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ABSTRACT
This paper presents some of the recent research on speaker-independent

continuous speech recognition at LIMSI including efforts in phone and
word recognition for both French and English. Evaluation of an HMM-
based phone recognizer on a subset of the BREF corpus, gives a phone
accuracy of 67.1% with 35 context-independent phone models and 74.2%
with 428 context-dependent phone models. The word accuracy is 88% for
a 1139 word lexicon and 86% for a 2716 word lexicon, using a word pair
grammar with respective perplexities of 101 and 160. Phone recognition is
also shown to be effective for language, sex, and speaker identification.

The second part of the paper describes the recognizer used for the
September-92 Resource Management evaluation test. The HMM-based
word recognizer is built by concatenation of the phone models for each
word, where each phone model is a 3-state left-to-right HMM with Gaus-
sian mixture observation densities. Separate male and female models are
run in parallel. The lexicon is represented with a reduced set of 36 phones
so as to permit additional sharing of contexts. Intra- and inter-word phono-
logical rules are optionally applied during training and recognition. These
rules attempt to account for some of the phonological variations observed
in fluent speech. The speaker-independent word accuracy on the Sep92 test
data was 95.6%. On the previous test materials which were used for de-
velopment, the word accuracies are: 96.7% (Jun88), 97.5% (Feb89), 96.7%
(Oct89) and 97.4% (Feb91).

INTRODUCTION
LIMSI, Laboratory of Computer Science for Mechanical and

Engineering Science is part of the CNRS, a national center for sci-
entific research. This is a French government organization, which
employs over 27,000 people, two-thirds of whom are researchers,
and the remaining third are technical and support staff. LIMSI
has two departments: Mechanics/Energetics (40 researchers) and
Man-Machine Communication (70 researchers). The latter is fur-
ther divided into groups for Speech Communication, Language and
Cognition, and Non-Verbal Communication.

The activities of the Speech Communication Group (14 perma-
nent CNRS researchers) include speech recognition, speech syn-
thesis, speaker verification and identification, and dialog. The
continuous speech recognition (CSR) efforts are directed at spo-
ken language systems and at speech-to-text decoding. For both
applications, a speaker-independent (SI), vocabulary-independent
(VI), phone recognizer is being developed, so as to be easily adapt-
able to various tasks. A dialog project oriented toward Air-Traffic
Controller training[17], in collaboration with the National Center
for Air-Traffic Control (CENA), is undergoing on-site performance
evaluations. Without this system, the student training sessions re-
quire a human instructor who plays the roles of the pilots. The goal
is to replace the instructor by a spoken dialog system so as to in-
crease the availability of the system for training. The dialog system

is built around the Amadeus speech recognizer and an associated
synthesismodule. Another dialog project has recently been initiated
in collaboration with MIT to bring up a French ATIS system. In
speech-to-text, the research focuses on two tasks: BREF[8, 14, 7]
and Wall Street Journal (WSJ)[18].

LIMSI has been involved in the development of real-time rec-
ognizers for over 10 years, including the first French single-board
isolated-word speech recognizer, Moise, and the first single-board
connected-word recognizer, Mozart [6]. The Amadeus speaker-
dependent recognizer was developed around a custom VLSI search
processor (�PCD)[19] that was designed at LIMSI, in collaboration
with the Bull and the Vecsys companies. This dedicated proces-
sor is fully programmable and can support isolated-word (5000
words) and connected-word recognition (300 words) algorithms
using DTW or HMM approaches in real-time. The vocabulary size
can be extended by multiplying the number of such processors; a
single IBM PC board can support up to 16 processors.

THE BREF CORPUS

The research in the speech-to-text has been primarily focused on
French, using the BREF corpus [8, 14]. Recently, work has also
been started on the DARPA continuous speech recognition (CSR)
task, using the Wall Street Journal corpus. The immediate goal is
to work with read speech material from a large number of speakers,
so as to be able to build base acoustic models which can be aug-
mented and adapted to specific speakers or tasks. This approach
also allows many aspects of language modeling to be addressed
under more “semi-controlled conditions,” than those found in spon-
taneous dictation. Additionally, it is much easier to collect read-text
material than spontaneous dictations.

BREF is a large read-speech corpus, containing over 100 hours
of speech material, from 120 speakers (55m/65f)[14]. The text
materials were selected verbatim from the French newspaper Le
Monde, so as to provide a large vocabulary (over 20,000 words)
and a wide range of phonetic environments[8]. Containing 1115
distinct diphones and over 17,500 triphones, BREF can be used to
train VI phonetic models.

