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Abstract
This paper reports on a speech-to-text (STT) transcription sys-
tem for Hungarian broadcast audio developed for the 2012
Quaero evaluations. For this evaluation, no manually tran-
scribed audio data were provided for model training, however a
small amount of development data were provided to assess sys-
tem performance. As a consequence, the acoustic models were
developed in an unsupervised manner, with the only supervi-
sion provided indirectly by the language model. The language
models were trained on texts downloaded from various web-
sites, also without any speech transcripts. This contrasts with
other STT systems for Hungarian broadcast audio which use
at least 10 to 50 hours of manually transcribed data for acous-
tic training, and typically include speech transcripts in the lan-
guage models. Based on mixed results previously reported ap-
plying morph-based approaches to agglutinative languages such
as Hungarian, word-based language models were used. The
initial Word Error Rate (WER) of the system using context-
independent seed models from other languages of 59.8% on the
3h development corpus was reduced to 25.0% after successive
training iterations and system refinement. The same system ob-
tained a WER of 23.3% on the independent Quaero 2012 evalu-
ation corpus (a mix of broadcast news and broadcast conversa-
tion data). These results compare well with previously reported
systems on similar data. Various issues affecting system per-
formance are discussed, such as amount of training data, the
acoustic features and choice of text sources for language model
training.
Index Terms: Large vocabulary continuous speech recogni-
tion (LVCSR), broadcast news transcription, Hungarian lan-
guage, unsupervised training, agglutinative languages, Bottle-
neck MLP features

1. Introduction
With 17 million native speakers, Hungarian is the most widely
spoken non-Indo-European language in Europe, spoken mostly
in Hungary, but also in Austria, Croatia, Romania, Serbia, Slo-
vakia, Slovenia and Ukraine. Hungarian is highly agglutinative
and inflected [1]. Each verb may have 50 prefixed forms (on av-
erage), 59 inflections and many verb-to-verb derivations. Each
noun may have about 900 inflections. This leads to large lex-
ica, high out-of-vocabulary (OOV) rates and data sparsity for
language modeling, making automatic speech recognition quite
challenging [2]. However, it has a close to phonemic orthogra-
phy, simplifying the creation of pronunciation dictionaries.

Although several Hungarian speech-to-text (STT) systems
have been reported previously [2][3][4][5][6][7][8][9], the lan-
guage still remains relatively less investigated. In particular, the
authors know of only two other major works dealing specifi-
cally with STT for Hungarian broadcast audio [10][11]. Both

systems used manually transcribed speech for acoustic model
training.

In contrast, this paper describes the development of an STT
system for Hungarian broadcast audio which used unsupervised
training of acoustic models [12][13][14] in accordance with one
of the Quaero project goals of low-cost system development.
Manual transcriptions were available only for 3 hours of devel-
opment data which were used to tune the coefficients to inter-
polate language models trained from different text sources and
assessing system versions. Furthermore, no extensive language-
specific knowledge was applied. No native Hungarian speakers
were involved. It was decided to use words as lexical units in-
stead of morphs [2][11] because of mixed results from previ-
ous studies which compared morph-based and word-based ap-
proaches. In fact, for Hungarian broadcast audio, it was shown
that a word-based recognizer can outperform morph-based ones
if sufficient amount of textual data is available for training lan-
guage models [10].

This paper discusses the effect of various issues on WER,
including choice of suitable text corpora for language modeling
and vocabulary selection. Importantly, it was found that ap-
pending probabistic features computed using bottleneck Multi-
layer Perceptron (MLP) [28] to standard PLP+F0 features can
reduce the WER by about 6.5% (absolute) and 16% (relative)
on average, even when the MLP is trained using speech from
an unrelated language. To the best of the authors’ knowledge,
this is the first time that such a finding has been made for the
Hungarian STT task. The paper is organized as follows: Sec-
tion 2 describes the transcription system. Section 3 details the
experiments carried out, the optimal system configuration and
evaluation results. Section 4 concludes the work.

