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ABSTRACT

This paper describes the 2004 BBN/LIMSI 10xRT English Broad-
cast News (BN) transcription system which uses a tightly inte-
grated combination of components from the BBN and LIMSI
speech recognition systems. The integrated system uses both
cross-site adaptation and system combination via ROVER, obtain-
ing a word hypothesis that is better than is produced by either sys-
tem alone, while remaining within the allotted time limit. The
system configuration used for the evaluation has two components
from each site and two ROVER combinations, and achieved a word
error rate (WER) of 13.9% on the Dev04f set and 9.3% on the
Dev04 set selected to match the progress set. Compared to last
year’s system, there is around 30% relative reduction on the WER.

1. INTRODUCTION

Right after the EARS 2003 Evaluation, BBN and LIMSI devel-
oped a novel approach for system combination by employing
cross-site adaptation and ROVER [1] using components from the
BBN and LIMSI broadcast news (BN) transcription systems [16].
It was shown that the combined system outperformed both of the
individual systems. Continuing on that effort, BBN and LIMSI
developed an integrated system, the 2004 BBN/LIMSI 10xRT En-
glish BN transcription system, for the EARS RT04f evaluation.
This system tightly integrates four subsystems, two from each site.
In addition to the significant improvements achieved within each
site, cross-site adaptation and system combination are employed
in the integrated system which further reduce the error rate while
maintaining an overall running time of under 10xRT. A relative
gain of about 30% has been achieved compared to either of last
year’s single systems.

This paper is organized as follows. Section 2 summarizes the au-
dio and speech corpora used for training and test. The 10xRT sys-
tem architecture used in the evaluation system is described in Sec-
tion 3. Descriptions of the recognizer modules developed at BBN
and LIMSI are given in Sections 4 and 5, respectively. Section 6
provides experimental results with the integrated system on dif-
ferent test sets and presents some of the strategies we investigated
for system combination. Finally, some conclusions are given in
Section 7.

2. TRAINING AND TEST CORPORA

Two types of acoustic data were available for training. The first
consists of the carefully transcribed broadcast news training data
(a total of about 140 hours from the 1995, 1996, and 1997 official
Hub4 training sets). Additionally about 9000 hours of broadcast
news audio data were distributed by the LDC. These include the
prior distributions of the TDT2 (630 hours, Jan-June 1998), TDT3
(475 hours, Oct-Dec 1998) and TDT4 (300 hours), the extra TDT4

data from March-July 2001 (465 hours) and the 7000 hours EARS
BN data collected from March-Nov 2003. Since the remaining
audio data do not have time-aligned transcripts, lightly supervised
training [7] was carried out making use of the associated closed-
captions, when available. The basic idea is to decode the data using
an existing system and choose the segments that agree well with
the closed-captions.

At BBN about 1600 hours of audio data were selected from the
untranscribed audio data [15] and pooled with the Hub4 training
data. At LIMSI, the acoustic models were trained on the Hub4
training data and about 450 hours of data selected from the TDT
corpora (150h TDT2, 140h TDT3, 250h TDT4). Only audio seg-
ments where the error rate between the hypothesized automatic
transcription and the associated aligned closed-captions was under
30% were used for training.

The language model training data include the manual transcrip-
tions of the acoustic BN data (1.8M words); and the Ameri-
can English GigaWord News corpus provided by LDC, for a
total amount of approximately 1 billion words of texts. At
LIMSI, the transcriptions of the CTS data (27.4M words), com-
mercial transcripts purchased directly from PSMedia, and CNN
web archived transcripts (112M words from Jan’2000-Nov’2003,
excluding 01/15/01-02/28/01) were also used for training. All
data predates November 15, 2003, and excludes the period from
01/15/2001 through 02/28/2001.

