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ABSTRACT

In this paper we describe the English Conversational Telephone
Speech (CTS) recognition system jointly developed by BBN and
LIMSI under the DARPA EARS program for the 2004 evalua-
tion conducted by NIST. The 2004 BBN/LIMSI system achieved
a word error rate (WER) of 13.5% at 18.3xRT (real-time as mea-
sured on Pentium 4 Xeon 3.4 GHz Processor) on the EARS progress
test set. This translates into a 22.8% relative improvement in WER
over the 2003 BBN/LIMSI EARS evaluation system, which was
run without any time constraints. In addition to reporting on the
system architecture and the evaluation results, we also highlight
the significant improvements made at both sites.

1. INTRODUCTION

This paper reports on the English Conversational Telephone Speech
(CTS) recognition system jointly developed by BBN and LIMSI
under the DARPA EARS (Effective, Affordable, Re-usable, Speech-
to-Text) program for the 2004 Rich Transcription evaluation (RT04)
conducted by NIST. In the 2003 evaluation (RT03) there was no
constraint on computation, whereas for the RT04 English CTS
condition, we were required to submit a system that had an execu-
tion time of less than 20xRT (real-time). The 2004 BBN/LIMSI
system uses both cross-site adaptation and system combination
employing ROVER [1] to get a result that is better than either sys-
tem by itself, but still stays within the allotted time of 20xRT.

In addition to presenting the system architecture and the eval-
uation results, we also highlight the improvements made at both
sites on English CTS. For RT04, about 2000 hours of transcribed
conversational speech [2, 3] were made available to the speech
recognition community. We describe the large acoustic training
corpus in section 2. In section 3, we give a detailed description of
the system development effort at BBN and the components used
in the combined system. Section 4 details the system development
effort at LIMSI and the components used in the combined sys-
tem. In section 5 we present the system architecture for the 20xRT
BBN/LIMSI 2004 EARS system and also the results achieved on
the 2004 evaluation test set.

2. LARGE CTS TRAINING CORPUS

Under the DARPA EARS program a major effort was initiated in
2002 to collect a large amount of training data for telephone con-
versations. Thousands of hours of speech were collected by the
Linguistic Data Consortium (LDC) and the collection is now pop-
ularly called the Fisher collection [2]. BBN oversaw the quick

transcription of 1750 hours of Fisher data and post-processed the
resulting transcripts. This data, with 180 additional hours that were
quickly transcribed by LDC, were made available to the EARS re-
search community in the beginning of 2004. Therefore, together
with the Switchboard I, Switchboard 11, CallHome, and Cellular
corpora, a total of 2300 hours of English conversational speech
were available for acoustic training.

3. BBN SYSTEM DEVELOPMENT

3.1. BBN System Highlights

At BBN our focus was to improve our acoustic and language mod-
els by effectively utilizing the large CTS training data. In this sec-
tion we highlight the improvements we have made to our system.
Compute and Storage Efficient Acoustic Training: The BBN
Byblos speech recognition system uses phonetic Hidden Markov
Models (HMMs), with State-Clustered-Tied Mixture (SCTM) mod-
els. The states of each phonetic model are clustered based on the
quinphone context into different “codebooks” (groups of 24-64
Gaussian components). Typically we create about 10,000 code-
books, and the mixture weight distributions are clustered into about
100,000 distinct distributions. We use both within-word (non-
crossword) quinphone and triphone models, as well as more de-
tailed between-word (crossword) quinphone models. Parameters
for the quinphone models are first estimated in the Maximum-
Likelihood (ML) framework using the forward-backward EM al-
gorithm with time constraints provided by “fuzzy labels” (con-
strained set of active states per frame) [4]. The ML models serve
as an initial estimate for discriminative training using Maximum
Mutual Information (MMI) [5] and Minimum Phone Error (MPE)
[6] objective functions.

Research with large amounts of data requires a fast turnaround
in acoustic training and also efficient storage of intermediate data.
We first focused on improving the Speaker Independent (SI) ML
acoustic training, which has the following major steps: cepstral
feature analysis, fuzzy-label generation, state clustering for tying
parameters, feature projection estimation (using LDA variants),
Gaussian splitting for model initialization, and forward-backward
EM training.

For better input/output (1/0) throughput we typically distribute
the features and fuzzy labels to the local disks of the compute
servers. Therefore, it is critical for such data to be compressed.
We explored quantizing the cepstral features using an 8-bit linear
scalar quantizer in each dimension. The effect of feature quan-
tization was measured on the 2001 evaluation test set (EvalOl)
by training SI models on 370 hours of speech from Switchboard



I, 1, and Switchboard cellular, with Perceptual Linear Predictive
(PLP) [7] features. A small 0.1% WER degradation was observed
for feature quantization compared to the baseline WER of 26.6%.
Next, we explored reducing the size of the fuzzy labels by pruning
more while generating the state alignments. We originally gen-
erated and stored fuzzy labels for both non-crossword and cross-
word models. We experimented with generating labels for the non-
crossword models on the fly using the crossword labels. There was
no loss in accuracy and together with feature quantization, the stor-
age requirements were reduced by a factor of 3.

