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Abstract. This paper presents the LIMSI speaker diarization system for lecture
data, in the framework of the Rich Transcription 2006 Spring (RT-06S) meeting
recognition evaluation. This system builds upon the baseline diarization system
designed for broadcast news data. The baseline system combines agglomerative
clustering based on Bayesian information criterion with a second clustering us-
ing state-of-the-art speaker identification techniques. In the RT-04F evaluation,
the baseline system provided an overall diarization error of 8.5% on broadcast
news data. However since it has a high missed speech error rate on lecture data,
a different speech activity detection approach based on the log-likelihood ratio
between the speech and non-speech models trained on the seminar data was ex-
plored. The new speaker diarization system integrating this module provides an
overall diarization error of 20.2% on the RT-06S Multiple Distant Microphone
(MDM) data.

1 Introduction

Audio diarization is the process of partitioning an input audio stream into homogeneous
segments according to their specific audio source such as speaker identity, category of
music, background noise or channel conditions. Speech activity detection (SAD) is the
simplest case of diarization, which just divides the audio data into speech/non-speech
segments. Speaker diarization, also referred to as speaker segmentation and clustering,
is a more complicated task than audio diarization, and needs to determine segments
consisting of the speech from only one speaker and associate speech segments from
the same speaker. SAD is a very useful preprocessing step for many audio technologies
such as automatic speech recognition, speaker identification and verification, speaker
localization etc. Speaker diarization has been used in Automatic Speech Recognition
(ASR) to carry out unsupervised speaker adaptation, where the amount of data avail-
able for the adaptation can be increased by clustering segments from the same speaker.
Speaker diarization can also improve the readability of an automatic transcription by
structuring the audio stream into speaker turns and is of interest for the indexing of
multimedia documents.

The challenges for the speaker diarization task derive from the varied data types:
Broadcast News (BN), telephone conversations and meeting recordings. Most research
efforts on speaker diarization have focused on the broadcast news domain [1,2]. Re-
cently there has been strong interest in the meeting domain [3, 4], which poses more
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difficulties for the speaker diarization task. The speech in the meeting is completely
spontaneous, with frequent periods of overlapping speech and a large number of silence
segments for any given speaker. Meetings are usually recorded using different types of
microphones located at various positions in the room, providing multiple audio files
with different signal qualities for the same meeting. The use of the distant microphones
also makes the audio signal more noisy than many of the broadcast news recordings.

In the Rich Transcription 2006 Spring (RT-06S) meeting recognition evaluation [5],
the task was divided into two sub-domains: conference room meetings and lecture room
meetings (seminar-like meetings). Compared with the conference data, the lecture meet-
ings have less interaction between the participants, and typically consist of a presenta-
tion from a lecturer followed by a question/answering session or discussion period.

LIMSI participated in the speech activity detection and speaker diarization tasks of
the RT-06S evaluation, focusing on the lecture data. The LIMSI multi-stage speaker di-
arization system developed for BN data [6] was adapted to the lecture data, especially
the SAD module. This modified system was tested on far-field conditions: the Multiple
Distant Microphone (MDM), Single distant Microphone (SDM) and Multiple Mark II1
Microphone Array (MM3A). As defined by this evaluation, no a priori knowledge of
the speaker’s voice or even the number of speakers is available for the distant micro-
phone conditions, and thus only a relative and recording-internal speaker identification
is produced by the system.

The remainder of this paper is organized as follows: Section 2 describes the baseline
speaker diarization system for broadcast news data, and Section 3 presents the log-
likelihood based speech activity detection adapted to the lecture data. The experimental
results are presented in Section 4, followed by some conclusions.

2 Basdline BN diarization system

The baseline speaker diarization system developed for Broadcast News combines an
agglomerative clustering based on Bayesian information criterion (BIC) with a second
clustering stage which uses state-of-the-art speaker identification (SID) methods. It ob-
tains good performance on BN data, achieving an overall speaker diarization error of
8.5% on RT-04F evaluation data [7]. The primary system is structured as follows:

2.1 Feature extraction

Mel frequency cepstral parameters are extracted from the speech signal every 10 ms
using a 30 ms window on a 0-8kHz band. The 38 dimensional feature vector consists
of 12 cepstral coefficients, A and A-A coefficients plus the A and A-A log-energy.
Acoustic vector normalization is only performed in the SID clustering stage.

2.2 Speech Activity Detection (SAD)

Speech is extracted from the signal with a Viterbi decoding using Gaussian Mixture
Models (GMM) for speech, noisy speech, speech over music, pure music, and silence
or noise. The aim of the SAD is to remove only long regions without speech such as



silence, music and noise, so the penalty of switching between models in the Viterbi
decoding was set to minimize the loss of speech signal. The GMMs, each with 64
Gaussians, were trained on about 1 hour of the specific type of data, selected from
English Broadcast News data distributed by the Linguistic Data Consortium (LDC).