This year we defined a new set of development data (harder than
the Dev03 set) in an attempt to better predict performance on the
progress set. While the average word error on the Dev03 data was
slightly higher than for the Eval03 shows, the development set is
quite a bit easier than the progress set. Also, even though it was
decided that the Eval03 data could be used for system develop-
ment, we thought it best to keep this data for validation test, and to
choose the Dev04 data from the latter part of January 2001. Since
there are no reference transcripts for the January 2001 TDT4 data,
we tried to assess the show difficulties by scoring the recognizer
hypotheses against the closed-captions. Four STT sites, LIMSI,
BBN, CU, and SRI transcribed the shows from the second half
of January using their RT03 systems. Using these scores a subset
of 9 shows were selected, two from each source. For the remain-
ing 3 shows, no ROVER results were available. (There are no
closed-captions for the MSNNBW data.) A combined hypothesis
was generated by aligning the ROVER output with the captions
according to the LIMSI partitioner segments.

The reference transcripts were obtained by manually correction
of the ROVER of the 4 recognizer hypotheses. (This correction
was led by LIMSI, but shared amongst the four sites.) Once the
shows were corrected, the system hypotheses and the ROVER out-



put were rescored and minor adjustments were made. Different
combinations of shows, one from each source were then scored,
in order to find a balance in difficulty compared to the Dev03 and
Eval03 data sets as well as the broadcast dates. The Dev04 set
consists of the following shows:

20010125 2000 2100 PRI TWD,
20010127 1830 1900 ABCWNT,
20010130 1830 1900 NBCNNW,
20010130 2100 2200 MSNNBW,
20010128 1400 1430 CNNHDL,
20010131 2000 2100 VOAENG,

where the last two shows were also part of the Dev03 set.

A second set of development data for the current test was dis-
tributed by LDC, called the Dev04F set. These data consist of
6 shows from the second half of November 2003, one from each
of the following sources: ABC, CSPAN, CNN, CNNHL, CNBC,
and PBS.

The Eval04F data consist of 12 shows, recorded during December
2003 from the following 7 sources: ABC, CNN, CNNHL, CNBC,
CSPAN, PBS and WBN; the last one not covered in the develop-
ment test. The first show from Eval04F dates from December 2nd,
and the last one from December 19th. It should be noted that some
of the shows were selected by NIST to be harder than those of
Eval03.

3. BBN/LIMSI SYSTEM STRUCTURE

The BBN/LIMSI 2004 English BN evaluation system uses a
tightly integrated combination of the BBN and LIMSI speech
recognition component systems. The following systems were used
in the combined system, more details about each system will be
given in next two sections. Systems from BBN are denoted with
prefix “B” and those from LIMSI with prefix “L”, also “R” is used
to indicate ROVER results.

• B1: BBN system running two decoding passes in a relatively
fast mode.

• L1: LIMSI system that adapts to B1 and does a full 3-pass,
4-gram decode.

• R1: ROVER on B1 and L1.

• B2: BBN system that adapts to R1 and runs one decoding
pass.

• R2: ROVER on B1, L1 and B2.

• L2: LIMSI system that adapts to R2 and runs another full
decode.

• R3: The final output is a ROVER of L1, B2, and L2.

Figure 1 shows a schematic diagram indicating the flow of the
combined system. The dashed arrow-headed line indicates which
hypothesis or ROVER of system hypotheses is used for adaptation.

4. BBN SYSTEM

This section contains a description of the BBN components in the
combined system. BBN Byblos speech recognition system con-
sists of three main modules, segmentation and clustering, feature
extraction, and decoding, as described below. Acoustic model
training, language model training and the improvements achieved
at BBN will also be presented.

B1

L1

B2

L2

R3

R1

R2

Final output

Figure 1: High-level structure of the tightly integrated
BBN/LIMSI System. “B” denotes systems from BBN, and “L”
systems from LIMSI. “R” is used to indicate ROVER results of
the hypotheses joined by the dashed line.

4.1. Segmentation and Clustering

In the segmentation stage [12] the input speech is first seg-
mented into wideband and narrowband material, using a dual-band
phoneme decoder. Each channel is then normalized with RASTA,
and a dual-gender phoneme decoder is applied to detect gender
changes and silence locations. For each channel-gender chunk,
speaker change detection is performed based on the Bayesian In-
formation Criterion (BIC) and results in a segmentation that de-
fines speaker turns, along with their gender and channel labels. Fi-
nally, the speaker turns are chopped into short segments (averaging
7 seconds) based on the detected silence locations. The resulting
segments are then clustered using an online algorithm that uses a
penalized likelihood measure [9]. The obtained clusters are used
for adaptation and decoding as described below.