The first change we made to improve the compute efficiency
was to parallelize the state clustering across phonemes, since each
phoneme has it’s own decision tree. There was no degradation in
WER and the speed-up obtained was proportional to the amount of
parallelism. Next, we focused on speeding up estimation of feature
projections. In the past, we had adopted Heteroscedastic Discrim-
inant Analysis (HDA) followed by a Maximum Likelihood Lin-
ear Transformation (MLLT) [8]. Recently, we incorporated ML
based Heteroscedastic Linear Discriminant Analysis (HLDA) [9,
10]. HLDA results in the same performance as HDA+MLLT, but
the row-iterative EM estimation is about 20 times faster than the
gradient descent estimation for HDA+MLLT.

Gaussian splitting [4] for model initialization was another bot-
tleneck. The splitting procedure starts with one Gaussian per code-
book and performs successive Gaussian splits (interleaved with
EM passes over the training data) in order to build the final Gaus-
sian mixture with the desired number of components. We were
already partitioning the codebooks into groups for parallel estima-
tion on multiple CPUs. The efficiency was further improved by:
increasing the number of Gaussians added at each splitting iter-
ation from 2 to 8, computing derivatives and HLDA projections
in data preparation only on the relevant segments for each group,
partitioning data in a codebook into sub-spaces and splitting each
sub-space independently, and changing the model configuration to
use fewer codebooks and more Gaussians per codebook. Overall
Gaussian splitting time was reduced by a factor of 10 without af-
fecting accuracy, however, the model size was increased by 20%.

The final step in our ML training is to run multiple (typically
6) iterations of EM based on statistics from the forward-backward
algorithm over fuzzy labels. We divide the training data into sub-
sets and run forward-backward on each subset. Following each it-
eration we merge the accumulated statistics from each subset into
a single model. The merging process is 1/0 bound and can take
significant time when there are many subsets. To reduce the merg-
ing time, we decided to do away with forward-backward for the
first 5 iterations. The state alignment is kept fixed and multiple
EM iterations are run in parallel for each codebook. At the end, a
single iteration of EM with forward-backward is performed. The
new procedure speeds up the entire EM training process by 25%
with a 0.2% absolute degradation in the WER.

As shown in Table 1, the elapsed time (measured on 40 Pen-
tium 4 Xeon 2.0 GHz processors) for the modern acoustic training
on 370 hours of speech is significantly less than the baseline.

Training Procedure | Total Hours | %WER
Baseline 17.7 26.6
Modern 4.2 26.7

Table 1. SI ML training elapsed time measured on 40 Pentium 4
Xeon 2.0 GHz processors. Models trained on 370 hours and WER
is measured on the Eval01 test set.

We have also improved our speaker adaptive training (SAT)

and lattice-based discriminative training. We reduced the time
taken for SAT by a factor of 10 by using “approximate” Con-
strained Maximum Likelihood Linear Regression (CMLLR) [11].
Discriminative training was made to run more efficiently by on-
demand localization of required lattices to the compute servers.
The non-crossword quinphone (or triphone) models were trained
using the phone-marked lattices from SCTM crossword models,
thereby saving the compute for phone-marking. Overall, discrimi-
native training was sped up by a factor of 2.
Improved Automatic Segmentation: Each CTS test file consists
of a conversation, typically ten minutes long, between two peo-
ple talking about a specific topic. The two channels are recorded
separately but there is significant cross-talk. For RT03, we had
developed a broad-class HMM based segmenter [12] to segment
the speech on each channel for decoding. The broad-class HMMs
were trained using ML estimation. For the 2004 system, we ex-
plored training the broad-class models using the MMI [5] crite-
rion. We decoded the 2002 evaluation test set (Eval02) with the
RTO03 acoustic models. As shown in Table 2, the MMI segmenter
is 0.2% absolute better in WER than the ML segmenter and only
0.1% worse than manual segmentation.

Segmentation %WER
Manual (Baseline) 23.9
ML Automatic 24.2
MMI Automatic 24.0

Table 2. Comparing MMI and ML based segmentation by adapted
decoding on the Eval02 test set using RT03 models.

Fisher Data in Language and Acoustic Modeling: The first ex-
periment we did with the 1930 hours of Fisher data was to train
a trigram language model (LM) with the Fisher data added to our
2003 LM training data [13]. We also added 6k new words from
Fisher data to our decoding dictionary, however, increasing lexi-
con size from 55k words to 61k words did not have a significant
effect on the out-of-vocabulary (OOV) rate. We decoded (with
adaptation) the 2003 evaluation test set (Eval03) with the new tri-
gram LM, and ML acoustic models trained on 370 hours of speech.