2. System description
The system is based on the LIMSI broadcast news transcrip-
tion system and has two components: the audio partitioner
and word recognizer. An overview of the partitioner is pro-
vided here since it does not form an original contribution of
this work (see [15] for details): A maximum likelihood seg-
mentation/clustering iterative procedure is applied to the au-
dio, segmenting it first into speech and non-speech segments.
The speech segments are then clustered into individual speak-
ers. Once the audio has been partitioned, each speaker cluster
is processed by the word recognizer. The following paragraphs
outline the components of the Hungarian word recognizer (lan-
guage and acoustic models).

2.1. Language models

The system uses n-gram language models. Language model
development involved collection and preprocessing of suitable
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Text # sent- # words # words
source ences (total) (unique)
Google News (GNews) 4.88M 83.1M 1.67M
Wikipedia (HWiki) 3.86M 56.0M 2.02M
Hunglish Corpus (HC) 1.58M 11.2M 565K
Quaero dev12 corpus 947 26.8K 8.41K

Table 1: Text corpora after normalization used for LM training.
Quaero dev12 was used to tune LM interpolation coefficients (ref.
Sec.2.1).

text sources, vocabulary creation, training LMs from each text
source and interpolating them.

2.1.1. Collection of text sources

The following text corpora were located, downloaded and pro-
cessed to use for language modeling: (1) GNews All articles in
Hungarian from Google News1 aggregated from 2009 to 2012.
(2) HWiki The complete Wikipedia in Hungarian2, and (3) HC
The Hunglish Corpus [16], which has three sections, (a) modern
literature, (b) classical literature, and (c) movie subtitles.

Multiple iterations of cleaning and normalization were per-
formed on these corpora [17][18], with particular attention to
the following aspects: First, there were many sentences in En-
glish (particularly in GNews) which had to be removed. This
was difficult to do automatically, as many Hungarian words are
spelled exactly in the same way as an English word with differ-
ent meaning, e.g. fog, hold, nap, mint, most, etc. Finally, the
chosen solution was to remove any sentence with a sequence
of 3 or more consecutive English words. Second, numbers
were converted into words, taking into account spoken forms
for dates, time, money, etc. In Hungarian, numbers are aggluti-
nated, i.e. 137 would be written as onehundredthirtyseven and
not one hundred thirty seven as in English. This complicates
the task since each number is a new word. In this work, number
were segmented into constituent parts and each part was con-
sidered as a word. Third, the first letter of words were uncapi-
talized where required (for example, common nouns). For this,
the first word was removed from each sentence and the ratio of
number of times a word appeared in the resulting corpora with
its initial letter capitalized to the number of times with the ini-
tial letter small was calculated. Words with this ratio more than
or equal to 5% were left untouched, the rest were uncapitalized.
This reduced the case-sensitive WER of the system. In general,
it took more effort to clean/normalize the raw text from HWiki
than from GNews or HC. Relevant statistics of the cleaned and
normalized text corpora are detailed in Table 1.

2.1.2. Vocabulary creation

It can be seen in Table 1 that total number of unique words in
the text corpora is very high. Many of these words may not ap-
pear in broadcast news transcripts. Hence, a suitable vocabulary
was created as follows: First, a full word list was created from
all text sources. Next, unigram models were trained on each
text source individually using this word list and interpolated,
with the mixture weights computed via EM algorithm to min-
imize perplexity on manual transcriptions of the Quaero 2012
development (dev12) corpus [19] (ref. Section 3.1) consisting

1http://news.google.com/ The authors would like to thank Vocapia
Research for help with downloading the articles.

2http://dumps.wikimedia.org/backup-index.html

of 3 hours of Hungarian broadcast audio. The final vocabulary
was created by selecting words with a unigram LM probabil-
ity higher than a preset threshold, chosen according to size of
the vocabulary desired. Different vocabulary sizes were con-
sidered: 100K, 200K, 500K and 1M. Words were directly used
in the vocabulary. No lexical decomposition steps were per-
formed.

2.1.3. Training & interpolating LMs

Once the vocabulary was created, 2-gram, 3-gram and 4-gram
LMs were trained on each text source individually using modi-
fied Kneser-Ney smoothing. For GNews, each year was treated
as a separate text source. Each set of LMs (2-,3-,4-gram) were
then interpolated using the transcriptions of the Quaero dev12
corpus [19].

2.2. Acoustic models

The system uses triphone-based left-to-right context-dependent
HMMs [20][21], with tied-states. Each state output is mod-
eled by a mixture of 32 gaussians, except for silence which is
modeled using 96 or 1024 gaussians. Steps involved in acous-
tic model development are creation of phone set, creation of
pronunciation dictionary, and unsupervised training of acoustic
modes.