4.2. Feature Extraction

Features are extracted from overlapping frames of speech with a
duration of 25 ms at a rate of 100 frames/sec. The current sys-
tem uses 14 perceptual linear prediction (PLP) [5] derived cep-
stral coefficients and energy. The features are normalized so that
they have zero mean and unit variance for each speaker turn. The
static features are augmented with their first, second, and third or-
der derivatives, which leads to an initial 60-dimensional parameter
space. The dimension is then reduced to 46 using heteroscedastic
linear discriminant analysis (HLDA) [6].

4.3. Decoding

The decoding consists of two passes. The first pass outputs a tran-
scription which is used as supervision to adapt the acoustic models,
and the adapted models are used in the second decoding pass. Al-
ternatively, the system can accept recognition hypotheses from any
other system and run only one decoding pass. In the following we
will describe both the search and adaptation parts of the decoding
stage.

A multipass search strategy is employed where each stage is used
to constrain the search space of the following pass. In the current
system a forward pass and a backward pass are run followed by
N-best rescoring.

• The forward pass [14] uses simple acoustic models, State-



Tied-Mixture (STM) models, and a bigram language model.
The search algorithm is a Viterbi beam search on a single
static tree, where bigram probabilities are applied at the inner
nodes of the tree in order to speed up the search. The output
of this pass is the set of the most likely words at each frame.

• The backward pass [13] then uses the output of the for-
ward pass to guide a Viterbi beam search with more com-
plex acoustic and language models, i.e. at each time only ac-
tive words from the forward pass are considered during the
search. A state-clustered tied-mixture (using decision trees)
within-word quinphone acoustic model (SCTM-NX), and a
trigram language model are used in this step. During the
backward pass an N-best list, and also a lattice can be gener-
ated.

• In the current system an N-best list (N=300) is output by the
backward pass. This list is rescored using a state-clustered
tied-mixture cross-word quinphone model (SCTM-XW), and
a 4-gram language model. The top scoring utterance is output
as recognition hypothesis.

Each of the above decoding stages includes adaptation which is
applied during the second recognition pass using supervision ob-
tained from the first pass. It is worth noting here that the first
recognition pass uses speaker independent (SI) models while the
second pass employs speaker adaptively trained (SAT) models.
Also in all decoding stages fast Gaussian computation and quan-
tized codebooks are employed for improved efficiency.

Adaptation has the following three stages:

• As stated above the system uses an HLDA transformation.
The first adaptation step consists of estimating a speaker-
specific HLDA transform [11] instead of the general HLDA
transform used in the first pass.

• The second adaptation phase consists of a constrained
maximum likelihood linear regression (CMLLR) transform,
which is a linear feature space transform [2].

• The final adaptation step, after the above two feature space
transforms, amounts to estimatingL MLLR [8] transforms
of the model parameters based on a tree clustering of the
model distributions. L is set to 2 for within-site adapta-
tion and 16 for cross-site adaptation. In the current version,
MLLR is implemented using least square estimation for effi-
ciency. MLLR is applied to the three models used in decod-
ing, namely, the STM, SCTM-NX and SCTM-XW.

4.4. Acoustic Model Training

The BBN system uses phonetic hidden Markov models (HMMs)
to represent an inventory of 50 phonemes, where each HMM has
a left-to-right topology and consists of 5 states. These phonetic
models are used as building blocks for words from a 64K pronun-
ciation lexicon. There are a total of 250 (50 by 5) states but due to
the use of context dependent modeling (triphone and quinphone)
there are a huge number of different instances of the same state.
Different instances of the same state are clustered using a decision
tree algorithm, and each leaf node is modeled using a Gaussian
mixture model. In the current system a two-level tying structure is
used for the means and variances (referred to as codebooks), and

the mixture weights (referred to as pdfs), i.e. different tree depths
are used for the means and variances, and the mixture weights.