. %WER (Eval03)
AM LM #Gaussians Swbd T Esh T AT
Swhd Swhd 442k 28.6 | 20.3 | 24.6
Swhd Swhd+Fsh 442k 273 | 19.0 | 23.3
Swhbd+Fsh | Swhd 843k 265 | 19.2 | 23.0
Swhd+Fsh | Swhd+Fsh 843k 249 | 179 | 215

Table 3. Adapted decoding results on the Eval03 test set with
additional Fisher data added to both acoustic and language model.

As shown in Table 3, the WER improved on Eval03 by 1.3%
absolute, but as one would expect, the relative improvement on the
Fisher (Fsh) subset was better than Switchboard (Swbd). Next, we
added the 1930 hours of the Fisher data to the 370 hours of acous-
tic training data and re-estimated the ML acoustic models. The
number of Gaussians were increased to 843k from the 442k used
in the 370 hours model. The new acoustic model by itself reduced
the WER by 1.6% absolute and the relative improvement on Fisher
and Switchboard sets was comparable. Adding Fisher data to both




acoustic and language models reduced the overall WER on Eval03
by 3.1% absolute. It is interesting to note that the Fisher collec-
tion results in similar reduction in WER for both Switchboard and
Fisher test subsets.

Discriminative Training with Large Corpus: Discriminative train-
ing of HMM parameters has been shown to be significantly bet-
ter than ML estimates [5]. Our RT03 system [13] included MMI
trained models. This year, we trained MMI models on 2300 hours
of data using unigram lattices with the ML SAT models from Table
3 serving as an initial estimate. Lattices were generated by decod-
ing the training data with the ML SAT acoustic models and a bi-
gram LM. We decoded the 3-hour Fisher development set (Dev04),
using the 2300-hour MMI acoustic model and LM used in the last
row of Table 3. As shown in Table 4, the WER with MMI models
was 16.2% as compared to the 18.4% obtained with ML models.

Estimation | %9WER
ML 18.4
MMI 16.2
MPE 15.7

Table 4. Summary of discriminative training on 2300 hours of
acoustic data by adapted decoding on the Dev04 set.

Recently we have implemented lattice-based MPE [6] in our

system. We have also adopted I-smoothing [6] using MMI prior
statistics [14]. MPE models were trained with the same lattices as
the ones used for MMI training. We experimented with different
acoustic scale factors for MPE training and a scale factor value of
% was found to be optimal. The MMI models were trained with an
acoustic scale factor of % which could be sub-optimal. Adapted
decoding with the MPE models resulted in a WER of 15.7%, i.e. a
0.5% improvement over the MMI models.
Long Span Features: In Byblos we typically use 14 cepstral fea-
tures and energy as base features. Together with their first, sec-
ond and third derivatives we end up with a 60 dimensional fea-
ture vector. Finally, we project the features to 46 dimensions with
HLDA. Recently we have considered adding information from a
wider context by concatenating n successive frames and then pro-
jecting the concatenated features to a lower dimensional space. We
trained acoustic models on 2300 hours of data with the “long span”
features and found the optimal configuration to be concatenating
15 frames and projecting the concatenated features to a 60 dimen-
sional space using LDA followed by MLLT [15]. The SAT models
were trained with a modified HLDA-SAT procedure [15], where
we apply CMLLR-SAT [16] to the base cepstra and energy fea-
tures, and then concatenate the transformed base features before
applying the global projection down to 60 dimensions. In Table 5,
we compare models trained using long span features with models
trained using derivative features (both were trained with MPE). We
rescored (with adaptation) lattices for the Dev04 set. The models
using long span features were 0.5% absolute better than the models
trained with derivatives.

Features #Dimensions | %WER
Derivatives 46 15.4
Concatenated Frames 60 14.9

Table 5. Lattice rescoring (with adaptation) on Dev04 lattices, for
comparing models trained using long span features with models
trained using feature derivatives.

Held-Out MPE training: Following our long span feature explo-
ration, we tried a novel procedure for MPE training. We split the
2300 hours of acoustic training data into two subsets of 800 hours
and 1500 hours respectively. First, we estimated MMI models on
the 800 hours subset using long span features and unigram lat-
tices generated with ML SAT models. The 1500-hour subset was
treated as unseen data and decoded with the 800-hour MMI model
and a trigram LM (trained with 2004 LM training data, excluding
the 1500-hour subset) to generate lattices. Finally, we trained MPE
models with the trigram lattices generated on the 1500-hour subset
using the 800-hour MMI model as an initial estimate. No smooth-
ing was used during MPE training, therefore the model size was
kept small to avoid over-fitting. In Table 6 we compare the held-
out MPE training with the baseline procedure, once again rescor-
ing lattices for Dev04. Although the WER is 0.2% worse for the
held-out MPE training, the number of Gaussians is significantly
smaller compared to the regular MPE procedure. Therefore, we
used these models for a fast initial pass in the 2004 BBN/LIMSI
system. After the evaluation, we trained a 360k Gaussian MPE
model with unigram lattices on the entire 2300 hours and found
that the performance was about the same as the held-out MPE.

MPE Procedure | #Gaussians | %WER
Conventional 855k 14.9
Held-Out 365k 15.1

Table 6. Lattice rescoring to compare held-out MPE training with
conventional MPE training on the Dev04 set.