2.3 Initial segmentation

The segmentation process consists of finding segment boundaries that correspond to
the instantaneous speaker change points. The initial segmentation of the signal is per-
formed by taking the maxima of a local Gaussian divergence measure between two
adjacent sliding windows s; and s5 of 5 seconds, similar to the KL2 metric based seg-
mentation [8]. Each window is modeled by a single diagonal Gaussian using the static
features (i.e., only the 12 cepstral coefficients plus the energy). More precisely, the
Gaussian divergence measure is defined as:

G(s1,80) = (2 — 1) Zy 225 (2 — 1) )

with s; ~ N(u;, 2;) and X; diagonal, i € {1,2}. The detection threshold was opti-
mized on the training data in order to provide acoustically homogeneous segments.

2.4 Viterbi resegmentation

An 8-component GMM with a diagonal covariance matrix is trained on each segment
resulting from the initial segmentation, the boundaries of the speech segments detected
by the SAD module are then refined using a Viterbi segmentation with this set of
GMMs.

2.5 BIC clustering

An initial cluster ¢; is modeled by a single Gaussian with a full covariance matrix 3;
estimated on the n; acoustic frames of each segment output by the Viterbi resegmenta-
tion. The BIC criterion [9] is used both for the inter-cluster distance measure and the
stop criterion. It is defined as:

1 1
ABIC = (n;+n;)log |X|—n;log | Z;| —n, log | X} f/\i(de id(dJrl)) logn (2)
where d is the dimension of the feature vector space, n = n; + n; and A weights the
BIC penalty. At each step the two nearest clusters are merged, and the ABIC' val-

ues between this new cluster and the remaining clusters are computed. This clustering
procedure stops when all ABIC' are greater than zero.



2.6 SID clustering

After the BIC clustering stage, speaker recognition methods [11, 12] are used to im-
prove the quality of the speaker clustering. Feature warping normalization [13] is per-
formed on each segment using a sliding window of 3 seconds in order to map the cep-
stral feature distribution to a normal distribution and reduce the non-stationary effects of
the acoustic environment. The GMM of each remaining cluster is obtained by maximum
a posteriori (MAP) adaptation [15] of the means of the matching Universal Background
Model (UBM [14]). For each gender and channel condition (wide band, narrow band)
combination, an UBM with 128 diagonal Gaussians is trained on the corresponding sub-
set of 1996/1997 English Broadcast News data. Then a second stage of agglomerative
clustering is performed using the cross log-likelihood ratio as in [16]:

S(ei¢g) = i,l‘)gf(x”Mj) + ilogw

ni "~ f(wilB) oy f(w]B)
where f(-|M) is the likelihood of the acoustic frames given the model M, and n; is the
number of frames in cluster ¢;. The clustering stops when the cross log-likelihood ratio
between all clusters is below a given threshold é optimized on the development data
(see Section 4.1).

3)

2.7 SAD post-filtering

The word segmentation output by the LIMSI Broadcast News Speech-To-Text sys-
tem [17] is used in a post-processing stage to filter out short-duration silence segments
that were not removed by the initial speech activity detection step. Only inter-word
silences longer than 1 second are filtered out, this value having been determined empir-
ically.

3 Speech activity detection for lectures

The LIMSI RT-06S speaker diarization system for lecture data was built upon the broad-
cast news diarization system. Initial results on the development data with the baseline
system had a high speech activity detection error, especially with a lot of missed speech,
therefore a different approach for SAD was explored. One weakness of the standard
Viterbi decoding is the lack of temporal control for each model. A transition penalty
can be used to control the size of the segments, but as the level of noise increases, the
likelihood of the speech model will decrease and thus the shortest speech segments
will be discarded. Instead of setting a minimal likelihood level for switching from one
model to the other, it is easier to choose a minimal duration for speech and non-speech
segments.