In total six acoustic models are needed for the two decoding
passes, namely the STM, SCTM-NX and SCTM-XW, for both SI
and SAT. The STM is trained with within-word triphones, while
the SCTMs are trained with quinphones. Although the final mod-
els are discriminatively trained using maximum mutual informa-
tion (MMI) [18] estimation, maximum likelihood (ML) models
are also trained as initial models, to build the lattices required for
MMI training, and to obtain the mixture weights. The SAT training
paradigm that we use employs a speaker specific HLDA transform
and a CMLLR transform, which are applied in the feature space,
facilitating the ML estimation of SAT models and also their exten-
sion to MMI. The training of each of these models consists of the
following steps.

• Align the data to the states, using some initialization method,
and construct a decision tree for each state. Note that the
STM has only one Gaussian mixture for each state.

• Initialize a Gaussian mixture for each tree leaf, then refine the
parameters by running six iterations of the forward-backward
algorithm.

The SAT training is exactly the same except that data of each
speaker is first mapped using the speaker dependent HLDA, and
CMLLR as described above. If discriminative training is desired
(either MMI or MPE) the following steps are applied:

• Decode the training data in forward and backward pass and
output lattices.

• Annotate the lattices with phonemes using the cross-word
quinphone SCTM.

• Apply a number of iterations of the generalized Baum al-
gorithm for MMI training of the means and variances of
the Gaussians. The state transition probability and mixture
weights are taken from the corresponding ML models.

This year’s system training made use of 1700 hours of data. These
include 140 hours of Hub-4 data that were used last year, while the
rest is obtained using light supervision on broadcast news data with
captions. The basic idea is to decode the data using an existing
system and choose the parts that agree well with the captions [15].
Using this data typical model sizes used for this year’s evaluation
are listed in Table 1.

Model # Codebooks # Gaussians

STM 250 119K
SCTM-NX 6320 767K
SCTM-XW 6489 790K

Table 1: Number of codebooks and Gaussians in STM, SCTM-
NX and SCTM-X

4.5. Language Model Training

The language models were estimated from the available Broad-
cast News data and the GigaWord News corpus provided by LDC.



The total amount of data used was approximately 1 billion words.
We created a single model, weighting the counts for the data from
the TDT programs by a factor of 3-6 relative to data from other
sources. We used a modified Witten-Bell smoothing technique,
which we measured to give equivalent results to modified KN
smoothing for this amount of data. The lexicon contained about
64K words, of which 1945 were frequently occurring compound
words. The language models for decoding contained about 12M
2-grams and 28M 3-grams. The models for rescoring included all
4-grams observed in the training data, that is about 730M.

4.6. Improvements in the BBN System

The BBN system has been significantly improved since RT03
Evaluation. The contributions of various techniques are listed
in Table 2. Compared to the RT03 system, there was 3% abso-
lute (22.4% relative) gain on the EARS 2004 development test set
Dev04.

Detail of Improvement % WER

0. Baseline (RT-03 system) 13.4
1. 843-hour acoustic training 12.1
2. 1700-hour acoustic training 11.3
3. + MMI SAT PTM 11.2
4. + MMI SI PTM, SCTMs 11.0
5. + duration modeling 10.9
6. + online speaker clustering 10.8
7. + longer utterances 10.5
8. + new lexicon, LM 10.4

Table 2: Improvements in BBN system on Dev04 test set.

Among those improvements, the additional acoustic training data
provided the largest gain. Compared to the RT-03 system trained
with 214 hours acoustic training data (141 hours of LDC data plus
73 hours of automatically selected TDT4 data), there were around
1600 hours of additional data being selected via light supervision
from the TDT and BN 2003 corpora. These additional data con-
tributed a 15.7% relative gain on the Dev04 test set. In our RT03
system, MMI models were only used in the backward pass and
rescoring in adapted decoding stage. With MMI models in all
passes, a gain of 0.3% was obtained. Duration modeling and on-
line speaker clustering each provided a minor gain of 0.1%. A
change in the segmentation stage to cut the speech into longer ut-
terances (7 seconds on average in contrast to the previously used 4
seconds) gave a 0.3% gain. An update of the lexicon and language
model also resulted in a small 0.1% gain.