State-Tied Mixtures in Forward Decoding: We experimented
with using a more detailed State Tied Mixture (STM) triphone
model instead of Phonetic Tied Mixture (PTM) model in the for-
ward decoding pass of our 2-pass N-best decoder [17]. In STM,
all triphones of a given phoneme and state position share the same
set of Gaussian components (512 on average), while the mixture
weights are shared based on linguistically-guided decision tree
clustering. We compared using the STM models in the forward
pass instead of PTM models by performing a two pass adapted de-
coding followed by SCTM crossword N-best rescoring. As shown
in Table 7, there was a 0.3% absolute gain for using the STM mod-
els on the Dev04 set.

Forward Pass Model | #Gaussians | %WER
PTM 25k 15.7
STM 123k 15.4

Table 7. Comparing STM forward pass with the PTM forward
pass, by adapted 2-pass decoding followed by SCTM crossword
N-best rescoring on the Dev04 test set.

Word Duration Modeling: Motivated by the results in [18], we
implemented word duration rescoring. The vector of the compo-
nent phone durations for a word (obtained by time-aligning the se-
quence of words) was used as a feature to train Gaussian Mixture
Models (GMM) for each word in the training data. If the number of
training samples for a word was below a minimum threshold, no
word-specific GMM was trained and a back-off model was used
instead. The back-off consists of the vector of durations from the
triphone models for the word; if any of the triphones had insuf-
ficient training, the corresponding phone model was used instead.
During N-best rescoring a duration score for each hypothesis in the



N-best list was computed by summing the duration log-likelihood
for each word in the hypothesis. The duration score was com-
bined with other scores such as acoustic, language etc. to reorder
the list. We compare adapted decoding followed by word duration
rescoring of N-best lists in Table 8 using models trained with PLP
derivative features. The word duration rescoring resulted in a 0.3%
absolute improvement in the WER.

N-best Rescoring %WER
Baseline Decoding 154
Duration Rescoring 15.1

Table 8. Improvement obtained in WER from word duration
rescoring of N-best lists on the Dev04 test set.

3.2. BBN Components in the 2004 BBN/LIMSI System

This section describes the details of the specific BBN component
systems used in the 2004 BBN/LIMSI system.

Feature Extraction: The base features (14 Cepstral coefficients
and normalized energy) were extracted in the same manner as in
the RTO3 system [13]. We used either PLP or Mel-Frequency Cep-
stral Coefficient (MFCC) analysis for different systems, following
frequency axis scaling using Vocal Tract Length Normalization
(VTLN) [19]. Mean removal and covariance normalization [4]
were also applied to each conversation side. We used two methods
for computing the final feature vectors. The first method was to
compute the first, second, and third derivatives using least squares
fits to sequences of cepstra. The second method was the long span
approach described in section 3.1.

Acoustic Models: Each BBN system comprises of a set of
three models: STM non-crossword triphone model, SCTM non-
crossword quinphone model, and SCTM crossword quinphone
model. All models used gender-independent (GI), 5-state HMMs,
trained with MPE estimation on 2300 hours of acoustic training
data. Models used in adaptation were estimated via SAT. The fol-
lowing four systems were used for decoding at various stages in the
2004 BBN/LIMSI system (main characteristics are summarized in
Table 9):

PLP Long Span Held-Out MPE System (B1): This system used the
long span PLP features and was trained with the Held-Out MPE es-
timation introduced in section 3.1. No smoothing was used in MPE
training, therefore a much smaller acoustic model was trained to
avoid over-fitting.

PLP Derivative MPE System (B2): This system used PLP deriva-
tive features and was trained with MPE with unigram lattices. I-
smoothing was used during estimation, with an MMI prior.

PLP Long Span MPE System (B3): This system used long span
PLP features like B1, but was trained with conventional MPE train-
ing as in B2. Modified HLDA-SAT procedure described in section
3.1 was used to train the SAT models.

MFCC Long Span MPE System (B4): This system is identical to
system B3 except for the fact that it was trained with MFCC long
span features. We did not train an STM model for this system be-
cause it used the forward pass information from another decoding
in the 2004 BBN/LIMSI system.

Language Models and Recognition Lexicon: We estimated tri-
gram LMs using modified Witten-Bell smoothing from the follow-
ing data sources: 20.5M words from the Fisher acoustic training,
3.7M words from Switchboard 1, Switchboard 2, and CallHome,

#Gaussians

System STM | SCTM | SCTM-crossword
B1 121k 586k 365k
B2 123k 786k 843k
B3 120k 788k 855k
B4 - 686k 708k

Table 9. Number of Gaussians in BBN acoustic models used in
the 2004 BBN/LIMSI system.