In these experiments approximately 4 hours and 20 minutes of
speech material are used for training. This represents 2770 sen-
tences from 57 speakers (28m/29f). The test data consist of 109
sentences from 19 speakers (10m/9f). The test text material is dis-
tinct from the training texts, and the test speech data contain 7635
phone segments. Phonemic transcriptions of these utterances were
automatically generated and manually verified[7].
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PHONE RECOGNITION WITH BREF
Evaluating phonetic recognition is important for several reasons.

Primarily, the demands of VI, SI, CSR require an approach based
on phone-like units. The better these phone models (or acoustic
models) are, the better the performance of the entire system will
be. Only considering word recognition performance, particularly
when word-based grammars are used, can mask problems that stem
from the acoustic level. Phone recognition is also useful in deter-
mining pronunciation errors in the lexicon and identifying alternate
pronunciations that need to be included.

The phone recognizer uses a set of phone models, where each
phone model is a 3-state left-to-right continuous density hidden
Markov model (CDHMM) with Gaussian mixture observation den-
sities. The covariance matrices of all the Gaussians components
are diagonal. Silence is treated as a phone, but is modeled with a
1-state HMM. The 16 kHz speech was downsampled by 2 and a 26-
dimensional feature vector was computed every 10 ms. The feature
vector is composed of 13 cepstrum coefficients and 13 differential
cepstrum coefficients. Duration is modeled with a gamma distribu-
tion per phone model. As proposed by Rabiner et al.[20], the HMM
and duration parameters are estimated separately and combined in
the recognition process for the Viterbi search. Maximum likeli-
hood estimators are used for the HMM parameters[11] and moment
estimators for the gamma distributions.

For context-independent (CI) models, the overall Markov chain
is simply obtained by allowing all possible connections between
the 35 phone HMMs (i.e. 1225 connections). For the transition
probabilities either constant (1/35), 1-gram, or 2-gram probabilities
are used. The resulting ergodic HMM has 103 states and about
170,000 parameters.

In the case of context-dependent (CD) models, the phone HMMs
are connected through null states representing all the possible di-
phones. These null states, which do not emit any observation, are
used to merge all the transitions corresponding to the same diphone,
thus reducing the number of connections to a more manageable
value (i.e., the fourth order (n4) becomes a cubic form). With 428
CD models, the resulting HMM includes 1294 non-null states and
has about 1,070,00 parameters.

Table 1 gives the phone accuracy using 35 CI phone models and
428 CD phone models with 16 mixture components. Silence seg-
ments were not included in the computation of the phone accuracy.
It can be seen that the phone language model helps more for CI than
the CD models. This is presumably because the CD models already
incorporate some of the phonotactic information. With the phone
bigram, the use of CD models reduces the errors by 22%. In these
experiments using as many as 2100 CD models did not significantly
reduce the error rate.

Model set 0-gram 1-gram 2-gram
35 CI 61.0 63.4 67.1
428 CD 71.2 71.9 74.2

Table 1: Phone accuracy with CI and CD models.

WORD RECOGNITION WITH BREF
In these word recognition experiments the same set of 428 CD

phone models were used. An HMM is generated for each word
by concatenating the phone models according to the phone tran-
scriptions and the word models are put together to represent the

entire lexicon with one large HMM. For the no-grammar (NG) case
a phone tree is built from the lexicon in order to reduce the graph
size. For the 10K lexicon the average number of phone nodes per
word is reduced from 6.4 to 2.0 by using such a tree instead of a
linear representation of each word, giving a reduction of 69% in
the size of the graph. For the word-pair grammar (WPG), a phone
graph is first built by linking the word phone transcriptions accord-
ing the grammar, then, as for the no-grammar case, the phone graph
is converted to a large HMM by replacing each phone node by the
appropriate set of phone models and establishing the proper connec-
tions with the neighboring phones. In both cases, CD phone models
are used for word juncture phones as well as for intra-word phones,
without explicit representation of the word boundaries. Recognition
is performed using the Viterbi decoding algorithm.