5. LIMSI SYSTEM

This section contains a description of the LIMSI components of
the combined system. New additions in the 2004 system are the
integration of MLLT and SAT feature transformations, as well as
CMLLR adaptation, and MLLR adaptation using a tree organiza-
tion for the adaptation classes. The acoustic models were trained
on 600 hours of BN data, using lightly supervised training for the
TDT data. We also use for BN a neural net language model, which
had previously only been used in our CTS systems. Although we
did not develop a stand-alone 10xRT system for this evaluation,
and focused on system combination with BBN and with the Su-

perEars system, our improvement relative to the LIMSI RT03 sys-
tem is estimated to be about 20%.

One question that we addressed was is it more efficient, in terms of
accuracy and speed, to use lattice rescoring or full decode for sys-
tem combination. We therefore pursued two decoding strategies
for cross-site system combination, one based on acoustic lattice
rescoring and the other one relying on a fast full search.

For cross-site lattice rescoring, the BBN lattices were transformed
to be compatible with LIMSI vocabulary. This was done by
first decompounding the BBN compound words and then apply-
ing the LIMSI compounding rules (for 906 compound words and
568 acronymns) to the lattices, i.e. adding a compound link for
each link sequence corresponding to a compound. The acoustic
scores (log-likelihood) of the new links were obtained by summing
the component scores. All words not in the LIMSI vocabulary
were then mapped to silence and the lattices were expanded and
rescored with the LIMSI 4-gram LM (keeping the original acoustic
scores). Each lattice was then pruned and transformed into a con-
sensus graph which served as a grammar for acoustic rescoring by
a dynamic network decoder using the LIMSI acoustic models and
3-gram LM. The hypothesis generated using the lattice was also
used to carry out MLLR adaptation of the LIMSI acoustic mod-
els. For the full search solution, the BBN hypotheses served for
MLLR adaptation prior to decoding and no lattices are exchanged
between systems. We found that cross-site adaptation with a full
decode was both a simpler and more efficient solution, when used
with ROVER combination, therefore this is the solution adopted
for the RT04 evaluation.

5.1. Segmentation and Clustering

The LIMSI segmentation and clustering is based on an audio
stream mixture model [3, 4]. First, the non-speech segments are
detected and rejected using GMMs representing speech, speech
over music, noisy speech, pure-music and other background con-
ditions. An iterative maximum likelihood segmentation/clustering
procedure is then applied to the speech segments. The result of the
procedure is a sequence of non-overlapping segments with their as-
sociated segment cluster labels. Each segment cluster is assumed
to represent one speaker in a particular acoustic environment and
is modeled by a GMM. The objective function is the GMM log-
likelihood penalized by the number of segments and the number
of clusters, appropriately weighted. Four sets of GMMs are then
used to identify telephone segments and the speaker gender. Seg-
ments longer than 30s are chopped into smaller pieces by locating
the most probable pause within 15s to 30s from the previous cut.

5.2. Feature Extraction

The speech features consist of 39 cepstral parameters derived from
a Mel frequency spectrum estimated on the 0-8kHz band (or 0-
3.8kHz for telephone data) every 10ms. For each 30ms frame
the Mel scale power spectrum is computed, and the cubic root
taken followed by an inverse Fourier transform. LPC-based cep-
strum coefficients are then computed. These cepstral coefficients
are normalized on a segment cluster basis using cepstral mean re-
moval and variance normalization. Each resulting cepstral coef-
ficient for each cluster has a zero mean and unity variance. The
39-component acoustic feature vector consists of 12 cepstrum co-
efficients and the log energy, along with the first and second order
derivatives. This feature vector is linearly transformed (MLLT)



to better fit the diagonal covariance Gaussians used for acoustic
modeling.

5.3. Decoding

The L1 and L2 decodes are each performed in three steps. Before
decoding CMLLR [2] and MLLR [8] adaptations are performed
using the hypothesis of the preceding system component (i.e. the
B1 hypothesis for L1 decode and the R2 hypothesis for L2 de-
code). Then a word lattice is produced for each speech segment
using a dynamic network decoder with a 2-gram language model.
Finally, the word lattice is rescored with a 4-gram neural network
language model and converted to a confusion network [10]. The
MLLR adaptation relies on a tree organization of the tied states
to create the regression classes as a function of the available data.
This tree is built using a full covariance model set with one Gaus-
sian per state. Gaussian short lists and tight pruning thresholds are
used to keep the real-time factor under 3xRT for the L1 decode and
under 2xRT for the L2 decode.