530M words of web-data released by the University of Washington
(UW), 141M words from Broadcast News, 47M words of archived
text from CNN and PBS, and 2M words from the TDT4 database.
Our LM included the most frequent bigrams and trigrams as com-
pound words, therefore many of the trigrams in the LM were actu-
ally higher order n-grams. Two “weighted” grammars were trained
where the out-of-domain text resources were weighted using a
content-similarity measure. The LM used in decoding used a higher
count cutoff threshold to reduce the size of the LM. For N-best
rescoring, a “full” grammar with zero count cut-offs was estimated.
The LM used for backward decoding consisted of 76M trigrams,
whereas the rescoring LM consisted of 173M trigrams.

All BBN systems used a lexicon of 61k words (including 2500
compound words). Phonetic word pronunciations were written us-
ing a set of 49 phonemes.

Decoding Strategy: We typically used three passes for both un-
adapted and adapted decodings:

e a forward fast-match pass, using STM model and an ap-
proximate bigram LM

e a backward pass, using SCTM within-word quinphone and
an approximate trigram LM to produce N-best lists or lat-
tices

e an N-best rescoring pass using SCTM between-word quin-
phones and full trigram LM

We used several techniques such as fast Gaussian computation us-
ing shortlists, pre-computing Gaussian density values, grammar
spreading, and Gaussian mean and variance quantization [20, 11]
to reduce compute and memory usage during decoding.

For adapted decodings, we first estimated speaker-dependent
feature projections via CMLLR with respect to the SCTM cross-
word quinphone model. Next, all the SAT models were adapted in
the new transformed feature space using Least Squares Linear Re-
gression with a maximum of 8 to 16 regression classes depending
on the decoding stage in the overall system. In every BBN system,
with the exception of B1, a three pass decoding was performed
with the adapted models. Models from B1 were used in the frame-
work developed for the 2004 BBN 1xRT system [11], which used
lattice rescoring instead of N-best rescoring.

4. LIMSI SYSTEM DEVELOPMENT

4.1. LIMSI System Highlights

The LIMSI systems used for the RT02 [21] and RT03 evaluations
have been significantly improved for this evaluation. Some of the
main characteristics of the system are: gender-dependent VTLN,
which allows us to better estimate the warping coefficients and to
make use of all the available training data to train models for each



gender [21]; MAP-adapted [22] gender-dependent acoustic mod-
els from speaker-independent seed models; MLLT [8]; SAT [23];
MMI training [5], CMLLR [24]; and multiple regression class
MLLR adaptation [25] with a tree organization for the adaptation
classes; neural network (NN) language model [26]; two phone sets
(a full 48 phone set and a reduced set of 38 phones); lattice-based
decoder with Gaussian short lists for efficient decoding; consensus
decoding [27] with pronunciation probabilities. Many of the above
techniques are new to or have been improved in our RT04 system.

A new word list was developed and optimized on the Dev04
set. With the new word list the OOV rate was decreased from
0.15% to 0.10% on the Dev04 set.

We invested significant effort in order to be able to train acous-
tic models on the 2300 hours of CTS data, and needed to update
our infrastructure, both at the hardware and software levels. We
also spent a fair amount of effort in cleaning up the Fisher tran-
scripts. This consisted mainly of correcting major errors (typos),
misspellings (often proper place names), and whenever possible,
using a consistent spelling for person names within the same call.

One of our first goals after the RT03 evaluation was to speed-
up the decoding time for the LIMSI single component system with-
out sacrificing performance. We looked at the computational costs
of the various decoding steps and their contribution to the overall
performance. Based on this study, we built a single component
13xRT CTS system using models trained on only the data avail-
able for the RTO3 evaluation. The main changes in the decod-
ing strategy were: speeding up the non-VTLN unadapted decod-
ing which was used in the RT03 system primarily to compute the
VTLN warping factors; using these hypotheses for MLLR acous-
tic model adaptation; generating word lattices using the adapted
acoustic models (in the two class adapted decoding) and convert-
ing the lattices into word graphs for fast acoustic rescoring. The
resulting single component system had a word error rate of 21.1%,
which compared favorably to our RT03 single component system
running in about 120xRT with a word error rate of 21.9%.

Improvement details %WER red
Speaker adaptive training 0.9%
MLLT 0.8%
Improved models with Fisher data
(LM, large AM, lexicon) 2.5%
Better and faster decoding with AM adaptation
with factor of 6 speed-up 0.4%
Multiple phone sets modeling 0.4-0.7%

| Overall relative error reduction without Rover | 23% |

Table 10. Summary of improvements to the LIMSI CTS com-
ponent system. Absolute WER reductions on the Dev04 set and
overall relative word error reduction.

Table 10 summarizes the main improvements in our CTS sys-
tem from RT03. An absolute error reduction of 1.7% was due to
improved acoustic modeling by incorporating SAT and MLLT. An
overall improvement of about 2.5% was obtained using the Fisher
data after training better (and larger) acoustic and language mod-
els, and updating the dictionary. Modifications to and incorporat-
ing acoustic model adaptation in a fast decode led to a gain of 0.4%
while reducing the computation time by a factor of 6. We also ex-
perimented with using multiple phone sets in an attempt to better
capture the large differences in individual speaking styles and di-
alectical variations in CTS. Four alternate representations were in-

vestigated, two of which make use of syllable-position dependent
phone models. This work is reported in [28].