Vocabulary-independent word recognition experiments were run
using four different lexicons. The 1K lexicon contains only the
1139 words found in the test sentences. The 3K lexicon contains
all the words found in the earlier training sentences[7], and the
test sentences, a total of 2716 words. The 5K (4863 words) and
10K (10,511 words) lexicons include all the words in the test data
complemented with the most common words in the original text.
Alternate pronunciations increase the number of phonemic forms
in the lexicon by about 10%. The word recognition results are
given in Table 2 with no grammar and with a word-pair grammar
computed on the entire 4.2 million word text of Le Monde. For the
no grammar condition, single word homophone confusions were
not counted as errors. The use of the word-pair grammar reduces
the perplexities to 101 for the 1K lexicon and 160 for the 3K lexicon,
and reduces the error rate by almost 60%. In addition, the drop in
performance observed by increasing the lexicon size is smaller than
for the no grammar case, as is expected given that the perplexity is
not proportional to the size of the lexicon.

No Grammar WP Grammar
1K 3K 5K 10K 1K (101) 3K (160)

72.7 66.5 62.0 59.7 87.9 86.1

Table 2: Word accuracy with 1K-10K lexicons.

The large number of homophones presents problems in phoneme-
to-text conversion of French. The Le Monde text lexicon has a ho-
mophonerate of about30%, compared to roughly 3% in the DARPA
RM lexicon and under 2% for the DARPA TIMIT lexicon[3]. In
French one must also deal with “liaison”, “mute-e”, and “apostro-
phe.” Liaisons are links made between words, phonemes that are
pronounced at the junctions between two words, but would not be
pronounced at the end of the first word, or at the beginning of the
second one, if the words were spoken in isolation. The pronuncia-
tion of mute-e is optional and dialect dependent, and poses problems
similar to that of schwa-deletion in English. For apostrophe, the
final vowel of certain words is deleted when the next word begins
with a vowel. While in the written form, an apostrophe replaces the
vowel, in the spoken form, there is no replacement.

IDENTIFICATION OF NON-LINGUISTIC
SPEECH FEATURES

Phone recognition has also been found to be effective for identi-
fying non-linguistic speech features, such as the sex of the speaker,
the identity of the speaker, and the languagespoken. In these studies
CD models are used for sex identification and CI models are used

DARPA ANNT, Standford, Sep. 1992 2



for speaker and language identification.

Sex Identification
It is well known that the use of sex-dependent models gives

improved performance over one set of speaker-independentmodels.
However, this approach is costly in terms of computation for even
medium-size tasks. A logical extension is to use first phonetic
recognition to determine the speaker’s sex, and then perform word
recognition using the models of selected sex. This is the approach
that we use in the WSJ system. Phone recognition using CD male
and female models was performed, and the sex of the speaker was
selected as the sex associated with the models that had the highest
likelihood. No errors were observed in sex-identification for WSJ
or for BREF data.

Speaker Identification
The same approach has also been applied to speaker identifica-

tion. In this case a set of phone models were built for each speaker,
by supervisedadaptation of SI models[9]. The unknownspeechwas
recognized by all of the speakers models in parallel. Experiments
for English using the 462 training speakers in the TIMIT corpus[3]
resulted in 99.6% correct identification using one sentence for in-
dentification, and 100% identification if the likelihood over two
sentences was used. A simple reduction in computation is gained
by first determining the sex of the speaker by running in parallel
SI male and female models. In experiments with this approach no
cross-sex errors have ever occurred with the SI male/female models
or with any of the SD models. Further reductions in the computation
required during recognition can be obtained by speaker clustering.

Language Identification
Another application for phonetic recognition is language identi-

fication. The basic idea is to process in parallel the unknown in-
coming speech by different sets of phone models for each of the lan-
guages under consideration, and to choose the language associated
with the model set providing the highest likelihood. Experiments
have been performed using sets of SI CI phone models for French
and for English[13]. For French the set of 35 SI CI models were
used. For English a set of 52 SI CI phone models were trained on
the training speakers in the TIMIT Corpus[3]. Using this approach
and processing the entire utterance always gave 100% correct lan-
guage identification. The identification accuracy as a function of
the duration of the incoming speech is given in Table 3. The results
are for increasing portions of speech taken from sentences spoken
by 8 speakers (4m/4f) of each language. It was found that while
with even as little as 400 ms of speech, the English sentences were
always correctly identified, a minimum duration of one second was
needed for perfect identification of French. This assymmetry may
be because English has more phonemes than French, or that most of
the French phonemes are also found in English. Additionally, the
French phonemes not in English are acoustically not very different
from allophones in English.

Duration 400 ms 600 ms 800 ms �1000 ms
French 72 75 87 100
English 100 100 100 100

Table 3: Language identification as a function of duration and language.