2.2.1. Phone set

An initial set of 40 distinct phones was chosen, in addition
to silence, filler words and breath sounds. However, it was
found that training data was insufficient to model some rarely-
occuring phones which were discarded and replaced by other
similar phone(s). For example, the phone /dz/ was later replaced
by the sequence /d//z/. Although not strictly equivalent, this
change improved system performance. The long forms of vow-
els were treated as separate phones. However, separate phones
were not created for the long forms of consonants (gemination).
They were taken into account in the pronunciation dictionary
(ref. Section 2.2.2). The final list contained 37 phones (13 vow-
els, 24 consonants).

2.2.2. Pronunciation dictionary

Since Hungarian has a close to phonemic orthography, a
set of grapheme-to-phoneme (g2p) rules was initially con-
structed [22]. These rules were evaluated on a separate pronun-
ciation dictionary created from the online Wiktionary database3
of about 6K most frequent Hungarian words. Based on feed-
back from these evaluations, a few modifications/improvements
on the g2p rules were made in several iterations including: (1) a
few instances of consonant assimilation, such as /t/∼ /d/, /k/ ∼
/g/, /m/ ∼ /n/, and (2) inclusion of glide /y/ between 2 adjacent
vowels, when one of them is /i/, such as /i/ /a/→ /i/ /y/ /a/. The
final set of g2p rules performed accurately (with more than 95%
correct match) on the Wiktionary database. Two solutions were
proposed for dealing with repeated consonants (which translate
to long/geminated forms of the consonants): (1) treating long
consonants as doubled instances of the short forms of the same
consonants, (2) replacing long consonants by a single instance
of the short form (i.e. ignoring gemination), creating two dic-
tionaries: Dict1 and Dict2 respectively. A third solution was
initially proposed using additional phones for these geminates
(as had been investigated before for Arabic [23] and Italian),

3http://en.wiktionary.org/
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Phone Seed model Phone
symbol language description
a English As in call
A English As in cat
d French As in French début
u French As in rude
ö German Similar to i in bird
j Italian As in jam
ç Russian As in check
ñ Russian As in Spanish niña

Table 2: Seed models from different languages (ref. Sec.2.2.3).

Language Vowels Consonants Total
English 7 15 22
French 4 2 6
German 1 0 1
Italian 1 1 2
Russian 0 6 6
Total 13 24 37

Table 3: Distribution of seed models from different languages.

but this were discarded in preference to a smaller phone set.
The pronunciation dictionary was created by obtaining pronun-
ciations for each word in the vocabulary using the established
g2p rules. A seperate set of g2p rules were applied to acronyms
based on how each letter is named, rather than their phonetic
value (e.g., in English, m→ /e/ /m/ rather than m→ /m/, etc).

2.2.3. Unsupervised training of acoustic models

For training acoustic models, a corpus of 370 hours of unlabeled
audio broadcast by MR1 Kossuth Rádió4 and InfoRádió5 chan-
nels in 2011 was used. The AMs were trained in an unsuper-
vised way [12][13][24][14]. First, seed models for each phone
were chosen from pre-trained models for English, French, Ger-
man, Italian and Russian [25][26]. The choice of seed model
for each phone were made by the authors by (1) noting their
IPA equivalent cross-checked using various sources (such as
[22], http://en.wikipedia.org/wiki/Hungarian alphabet), and (2)
listening to examples of Hungarian words and matching the
sound with their existing knowledge of sounds in the other lan-
guages. Table 2 lists a subset of phones used and the language
from which their seed models were chosen while Table 3 shows
the distribution of the seed models among the five languages. It
is observed that most of the models are from English, French or
Russian with a few from Italian and German. These seed mod-
els were first used to decode a small subset of the training audio
(75h) and the system hypotheses were used as groundtruth ref-
erence transcripts for re-training the models using ML. A few
iterations of decoding and re-training models were carried out
in the same way, gradually increasing the amount of raw au-
dio data decoded from 75h to 370h and consequently number
of contextual phones modeled from 735 to 20882. This itera-
tive process led to successively more accurate models. Initially,
PLP+F0 features were used [27]. After some training iterations,
when a reasonably robust model was ready, probabilistic Bottle-
neck MLP features [28] were appended to the PLP+F0 features.