We investigated two strategies for cross-site system combina-
tion, one based on acoustic lattice rescoring and the other one rely-
ing on a fast full search. For cross-site lattice rescoring, the BBN
lattices were first transformed to be compatible with LIMSI vo-
cabulary. This was done by decompounding the BBN compound
words and then applying the LIMSI compounding rules (about
900) to the lattices, i.e. adding a compound link for each link
sequence corresponding to a compound. The acoustic scores (log-
likelihood) of the new links were obtained by summing the com-
ponent scores. All words not in the LIMSI vocabulary were then
mapped to the word silence and the lattices were expanded and
rescored with the LIMSI 4-gram LM (keeping the BBN acoustic
scores). Each lattice was then pruned and transformed into a con-
sensus graph, which served as a grammar for acoustic rescoring
by a dynamic network decoder using the LIMSI acoustic models
and trigram LM. The hypothesis generated using the lattice was
also used to MLLR-adapt the LIMSI acoustic models. For the
full search solution, the BBN hypotheses served for MLLR adap-
tation prior to decoding and no lattices were exchanged between
sites. We found that cross-site adaptation with a fast full search
was both a simpler and more efficient solution, when used with
ROVER. Therefore, this is the solution adopted for the cross-site
combination in the RT04 evaluation. However, lattice rescoring is
used to share computing between the LIMSI components.

4.2. LIMSI Components in the 2004 BBN/LIMSI System

This section describes the details of the specific LIMSI component
systems in the 2004 BBN/LIMSI system.

Feature extraction: The LIMSI front-end used 39 cepstral fea-
tures derived from a Mel frequency spectrum estimated on the
0-3.8kHz band every 10ms. For each 30ms frame the Mel scale
power spectrum was computed with a VTLN warped filter bank,
and the cubic root was taken followed by an inverse Fourier trans-
form. The cepstral coefficients were normalized on a conversation
side basis using cepstral mean removal and variance normaliza-
tion. Thus each cepstral coefficient for each cluster had a zero
mean and unity variance. The 39-component acoustic feature vec-
tor consisted of 12 cepstrum coefficients and the log energy, along
with the first and second order derivatives. The VTLN warping
factors were estimated by alignment of the audio segments with
a word level transcription (output of system B1) for a range of
warping factors (between 0.8 and 1.25), and the warping factor
corresponding to the maximum likelihood was chosen. This was
done using single-Gaussian gender-dependent models.

Acoustic Models: The LIMSI acoustic models used in the 2004
BBN/LIMSI system were tied-state position-dependent crossword
triphones with Gaussian mixtures. The modeled contexts were au-
tomatically selected based on their frequencies in the training data.
The most frequent triphone contexts (over 99%) were modeled
specifically, with the remaining contexts being modeled by less
specific models (right- and left-context phone models and context-
independent phone models). In choosing to model right contexts
over left contexts, a preference was given to modeling anticipatory
co-articulation over perservatory co-articulation. The tied states
were obtained by means of a decision tree with questions on the
left and right phone contexts, and the phone position within the
word. There were on average 32 Gaussians per tied state. Starting
from the VTLN cepstrum file, the training procedure included 4



major steps: MLLT estimation, CMLLR SAT estimation for each
speaker, ML training, and MMI training.

During our development process we estimated acoustic mod-
els on selected subsets of the Fisher corpus, and noticed that the
breath word token did not occur in the most recent transcriptions.
Given that we use a special phone symbol for breath, existing mod-
els were used to automatically add breath tokens to the transcripts.
More precisely, the pronunciation dictionary was modified to al-
low the [silence] word to be the silence phone /./ or the breath
phone /H/ during forced alignment. Since there was a tendency
for false matches in noisy conditions, a word insertion penalty
was used for breath along with a minimal duration requirement
(150 ms). New reference transcripts were then created including
the automatically detected breath. For model training data was
re-segmented with [silence] having the normal /./ pronunciation.
We found a slight improvement by allowing breath to be option-
ally pronounced as with the breath phone or as silence. All of the
model sets were estimated on segmentations including the auto-
matically detected breath tokens for the new Fisher data.

Three sets of MLLT-SAT models were trained with MMI on
2300 hours of CTS data. All models contain about 30k tied-states,
but there were some differences in their estimation. Table 11 sum-
marizes the characteristics of the three model sets.

L1 Models. For the L1 system, two sets of gender-dependent mod-
els were built after dividing the training data into the gender spe-
cific subsets, i.e. the two model sets were trained completely in-
dependently. Due to a larger proportion of the data being from
female speakers, there were slightly more phone contexts in the
female models (38.1k) than in the male models (37.8k). These
models used 48 phones and included about 30Kk tied states with 32
Gaussian per state.