While the above results show this approach to reliably distin-
guish the two languages, there are differences in the corpora, which

may have also influenced the results. In order to minimize these
differences, the experiment was performed for French and English
utterances spoken by a bilingual male Canadian speaker. The same
BREF-based and TIMIT-based CI phone models were used, and the
test sentences were taken from an Air Travel Information Services
task, where the English and French versions were translations. The
same trend was observed: the English sentences were always iden-
tified as English, and French sentences longer than 600 ms were
also always correctly identified. Extensions of this work include
identification of other European languages.

RM-SEP92 SYSTEM
In this section a detailed description of the recognizer used in the

Sep92 DARPA evaluation test is given. The recognizer is basically
the same as was used for the studies on BREF. Differences are
essentially in the front end, the phone set, and the incorporation of
phonological rules. The JUN88, FEB89, and OCT89 test sets were
used as development data to evaluate various alternatives for the
front end, the lexicon representation and phonological rules, and to
estimate some parameter values such as the word insertion penalty.

System description

The main characteristics of the Sep92 system are:

Signal analysis A 48-component feature vector is computed every
10 ms. The feature vector consists of 16 Mel-frequency scale
cepstrum coefficients and their first and second order differ-
ences.

Acoustic models There are about 2300 acoustic models of context-
dependent phones. The contexts include both intra-word and
cross-word contexts, but are position independent. Each phone
model is a left-to-right CDHMM with an average of 10 gaus-
sians per state. Duration is modeled with a gamma distribution
per phone model. Separate male and female models are used.

Lexicon The lexicon is represented using a reduced set of 36
phones in order to better share contexts and to eliminate estima-
tion problems due to infrequent phones. The lexicon has alter-
nate pronunciations for about 10% of the words, and also allows
some phones to be optional. For example, the word “MONTI-
CELLO” has the pronunciations /mantxsElo/ and /mantxtSElo/,
and the /t/ in “COUNTED” (/kawnftgxd/) is optional. Intra-
and inter-word phonological rules are optionally applied dur-
ing training and recognition. These rules attempt to account
for some of the phonological variations commonly observed in
fluent speech, such as palatalization and glide insertion.

Decoding Decoding consists of Viterbi search, a one pass beam
search. The male and female models are run in parallel, and
the output with the highest likelihood is chosen. Again, in all
of the development and evaluation test material, no cross-sex
confusions ever occurred, i.e. never was a higher likelihood
obtained using models of the other sex.

Front end
Experiments were run varying the analysis used to compute the

cepstrum coefficients (LPC or Fourier analysis), and for two band-
widths (4kHz and 8kHz). The best performance was obtained with a
48-component feature vector consisting of 16 Bark-frequency scale
cepstrum coefficients and their first and second order differences,
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Diphthongs: Syllabics:
Y ! ai L ! xl
O ! ci N ! xn
W ! aw Contextual allophones:
Infrequent phones: j ! x
U ! ^ X ! R
Z ! z Affricates:� ! n C ! tS

Table 4: Mapping of the eliminated phones.

computed on the 8kHz bandwidth. For each frame (30 ms win-
dow), a 15 channel Bark power spectrum is obtained by applying
triangular windows to the DFT. The cepstrum coefficients are then
computed using a cosinus transform [2]. On the development data,
using an 8kHz bandwitdh instead of 4kHz reduced the error rate
by 19% for a given set of SI CD phone models. For the 4kHz
bandwidth, no significant difference was observed by using LPC or
DFT based cepstra.

Why a reduced phone set?
Two different phone sets were evaluated. The first includes 47

phones (AT&T RM phone set[15]) and the second is a reduced set
of 36 phones. The phone set was reduced primarily to eliminate
infrequent phones for which there was insufficient training data, and
to provide a means of better sharing contexts. In doing so, there is
more data available to train the models, and the number of potential
triphone contexts is reduced. This is a kind of parameter sharing.

The changes made to the 47 phone set are given in Table 4, using
the one character MIT TIMIT symbol set[3]. Phones which were
infrequent such as /Z/ and /U/ were eliminated, and replaced by an-
other “close” phone. Certain phonemic distinctions are somewhat
artibrary, such as whether the diphthongs should be represented as
one vowel or a sequence of two vowels. While in the 47 phone set,
diphthongs are represented distinctly, in the reduced set, the diph-
thongs /Y,O,W/ are represented by a sequence of phones. Similarly,
allophonic distinctions such as the syllabics, the context-dependent
difference between the two schwas (/x,j/), and the stress difference
between /X,R/, are no longer made. Care was taken to ensure that
these changes did not create any new homophones in the lexicon.
Reducing the phone set gave an improvement of about 10% on the
3 development tests.