We designed a simple speech activity detector based on the log-likelihood ratio
(LLR) between the speech and non-speech models, and replaced the Viterbi decoding
with a simple smoothing of the LLR followed by a decision module. More precisely:



— for each frame x;, the LLR r; between the speech and non-speech models Ag and
An is computed taking into account their prior probabilities P(S) and P(N):

r; = log f(zi|As) P(S) — log f(xi|An) P(N)

— two adjacent smoothing windows with a duration of w = 100 frames (i.e. 1 sec-
ond) sliding over the signal are used for the detection of speech and non-speech
transitions. A transition is possible when the sign of the averaged LLR in the left
and right windows changes around the current frame:

1 i+w 1 i—1
+ - : +_ } - _ 4 ,
s;.s; <0 with s =5 g r; and s; = " E Tj
j=i+1 j=i—w

— for a set I consisting of contiguous candidate transitions, the position of the transi-
tion is chosen at the maximum of difference between the averaged ratio of the left
and right windows:

i* = argmax |s; — s |
i€l
The GMMs for speech and non-speech were trained on about 2 hours of far-field data
from seminars recorded at the University of Karlsruhe (UKA).

4 Experimental results

In RT-06S lecture room evaluation, results were submitted for the SAD and speaker
diarization tasks on three audio input conditions: MDM, SDM and MM3A. The config-
urations of BIC clustering and SID clustering were optimized on the development data.
All experiments were carried out with the BIC penalty weight A = 3.5 and the SID
threshold § = 0.5.

4.1 Performance measures and databases descriptions

The speaker diarization task performance is measured via an optimum mapping be-
tween the reference speaker IDs and the hypotheses. This is the same metric as was
used to evaluate the performance on BN data. The primary metric for the task, re-
ferred to as the speaker error, is the fraction of speaker time that is not attributed to
the correct speaker, given the optimum speaker mapping. In addition to this speaker
error, the overall speaker diarization error rate (DER) also includes the missed and false
alarm speaker times. The SAD task performance is evaluated by summing the missed
and false alarm speaker error. In RT-06S evaluation, the metrics are calculated over all
the speech, including the overlapping speech. The DER restricted to non-overlapping
speech segments is also given for comparison purposes.

The experiments were conducted on the NIST RT-06S evaluation data comprised
of lectures provided by the CHIL (Computer in the Human Interaction Loop) consor-
tium. The data were collected at 5 of the CHIL partner sites: AIT (Athens Information
Technology), IBM, ITC (Istituto Trentino di cultura), UKA and UPC (Universitat Po-
litecnica de Catalunya). The development dataset (dev) consists of all seminars used as



RT-05s evaluation data, plus an additional seminar from UKA and four seminars from
AIT, IBM, ITC and UPC one each. The evaluation dataset (eval) is composed of 38
seminar segments each lasting about 5 minutes.

4.2 Audio input selection

For the MDM evaluation condition, a single microphone signal randomly chosen from
the available MDM channels and different from the channel selected for the SDM con-
dition was used as the input to the speaker diarization system. Because the same micro-
phone type is used for the MDM and SDM conditions, no individual development was
carried on SDM condition, i.e. the same configuration for the speaker diarization system
is adopted for both conditions. The microphone channels used for the MDM and SDM
conditions are detailed in Table 1. For MM3A evaluation condition, the beamformed
multiple mark III microphone array data provided by UKA was used as the input of the
speaker diarization system.

Table 1. Channel selection for the MDM and the SDM conditions for the dev and eval data.

‘Dataset‘Condition| AT | IBM ] ITC ] UKA UPC

dev MDM  |mic05|Audio_17|Table-1|TableTop-1|channell5
eval MDM  |mic06|Audio_17|Table-2|TableTop-1|channel16
eval SDM  |mic05|Audio_19|Table-1| Table-2 |channell5

4.3 RT-06S MDM development results

The performances of the speaker diarization systems integrating different SAD modules
are summarized in Table 2. The “vit-bn” system uses Viterbi decoding with 5 GMMs
(64 Gaussians) for speech, noisy speech, speech over music, pure music, and silence,
each trained on one hour of BN data. This baseline speaker diarization system is the
same system as was used in RT-04F evaluation for BN data. The “vit-bn+mt” system
uses Viterbi decoding with GMMs trained on the BN data plus 2 GMMs (256 Gaus-
sians) for speech and non-speech trained on 2 hours of far-field data from the UKA
seminars. The “vit-mt” system uses Viterbi decoding only with speech and non-speech
models trained on lecture data. The “slr-mt” system uses the smoothed LLR-based SAD
method with a prior probability of 0.2 for the non-speech model and 0.8 for the speech
model. As can be seen in Table 2, Viterbi SAD using the models trained on both BN
and lecture data have very high missed speech error rates (ranging from 18% to 14%)
on the MDM development data. The log-likelihood based SAD substantially reduces
this error (2.7% missed speech error) with limited increase in false alarm speech error.
Compared with the baseline speaker diarization system, a relative DER reduction of
33% is obtained by the system using the smoothed LLR-based SAD.