L2 Models: The L2 models were reduced phone set models and
were trained using the same procedure as used for the L1 models.
The reduced phone set differed from the original 48 phone set as
follows: the affricates /C,J/ were respectively replaced by the stop-
fricative sequences /tS,dZ/; the syllabic consonants /L,M,N/ were
replaced by a schwa-nasal sequence /xI,xm,xn/, the diphthongs
IW,Y,0/ were replaced by a vowel-glide sequence /aw,ay,cy/; the
front and neutral schwas were combined together, as were the
retroflex vowel and the retroflex schwa. These models included
about 30k tied states for 28k phone contexts.

L3 Models: The L3 gender-dependent models were trained on all
the data using a standard MAP estimation procedure from Sl seed
models [22]. Even though the models used to estimate the VTLN
warping factors (for the training and test data) were trained sep-
arately on the female and male data, the gender-dependent mod-
els used by the recognizer were first trained on all the data, and
then adapted with the gender-specific data. These models used 48
phones and included about 31k tied states for 43k phone contexts.

Models | #phones | #contexts | #tied-states
L1 48 38k 30k
L2 38 28k 30k
L3 48 43k 31k

Table 11. Characteristics of the three LIMSI acoustic model sets.

Language Models and Recognition Lexicon: The trigram and
four-gram language models used by the decoder were obtained
by interpolating backoff n-gram models trained on various data
sets, of which the most important were the transcriptions of the

CTS training data (27M words), and the transcriptions of broad-
cast news (370M words). The four-gram backoff LM was also
interpolated with a neural network LM trained on only the tran-
scriptions of the CTS data [26]. The data sets used to train each
backoff n-gram model were the following:

e CTS transcripts with breath noise (6.1M words): 2.7M words
of the swh_ldc transcriptions, 1.1M words from CTRAN
transcriptions of Switchboard-I1 data, 230k words of cellu-
lar training data , 215k word of the CallHome corpus tran-
scriptions, 1.7M words of Fisher data transcribed by LDC,
transcripts of the evaluation data set from 1997 to 2001.

e CTS transcripts without breath noise (21.2M words): 2.9M
words of swh1_isip transcriptions, 18.3M words of Fisher
data transcribed by WordWave and distributed by BBN.

e BN transcriptions from LDC (years 1992-95) and from PS-
Media (years 1996, 1997, and Jan-Nov 1998): 260.3M words,

e CNN transcripts from the CNN archive (01/2000-31/12/2003):
115.9M words

o the last release of 525M words of web data from the Uni-
versity of Washington

The interpolation coefficients were chosen in order to mini-
mize the perplexity of a development data set containing the Fisher
part of the Eval03 test set, and Dev04 (hereafter referred to as the
fisher-evaldev set).

A 50k word list was selected from the same text sources (ex-
cluding the web data) so as to minimize the OOV rate on the fisher-
evaldev set. The word list had an OOV rate of 0.1% on the fisher-
evaldev set and 0.13% on Eval03.

In addition a neural network LM [26] was trained on all of
the CTS training data transcripts (27M words). The main idea
of this approach was to use a neural network to project the word
indices onto a continuous space and to estimate the probabilities.
Since the resulting probability functions are smooth functions of
the word representation, better generalization to unknown n-grams
can be expected, by these means taking better advantage of the
limited amount of representative CTS LM training data. Table 12
summarizes the performance of this LM on the Dev04 set.

4-gram backoff LM | neural LM
perplexity 48.13 45.00

WER (sys L1) 15.99% 15.51%
WER (sys L2) 14.94% 14.64%
WER (sys L3) 14.71% 14.45%

Table 12. Neural network LM results on the Dev04 set.

The pronunciation dictionary had a total of 59k phone tran-
scriptions for the 50k words. The basic pronunciations were taken
from the LIMSI American English lexicon, for which the most
frequent inflected forms have been verified to provide more sys-
tematic pronunciations. The pronunciation probabilities were esti-
mated from the observed frequencies in the training data resulting
from forced alignment, with a smoothing for unobserved pronun-
ciations. Two versions of the pronunciation lexicon were used, the
one represented with the 48 phone set was used in the L1 and L3
systems, and the reduced 38 phone set was used in the L2 system.
Decoding Strategy: For each component, decoding was performed
in three steps. CMLLR [24] and MLLR [25] adaptations were per-
formed using the hypothesis of the preceding system component.



Then a word lattice was produced for each speech segment using
a dynamic network decoder with a 3-gram language model. This
step was a full decode for system L1 (4.8xRT) and a word graph
rescoring for systems L2 and L3 (1.2xRT). Finally, the word lattice
was rescored with the neural network language model and con-
verted to a confusion network [27] using the pronunciation proba-
bilities. This step took less than 0.05xRT including the NN LM.
MLLR adaptation in L1 system used a fixed set of 4 phone-
mic regression classes. MLLR adaptation in L2 and L3 systems
relied on a tree organization of the tied states to create the regres-
sion classes as a function of the available data. This tree was built
using a full covariance model set with one Gaussian per state. On
average, 9 regression classes were used for model adaptation.

