtained on the shortest responses, such
each of 3 sessions) reduces this performance degradationas “city/country” where the callers often gave a single word

response.

Condmons Digits SEPT Sentences Figure 1 compares the ROC curves with (left) and with-
1 trial, 2.9/4.8/3.8 1.9/31/2.3) 3.2/3.5/3.2 out (right) the use of transcriptions. The ROC curves for the
Ltrial,>1.0s | 2.8/4.5/3.6) 1.9/3.1/2.3 32/35/3.2 00 e O D e iven for compar.
2 trials, 1.7/3.1/2.6| 1.3/2.2/1.7| 2.5/2.6/2.6 ars, 9 P

2urls >105| 160025 132317 25izeize| o TIE O S e SOy gper orne soon,
2 trials,>1.5s | 1.7/2.5/2.5| 1.3/1.9/1.6| 2.5/2.6/2.6 P L . ) q
when the transcription is known is about 5.0% compared

Table 3: Equal error rates as a function of the amount of trainingto about 6.5% in text-independent mode for spontaneous
data, using type-specific training. For each condition tiEERS speech.
correspond to training on 3 sessions, the last session, /@naf 1

each of 3 sessions. The text is known. DISCUSSION AND CONCLUSION

Table 4 gives the speaker identification error as a func- Several observations can be made concerning these ex-
tion of the amount of training data, and the proximity to periments. As expected, there is a correlation between the
the test data. Although not new, these results quantify thamount of training data and the system performance, with
need for multiple training sessions. Additionally, spaake more data yielding higher performance. Similarly, for com-
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Figure 1: ROC curves for spontaneous speech fixed resparesesopen questiorggusing transcriptions (left, text known) and without

transcriptions (right, unknown text, phone recognitioMulti-style training. (Fixed questions: 8823 user attespm94070 imposter
attempts (simulated); Open questions: 4691 user attedp2d,90 imposter attempts (simulated).) Maximum of twddgrgllowed for
each attempt with an average of 1.1 trials/attempt. ROCasuiar the digits, SEPT arlde Mondesentences are given for comparison.

parable amounts of training data, better performance is ob- Concerning the amount of data needed, estimation of
tained when the data is taken from several training sessionspeaker-specific models requires a minimum of about 25
as opposed to all from a single call. Type-specific trainingsentences, corresponding to about 1 minute of speech. For
results in better performance when the same type of teshe test utterances, performance is better for longer dura-
data is used. If the test data is different in linguistic con-tions, indicating that it is advantageous to ensure a mihima
tent (or uncontrolled), multistyle training is to be prefdr  duration of at least 1.5 or 2s. An equal error rate of 1%
The importance of phonetic content was illustrated for thavas obtained on the SEPT sentences, in the text-dependent
crossed-type conditions, which led to significant degradamode with 2 trials per verifcation attempt and with a mini-
tion in performance (see Table 2). mum of 1.5s of speech per trial.
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