Table 3 gives the speaker diarization results on the MDM development data when
the number of Gaussians for the speech and the non-speech models used in the smoothed



Table 2. Speaker diarization errors on the MDM development data for different SAD modules.

System Missed |Falsealarm| Speaker | Overlap
speech (%)| speech (%) |error (%)|DER (%)
vit-bn (baseline) 18.2 3.0 9.0 30.2
vit-bn+mt 19.3 2.9 8.7 31.0
vit-mt 14.2 3.7 124 30.2
sr-mt 2.7 6.1 11.7 205

LLR-based SAD are varied. These results are obtained with a prior probability of 0.4
for the non-speech model and 0.6 for the speech model. There are no gains of the over-
all diarization error when the number of Gaussians is increased from 256 to 512 on the
MDM development data.

Table 3. Results varying the number of Gaussians for the speech and non-speech models on the
MDM development data.

nb. Gaussians| Missed |Falsealarm| Speaker | Overlap
speech (%)| speech (%) |error (%)|DER (%)

64 9.5 4.0 11.0 24
128 9.5 3.7 11.0 24
256 7.8 4.2 11.0 23
512 7.7 42 11.1 23

The effect of the prior probabilities for speech and non-speech used in LLR-based
SAD was also studied. The results presented in Table 4 are obtained with 256-component
GMMs used for each model. Because it is important for automatic speech transcription
to reject the least amount of speech as possible, a higher prior probability for the speech
model is preferred relative to the non-speech model. As shown in Table 4, using a prior
probability of 0.2 for the non-speech model and 0.8 for the speech model provides the
best results for both speech activity detection (8.8% SAD error) and speaker diarization
(20.5% DER).

Table 4. Results obtained by using different prior probabilities for the speech and non-speech
models on the MDM development data.

P(N):P(S| Missed |Falsealarm| Speaker | Overlap
speech (%)| speech (%) |error (%)|DER (%)

0.1:0.9 1.0 9.5 12.0 22.4
0.2:0.8 2.7 6.1 11.7 205
0.3:0.7 52 5.0 11.3 21.5

0.4:0.6 7.8 4.2 11.0 23.0




After the experiments on the MDM development data, the configuration of the log-
likelihood based SAD system is optimized as: a prior probability of 0.2 for the non-
speech model and 0.8 for the speech model with 256-component GMM:s used for both
models. The performance of the speaker diarization system using the LLR-based SAD
module is presented in Table 5, where the result is given for the individual seminar
having the corresponding reference released by NIST. As shown in Table 5, the aver-
age DER of 20.5% masks the large variation across seminars. Normally lower over-
all diarization error can be obtained on the seminars with only one speaker, but for
“UKA_20041124_A_Segment2” seminar, a very high false alarm speech error of about
150% is produced by the LLR-based SAD module. After listening to the audio file, we
found that many speech segments are missing in the reference transcription, this may
be because the speech signal was not recorded on the microphone channel chosen for
the manual reference transcription.

In order to analyze the variation in system performance, we calculated the ratio be-
tween the speech time from the main speaker (who spoke the most in the seminar) and
the total seminar duration on all the seminars in Table 5 except the “UKA 20041124 _A-
Segment2” seminar. Figure 4.3 shows that the speaker diarization system provides
lower overall diarization error on seminars where the main speaker spoke for more
than 80% of the seminar duration. Moreover a correlation between the DER and the
dominant speaker duration ratio is apparent clearly; consistent with the observations
reported in [18].

90
80 - + g
T+
70 | g
60 + 1
< 50 1
= g
o +
O 40 | p
30 i + g
+
20 | 4 g
+ +
10 | LR T 4
+ + +
0 s s s \ \ T ok
20 30 40 50 60 70 80 90 100

time percentage of the main speaker (%)

Fig. 1. Overall speaker diarization error on the MDM development data as a function of the time
percentage of speech for the main speaker during the seminar.



Table 5. Results by seminar in the MDM development dataset, “REF” represents the number of
speakers in the reference transcriptions.