5.4. Acoustic Models

The acoustic models were trained on about 150 hours of Hub4
training data (the 1995, 1996, and 1997 official Hub4 training
sets) and about 450 hours of data from the TDT corpora (150h
TDT2, 140h TDT3, 250h TDT4). Since time-aligned transcripts
are not available for the TDT data, unsupervised training was used
for this data [7]. Only audio segments where the error rate be-
tween the hypothesized automatic transcription and the associated
aligned closed-captions was under 30% were used for training.
The L1 acoustic models include 37k position-dependent triphones
with 12k tied states, obtained using a divisive decision tree based
clustering algorithm with a 48 base phone set. Two sets of MLLT-
SAT gender-dependent acoustic models were built for each data
type (wideband and telephone) using MAP adaptation of SI seed
models and MMI training. The L2 models include 28k position-
dependent triphones with 12k tied states for a reduced 38 phone
set.

The basic pronunciations are taken from the LIMSI American En-
glish lexicon, for which the most frequent inflected forms have
been verified to provide more systematic pronunciations. The pro-
nunciation probabilities are estimated from the observed frequen-
cies in the training data resulting from forced alignment, with a
smoothing for unobserved pronunciations. The 65523 word lex-
icon has 78044 pronunciations using the full 48 phone set and
77952 with the reduced 38 phone set.

5.5. Language Models

A single interpolated 4-gram backoff LM was built from 9 com-
ponent models trained on subsets of the available text materials
including the transcriptions of the acoustic BN data (1.8M words);
the transcriptions of the CTS data (27.4M words); the TDT2,
TDT3 and TDT4 closed captions (14.3M words); commercially
produced BN transcripts from LDC and PSMedia (260M words);
CNN web archived transcripts (112M words from Jan’2000-
Nov’2003, excluding 01/15/01-02/28/01); and newspaper texts
(1463M words). All data predates November 15, 2003 with the
period 01/15/2001-02/28/2001 being excluded. The word list con-
tains 65523 words and has an OOV rate of 0.48% on the Dev04 set
and 0.57% on Dev04f set. The word list also contains compound
words for about 300 frequent word sequences and about 1000 fre-

quent acronyms.

Separate LMs were built for Dev04 and Dev04f using the same
word list and training data, but different interpolation coefficients.
During decoding the date of the show is used to select the LM. The
interpolation coefficients were estimated using an EM procedure to
optimize the perplexity on the Dev04 data set.

In addition a neural network LM [17] was trained on a subset
of about 27M words of data (BN transcriptions, TDT2, TDT3
and TDT4 closed captions and 4 months of CNN transcripts from
2001). The neural network LM is interpolated with the 4-gram
backoff LM previously described and then used to rescore word
lattices. The perplexity of the Dev04 data is 109.9 for the 4-gram
backoff LM alone and 105.4 when interpolated with the neural net
LM.

6. EXPERIMENTAL RESULTS

The experimental results of the BBN/LIMSI 10xRT system on
development and evaluation test sets are presented in this sec-
tion. The BBN compute platform is an Intel Xeon (3.4 GHz, 8GB
RAM) running Linux RedHat 7.3, with hyperthreading. At LIMSI
the compute platform is an Intel Pentium 4 extreme (3.2GHz, 4GB
RAM) running Fedora Core 2 with hyperthreading.

6.1. Results on the Dev04 Test Set

Table 3 lists the word error rates and running time at each stage of
the integrated system. As described in Section 3, we employed
both cross-site adaptation and system combination. In the first
pass, the BBN system B1 generated hypotheses with an 11.0%
error rate. Then, the LIMSI system L1 adapted to the hypotheses
of B1 and reducing the WER to 10.1%. A ROVER of B1 and L1
provided another 0.3% gain. The BBN system B2 adapted to the
ROVER results, obtains a word error rate of 9.9%, which when
combined in the second ROVER of B1, L1 and B2, resulted in
a word error of 9.5% at 7.4xRT. These ROVER results provided
supervision for the second LIMSI system L2. The final ROVER
between the three best systems produced hypotheses with a 9.3%
error rate at 9.2xRT. Compared to the BBN RT-03 system, there is
30.6% relative gain. The gain is 10.6% relative when compared to
the BBN RT04 stand-alone system.