4http://www.mr1-kossuth.hu/
5inforadio.hu

Layer No. of units
Input layer 475
Hidden layer 1 3500
Hidden layer 2 (MLP features) 39
Output layer 108

Table 4: Topology of MLP used to generate MLP features.

2.2.4. Appending Bottleneck MLP features

A four-layer MLP with a narrow third layer in the middle
(bottle-neck) was used to compute the MLP features. The topol-
ogy of the MLP is provided in Table 4. The MLP uses modified
TRAP-DCT features as input [28]. The output of the second
hidden layer (39-dimensional) is taken as the MLP feature set.
The MLP was trained on 95 hours of manually transcribed au-
dio data in English (a mix of broadcast news and conversations
collected previously under the Quaero project), with automatic
phone state segmentations [30]. The MLP used phone-state tar-
gets during training.

3. Experimental evaluation
3.1. Corpora and methodology

Two speech corpora were used for the experiments: (1) Quaero
2012 development (dev12) corpus, and (2) Quaero 2012 evalu-
ation (eval12) corpus. These corpora were collected and tran-
scribed as part of the 2012 Quaero STT evaluation campaign.
Each set contains about 190 minutes of audio broadcast by
MR1 Kossuth Rádió and InfoRádió channels during September-
November 2011 and include both read news (70% of the total
duration) and spontaneous conversations (30% of the total du-
ration). Segments were recorded both on-site and in studio with
on-site segments often noisy. There were 192 speakers in to-
tal, with 972 speaker turns. There is no overlap of data in the
training, dev12 and eval12 corpora.

The system was first evaluated on the dev12 corpus to study
the effect of various issues on WER. Based on these studies,
the optimal system configuration was chosen. The decoding
parameters (LM scaling factor, penalties for word and silence)
were tuned on the dev12 corpus. Once configured and tuned,
the resulting system was used to process the eval12 corpus as
part of the Quaero 2012 benchmark, with results reported by
an external entity, the LNE,6 running the evaluation. Results
were reported in terms of both case-insensitive (CI) and case-
sensitive (CS) WERs.

3.2. Study of different issues

Duration of audio for acoustic training The first three rows of
Table 5 shows howWER on the dev12 corpus reduces gradually
from 59.8% to 40% as the duration of audio used for acoustic
model training and number of contextual phones modeled were
increased with each training iteration (ref. Section 2.2.3). The
third training iteration used about 370 hours of audio. PLP+F0
features were used. The vocabulary size was 200K words,
GNews corpus was used for LM training.
Appending BN MLP features The last row in Table 5 shows
that appending MLP features to PLP+F0 after the third training
iteration led to significant reduction of WER (6-7% absolute
and 16% relative) although the MLP was trained using English

6Laboratoire National de métrologie et d’Essais (www.lne.fr)
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Iter- Duration of # contextual WER WER
ation# audio for phones (CI) (CS)

AM training modeled
1 75h 735 59.8 61.7
2 91h 3983 55.0 57.3
3 370h 20882 40.0 43.4
4 370h +MLP 20882 33.0 37.2

Table 5: Effect of duration of training audio on WER (%), on Quaero
dev12 corpus. First 3 rows: PLP+F0 features used. Last row shows
reduction in WER on addition of MLP features after third training iter-
ation. Voc. size = 200K words. GNews corpus used for LM training.

Vocab. size OOV PPX WER (CI) WER (CS)
100K 7.9 569.4 34.3 35.5
200K 5.4 771.4 31.6 32.8
500K 3.2 1030.5 30.1 31.3
1M 2.4 1176.3 29.5 30.7

Table 6: Effect of vocabulary size on OOV (%), PPX (4g) &WER (%)
on Quaero dev12 corpus. GNews corpus used for LM training.