Seminar Missed |Falsealarm| Speaker | Overlap |REF
speech (%)| speech (%) |error (%) |DER (%)
AIT_20050726_Segment1 0.9 11.3 10.7 229 4
IBM_20050824_Segment1 2.6 0.9 1.6 5.1 2
ITC_20050429 _Segment1 2.3 4.1 8.1 14.6 3
UKA_20041123_A_Segment1 0.0 0.9 0.0 0.9 1
UKA_20041123_A_Segment2 0.9 0.0 29.6 30.6 2
UKA_20041123_B _Segment2 7.2 35.0 4.6 46.7 3
UKA_20041123_C_Segment1 0.6 1.6 0.0 22 1
UKA_20041123_C_Segment2 1.7 5.7 4.1 11.4 3
UKA_20041123_D_Segment1 7.9 1.3 0.8 10.1 1
UKA_20041123_D_Segment2 1.6 75.5 4.8 81.9 2
UKA_20041123_E_Segment! 1.4 0.8 7.6 9.8 2
UKA_20041123_E_Segment2 3.5 5.1 6.6 15.2 2
UKA_20041124_A _Segment1 1.7 7.6 0.1 9.4 1
UKA_20041124_A_Segment2 3.2 149.9 4.5 157.6 1
UKA_20041124_B_Segment] 0.2 1.4 0.3 1.8 1
UKA_20041124_B _Segment2 1.9 3.2 44.2 49.3 4
UKA_20050112_Segment1 4.5 0.3 0.0 4.8 1
UKA_20050112_Segment2 10.2 1.2 7.2 18.7 3
UKA_20050126_Segment1 0.3 2.9 0.0 3.2 1
UKA_20050127_Segment1 1.3 0.2 0.1 1.6 1
UKA_20050128_Segment] 23 1.1 0.0 3.5 1
UKA_20050128_Segment2 3.0 1.7 39.5 44.1 5
UKA_20050202_Segment2 8.8 11.0 57.4 77.2 7
UKA_20050209_Segment1 25 1.4 0.0 3.9 1
UKA_20050209_Segment2 114 11.8 52.7 75.9 4
UKA_20050310_A _Segment! 0.5 1.7 0.8 3.0 1
UKA_20050310_A_Segment2 1.0 4.1 539 59.0 4
UKA_20050310_B_Segment1 0.2 0.6 0.0 0.8 1
UKA_20050314_Segment1 3.1 1.8 0.5 5.4 1
UKA_20050314_Segment2 6.0 33 19.0 28.3 4
UPC_20050601_Segment1 2.7 24.4 20.0 47.1 3
all 2.7 6.1 11.7 20.5 -




4.4 RT-06S evaluation results

The RT-06S evaluation results are given in Table 6. For the MDM and SDM conditions,
system tuning used the same development data, and therefore identical configurations
are used for both conditions. The system performance is quite similar to that obtained
on the MDM development data with an overlap overall diarization error of 21.5%. For
the SDM audio input condition, the overlap DER is increased to 24.5%. This increase
of the diarization error comes mainly from the SAD error, due to the different quality
of the microphone channels used for the MDM and SDM conditions.

For the MM3A contrast condition, the system configuration was optimized on the
beamformed development data. Since no adaptation of the SAD acoustic models is per-
formed on the beamformed data, a slightly higher diarization error of 25.9% is obtained
for the MM3A condition relative to the MDM condition.

Table 6. Evaluation results for SAD and speaker diarization for the MDM, SDM and MM3A
conditions.

Condition|nb. Gaussians|P(S)| Overlap | Overlap [Non-overlap
SAD error (%) |DER (%)| DER (%)

MDM 256 0.8 9.0 21.5 20.2
SDM 256 0.8 12.4 24.5 232
MM3A 128 0.6 11.5 259 24.7

5 Conclusions

The work at LIMSI related to speech activity detection and speaker diarization in the
framework of the RT-06S meeting recognition evaluation was reported in this paper.
Our speaker diarization system for the lecture task builds upon a baseline multi-stage
system developed for broadcast news. The main modification is the use of a smoothed
log-likelihood ratio based SAD with acoustic models adapted to the lecture data. This
SAD was demonstrated to perform much better than the baseline Viterbi SAD. On the
MDM development data, the LLR-based SAD provides a significant reduction of the
SAD error up to 58% relative to Viterbi SAD, and in particular reduces the missed
speech error. Concerning the speaker diarization performance, the diarization system
using the LLR-based SAD gives an overall error of 20% , compared to the 30% overall
error obtained with the baseline system. On the evaluation data, the RT-06S speaker
diarization system provides an overlap overall diarization error of 21.5% on the MDM
condition, with a small increase in the overlap DER to 24.5% for the SDM condition
and a higher error of 25.9% for the MM3A condition. The robustness of the speaker di-
arization system depends a lot on the data domain. The combination of BIC clustering
and SID clustering is very effective on the BN data and provides 8.5% non-overlapping
overall diarization error on RT-04F evaluation data. A relatively higher non-overlapping
DER of 20.2% is obtaind on the MDM lecture data. This decrease of the speaker di-
arization performance may derive from the lower signal quality of the lecture data.



Our future work will focus on the improvement of the robustness of the speaker

diarization system. Efficiently using information from all of the available MDM micro-
phone channels is another important research direction.
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