5. SYSTEM ARCHITECTURE AND RESULTS

The 2004 BBN/LIMSI system uses both cascaded cross-site adap-
tation and ROVER for combining different systems. Figure 1 shows
a block diagram representation of the the joint system. If a sys-
tem has a single incoming arrow, it indicates that the models were
adapted to the previous result before decoding. Multiple incoming
arrows into a small circle indicate that the results are combined
using ROVER, producing a new hypothesis. The name of the sys-
tem indicates the site (“B” signifies BBN, “L” LIMSI, and “R”
ROVER), and the system number described earlier.
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Fig. 1. 2004 BBN/LIMSI CTS Cascade/Rover System Architec-
ture. Systems from BBN are denoted with prefix “B”, those from
LIMSI with prefix “L”, and “R” indicates a ROVER result.
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First, the waveforms are segmented using the BBN CTS seg-
menter described earlier. System B1 (PLP long span Held-Out
MPE) is run in slightly over real-time to generate an 18.0% WER
hypothesis on the Dev04 test set. The first pass, although identical
in framework to the 2004 BBN 1xRT system [11], is slightly worse
in WER and also slower than the 1xRT system, because we used
an earlier version of that system. The 18.0% WER hypothesis is
used to MLLR-adapt LIMSI’s L1 (PLP GD MMI) models with 4
fixed regression classes. LIMSI decodes using the same segmen-
tation as BBN with adapted L1 models in about 5xRT to generate
lattices and a 15.5% WER hypothesis. Next, BBN adapts the B2
(PLP Derivatives MPE) models to the 15.5% WER LIMSI hypoth-
esis using a maximum of 8 regression classes and performs a three
pass decoding to generate a 14.4% WER hypothesis.

The 14.4% WER hypothesis is used to adapt BBN’s B3 (PLP
long span MPE) models, again using a maximum of 8 regression
classes. Decoding with the adapted B3 models results in a WER
of 14.2%. The L1, B2 and B3 hypotheses are combined using
ROVER resulting in a WER of 13.8% (R1). Next, BBN adapts
model sets B2 and B4 (MFCC long span MPE) to the ROVER R1
hypothesis, using a maximum of 16 regression classes for adapta-
tion. BBN performs partial decodings with the adapted B2 and B4
models re-using the forward pass output from the B3 run. LIMSI
adapts the L2 (PLP GD MMI reduced phone-set) and L3 (PLP
GI-MAP MMI) models to the R1 hypothesis and rescores lattices
generated from the L1 run. These lattice rescorings are denoted
as L2 and L3 in Figure 1, and require slightly more than 1xRT.
Finally, hypotheses from five runs: B2, B3, B4, L2, and L3 (all
except B3 are adapted to the R1 hypothesis) are combined using
ROVER to generate a 13.4% WER hypothesis (R2).

System Dev04 Eval04
%WER | RTF | %WER | RTF
B1 18.0 1.3 21.0 1.2
B1-L1 155 4.8 18.3 4.6
B1-L1-B2 14.4 3.1 16.9 3.0
B1-L1-B2-B3 14.2 2.6 16.7 2.5
R1 13.8 0.0 16.2 0.0
R1-L2 145 1.2 16.9 1.2
R1-L3 14.6 1.2 17.1 1.3
R1-B2 14.2 2.1 16.4 2.1
R1-B4 14.0 2.1 16.3 2.0
R2 13.4 0.0 16.0 0.0
Overall 134 18.5 16.0 18.0

Table 13. Eval04 and Dev04 WER and RTF for each decoding
stage in the 20xRT 2004 BBN/LIMSI system.

Table 13 summarizes the WER and real-time factors (RTF) for
each decoding stage on both Dev04 and 2004 evaluation (Eval04)
test sets. The notation in the table shows the path producing the
output, thus the name of the system includes the name of the pre-
ceding system, plus the new system that was run. (For example
B1-L1-B2 indicates a system that first ran B1, then adapted, then
L1, then adapted, then B2.) The RTF was measured on a Pentium 4
Xeon 3.4 GHz Processor. The 2004 BBN/LIMSI system obtained
a WER of 16.0% at 18.0xRT on the Eval04 test set. The WER on
the EARS progress test set was 13.5% at 18.3xRT, which is 4.0%
absolute lower than the WER obtained by the 2003 BBN/LIMSI
system. This significant error reduction was obtained while reduc-
ing the decoding time by more than a factor of 20.

6. CONCLUSIONS AND FUTURE WORK

The 2004 BBN/LIMSI system is 22.8% relative better in WER
than the 2003 BBN/LIMSI system on the EARS progress test set
and also stays within the alloted time of 20xRT. The combination
of cascaded cross-adaptation and ROVER was found to be effec-
tive for system design. Both sites have benefited from the large
CTS acoustic training corpus and new methods were developed to
use the large corpus effectively. Significant effort was also directed
toward developing fast and efficient methods to train with such a
large amount of data. In the future we will focus on new features
and novel modeling techniques to further improve the gains from
the large acoustic training corpus.
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