speech. This shows the advantage of such features in a cross-
lingual setting [29].
Vocabulary size Table 6 shows the the effect of vocabulary size
(ref. Section 2.1.2) of LM in terms of out-of-vocabulary (OOV)
rate, PPX (4-gram LM) and WER on Quaero dev12 corpus. The
WER drops by about 1.7%, going from 100K to 200K, 1.5%
from 200K to 500K and 0.6% from 500K to 1M. The GNews
corpus was used for LM training. At this stage, further normal-
ization of LM training texts were performed, leading to further
WER reduction (compare row 4 in Table 5 to row 2 in Table 6,
both used GNews corpus and 200K words for LM training).
Choice of corpora Table 7 summarizes experiments aiming to
assess the relevance of the available text corpora for the tran-
scription of Hungarian broadcast audio. The perplexity (PPX)
for 4-gram LM and WER using the Quaero dev12 corpus are
given for various setups: LMs trained on individual sources and
their interpolation in pairs or using all 3. The vocabulary size
was 1M words. Individually, GNews performed significantly
better than others, while HC performed the worst. The dom-
inant performance of GNews could be explained in terms of
(1) matching domain (news), (2) larger amount of text (83.1M
words, ref. Table1) and (3) cleaner text. Interpolating LMs (ei-
ther in pairs or all 3) only slightly reduced WER over the best
component LM.
Miscallaneous issues A second decoding pass with MLLR/
CMLLR adaptation reduced the WER by 1.8%, as shown in Ta-
ble 8. Using gender-dependent AMs reduced the WER by 0.5%
compared to gender-independent AMs. A silence model using
a mixture of 96 Gaussians reduced the WER by 0.2% compared
to one using 1024 Gaussians. For modeling geminates, both
dictionaries Dict1 and Dict2 were tried (ref. Sec. 2.2.2), the
former performing slightly better.

3.3. Evaluation results

Based on the above studies, an optimal system was created
using component LMs with 1M word vocabulary trained on
GNews, HWiki and HC and interpolated on dev12, dictionary
Dict1, gender-dependent AMs using PLP+F0+MLP trained on

Corpus PPX WER (CI) WER (CS)
HC 6603.0 37.8 39.8
HWiki 2543.7 32.6 37.1
GNews 1176.3 29.5 30.7
HWiki+HC 2119.0 31.0 36.2
GNews+HC 1155.0 29.4 30.7
GNews+HWiki 1113.8 29.3 30.6
GNews+HWiki+HC 1101.3 29.2 30.5

Table 7: Effect of choice of text corpora for LM training on PPX (4g)
and WER (%) on Quaero dev12 corpus. ‘+’ denotes interpolation of
component LMs. Voc. size = 1M words.

WER (CI) WER (CS)
1st pass 29.5 30.7
2nd pass 27.7 28.9

Table 8: Reduction of WER (%) with second decoding pass, using
Quaero dev12 corpus. PLP+F0+MLP features used, voc. size = 1M
words. GNews corpus used for LM training.

370 hours of audio with 20882 contextual phones, silence model
using 96 Gaussians and MLLR/ CMLLR adaptation. This sys-
tem achieved a WER of 27.7% (CI) and 28.9% (CS) on dev12
and 25.7% (CI) and 26.9% (CS) on the eval12 corpus. After
the Quaero evaluations, the models were retrained once more,
using existing models to decode the 370h of training data. This
resulted in a further reduction of the WER to 25.0% (CI) and
26.3% (CS) on the 3 hour dev12 corpus, and 23.3% (CI) and
24.6% (CS) on the 3 hour eval12 corpus.

The current system compares reasonably well with previ-
ous studies on Hungarian broadcast audio. For example, the
best system reported in [10] used 50 hours of transcribed speech
for acoustic model and language model training and achieved
a WER of 26.3% (CI) on 49 minutes of broadcast news and
49.4% (CI) on 52 minutes of broadcast conversations. Another
system [11] which used 10 hours of transcribed speech for train-
ing achieved a WER of 21.0% on 1 hour of broadcast news.
Note that the current system was trained in an unsupervised
way. Also, the evaluation data is longer (3 hours) and is a mix
of broadcast news (70%) and conversations (30%).

4. Conclusion

This work presents a transcription system for Hungarian broad-
cast audio. Using words as lexical units and unsupervised
acoustic training, it achieved a WER of about 24% on 2 inde-
pendent 3 hour sets of development and evaluation data, com-
paring well with existing systems which used supervised acous-
tic training. Appending MLP features significantly improved
performance over PLP+F0 features, even though the MLP was
trained using English data.
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