System % WER xRT

B1 11.0 2.6
L1 10.1 2.7

B1+L1 9.8 5.3
B2 9.9 2.1

B1+L1+B2 9.5 7.4
L2 9.9 1.8

L1+B2+L2 9.3 9.2

Table 3: Results on the development test set Dev04.

6.2. Results on the Dev04f Test Set

The results on the EARS 2004 Fall development set Dev04f are
listed in Table 4. The error rate is decreased from 15.8% in the
first pass down to the 13.9% in the final ROVER output. The run-
ning time is around 9.7xRT, which is a little bit more than that on



Dev04 due to the difficulty of the test data. The BBN RT03 system
had 19.7% error rate on this test set, so the relative gain from the
BBN/LIMSI system is 29.4%.

System % WER xRT

B1 15.8 2.7
L1 15.1 2.9

B1+L1 14.6 5.6
B2 14.3 2.2

B1+L1+B2 14.1 7.8
L2 14.9 1.9

L1+B2+L2 13.9 9.7

Table 4: Results on the development test set Dev04f.

6.3. Results on the Eval04 and Progress Test Sets

The results on the 2004 Evaluation test set are given in Table 5.
The error rate is reduced from 14.4% in the first pass down to the
12.7% in the final ROVER output, with run time of about 9.8xRT.

System % WER xRT

B1 14.4 2.7
L1 13.6 3.0

B1+L1 13.2 5.7
B2 13.4 2.2

B1+L1+B2 12.8 7.9
L2 13.5 1.9

L1+B2+L2 12.7 9.8

Table 5: Results on the Eval04 test set.

With the same structure, the BBN/LIMSI system achieved 9.5%
error rate at 9.3xRT on the progress test set, which satisfies the
EARS target in terms of both recognition performance and decod-
ing time constraints. Compared to the BBN results on the progress
test last year, 13.8%, there is a 31.1% relative WER reduction.

System WER xRT

A BBN two-pass, lattice generation 11.1 3.5
B LIMSI, rescore lattices 10.5 1.5
R1 ROVER of A,B 10.5 5.0
C BBN PLPdelta, adapt to B, redecode 10.4 2.5
R2 ROVER of A,B,C 9.9 7.5
D BBN PLPfr adapt to R2, rescore n-best C10.3 1.5
R3 ROVER of A,B,C,D 9.6 9.0

Table 6: Alternative system configuration with a slower first pass.

6.4. Discussion

The above subsections have summarized the results of the tightly
integrated BBN/LIMSI RT04 broadcast news system. The final
configuration was determined after quite a lot of experimentation,
exploring a variety of factors, such as: how many decoding passes
could be carried out and still fit in the time constraints? which
site should go first? what is the best performance/speed tradeoff

System WER xRT

A BBN one-pass, no adaptation 14.9 1.0
B LIMSI, adapt to A, redecode 11.4 2.0
C BBN, PLPdelta adapt to B, redecode 10.4 2.5
D BBN PLPfr, adapt to B, rescore C n-best 10.4 1.5
R1 ROVER of B,C 10.2 5.5
E BBN PLPfr adapt to R1, rescore C n-best10.3 1.5
R2 ROVER of B,C.D 9.9 7.0
R3 ROVER of B,C,E 9.8 7.0

Table 7: Alternative system configuration with a fast (1xRT) first
pass.

for the first pass (i.e., is it better to have a faster first pass that
mainly serves for cross-site adaptation) and more or slower ad-
ditional passes? Is it better for latter passes to be full decodes or
lattice rescoring? Is it better to adapt to individual system hypothe-
ses or to a ROVER result combining multiple systems. While we
were unable to address all combinations of the above questions,
we did try to explore the large space of possibilities in an attempt
to draw general conclusions about system combination.

Tables 6, 7 and 8 report some of the system combinations that were
considered, for the Dev04 set. In all of these configurations, the
BBN system was run first, which is in contrast to our combined
RT03 post-eval system where the first pass decode was done by
LIMSI. This decision was taken in part since the BBN was devel-
oping a real-time BN system.

In Table 6, a slower first pass was run by BBN, followed by lat-
tice rescoring at LIMSI. In 5xRT a word error of 10.5% is ob-
tained, which is somewhat worse than the 9.8% error at 5.3xRT
as reported in Table 3. The ROVER of these two hypotheses does
not give any gain. A second decode by BBN after adapting to
the LIMSI hypothesis results in a 10.4% word error, which is re-
duced to 9.9% at 7.5xRT after ROVER of the three hypotheses.
A rescoring pass of another BBN system trained with 9-frame-
concatenated PLP features (noted as PLPfr) provided 10.3% word
error. The final ROVER reduced the WER to 9.6% in 9xRT. In
Table 7 a faster first pass decode was first carried out at BBN, with
an error rate of 14.9%. LIMSI adapted to these hypotheses and
redecoded, producing a hypothesis at 11.4% in 3xRT. Different
options (rescoring n-best, redecoding) were tried on the BBN side,
with obtaining an error rate of 9.8% in 7xRT. While it was possi-
ble to pursue further cross-site experiments to reduce the error rate
with the remaining 3xRT available, we took the decision to further
explore an intermediary first pass at 2xRT, shown in Table 8.

Table 8 reports word error rates and compute times for a num-
ber of cross-site combinations with the initial word error of 12.5%
in 2xRT. At LIMSI we carried out experiments comparing lattice
rescoring and full decoding, using the same hypothesis for adapta-
tion (compare E1 and E2, or E3 and E4). Redecoding consistently
gives a better error rate, but is about 25% more costly in computa-
tion time. However, as can be seen in the Rover results reported in
the lower part of the table, the redecode hypotheses are also found
to be better for system combination.



System WER xRT

A BBN two-pass 12.5 2.0
B LIMSI, adapt to A 10.7 2.1
R1 ROVER of A,B 10.6 4.1
C BBN PLPdelta, adapt to R1, redecode 10.2 2.5
R2 ROVER of A,B,C 9.9 6.6
D BBN PLPfr adapt to R2, rescore n-best C10.2 1.5
E1 LIMSI, adapt to C, rescore B lattices 10.7 1.2
E2 LIMSI, adapt to C, redecode 10.5 1.9
E3 LIMSI, adapt to D, resccore B lattices 10.7 1.2
E4 LIMSI, adapt to D, redecode 10.5 1.9
E5 LIMSI, adapt to C, redecode, red phones 10.2 1.9

ROVER of B,C,D 9.6 8.1
ROVER of A,B,C,D 9.8 8.1
ROVER of B,C,D,E1 9.8 9.3
ROVER of B,C,D,E2 9.7 10.0
ROVER of A,B,C,D,E1 9.7 9.3
ROVER of A,B,C,D,E2 9.6 10.0
ROVER of A,B,C,D,E3 9.7 9.3
ROVER of A,B,C,D,E4 9.6 10.0
ROVER of B,C,D,E3 9.8 9.3
ROVER of B,C,D,E4 9.7 10.0
ROVER of C,D,E4 9.6 10.0
ROVER of B,C,E5 9.6 8.5

Table 8: Alternative system configuration with a 2xRT first pass.

7. CONCLUSIONS

As could be seen in the experimental results section, the develop-
ment sets (Dev04f and Dev04) were good indicators of the Eval04
and progress test sets. The integrated BBN/LIMSI 10xRT English
BN transcription system produced a significantly better result than
any subsystem by itself. The running time stays within the alot-
ted time limit, 10xRT. On top of the improvement achieved within
each site, the cross-site adaptation and system combination pro-
vided further gain. Compared to last year’s single system, there
is around 30% relative reduction on the WER. Finally, we want
to point out that the ROVER-based system combination is less ef-
fective when the component systems have already been used for
cross-site adaptation.
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