After varying the signal analysis and parameter vector, and re-
duction of the phone set, testing on unseen data from the FEB91
test, a word accuracy of 97.2% was obtained using one set of SI
models. However, it was noticed that there was often a fairly large
variation in word accuracy across the 4 test sets. In particular, the
performance was worst on the JUN88 test, which was taken from
the speaker dependent data. Therefore, it was decided to look at the
errors on the speaker-dependent test data. The recognizer was run
on a total of 2700 sentences including the SD-DEV and SD-EVAL
data in addition to the SI test data. The phone recognizer was also
run on all of the data. (The phone accuracy for this task, without
the use of phonotactic constraints was almost 80%.) All of the
errors were looked at, comparing the word errors to the recognized
phone sequence. As a result the base lexicon was modified, adding
alternate pronunciations (such as /goIG/ and /goIn/ for the word
“GOING”), allowing certain phones to be optional (for example,
the /t/ in “COUNTING”), and correcting errors, and the inter-word

phonological rules were extended.

Phonological Rules
The principle behind the phonological rules is to modify the

phone network to take into account phonological variations. The
rules are applied during both training and recognition and are always
optional. Using optional phonological rules during training results
in better acoustic models, as they are less “polluted” by wrong
transcriptions. Their use during recognition reduces the number of
mismatches. The mechanism for the phonological rules allows the
potential for generalization and extension. However, care must be
taken as the alternate pronunciations thus generatedcan cause errors
especially for short words when the rules are applied abusively. The
use of phonological rules for the RM task has been previously re-
ported by SRI[1] and AT&T[10]. In the case of AT&T, phonological
rules were used only with CI phone models.

Phonological rules were addedcautiously, avoiding multiple pro-
nunciations for very short words, deleting phones in short words
(2-3 phones), or creating homophones. All the added phones are
optional, and phones can be optionally deleted in long words. The
phonological rules are applied to the phone graph generated from
the baseline lexicon by adding skip arcs to optionally delete phones
and adding phone models for alternate pronunciations and inserted
phones. The resulting phone model graph which is only 12% larger
than the original, is used during training and testing.

Inside words: Lexicon
Optional phones COUNTING kawnftgIG

DIEGO-GARCIA difygegof#ggarsifygx
Alternate pron. GOING gofwgI[Gn]
Between words: Rule Example
“the” alternation Dx-V ! D[xi]V THE ARTIC

Gemination t-t ! ftgt CLOSEST TO

@nd-t ! @nfdgt OAKLAND TO

Off-glide deletion aw-m ! afwgm HOW MANY

Stop voicing k-V ! [kg]V PACIFIC OCEAN

Palatalization t-y ! [tC]fyg LAST YEAR

d-y ! [dJ]fyg DID YORKTOWN

Glide insertion o-V ! ofwgV TOKYO ARE

i-V ! ifygV ME ALL

R-V ! RfrgV PLUNGER IN

Table 5: Examples of phonological rules. Phones in fg are optional,
phones in [] are alternates. V stands for vowel and the “-” represents a word
boundary.

Some examples of the phonological rules are given in Table
5. These include general rules for well known variants such as
palatalization, glide insertion and gemination, as well as rules to
handle allophonic variation, using only the reduced phone set. So,
instead of having a syllable or word final allophones for the voiceless
stops, they are optionally allowed to be replaced with their voiced
counterparts. There are more specific rules, such as the deletion of
the offglide /w/ in the phone sequence /aw/, as found in the word
“how.” While this is a fairly general phenomenon, in the context of
RM this rule becomes very specific for the word sequences “how
much” and “how many.”

Figures 1 and 2 illustrate some acoustic differences motivating
the use of phonological rules, taken from the training data. The
speaker code is given by the three letters in parenthesis. In Figure 1
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Figure 1: Spectrograms illustrating phonological variation at vowel-vowel
boundaries. The scale is 100ms on the horizontal axis and 1kHz on the
vertical axis.

Figure 2: Illustration of stop allophones.

are examples of acoustic realizations at vowel-vowel word bound-
aries, where it is common to insert either a glide or a glottal stop
to mark the boundary. The left most example has a /y/-insertion
marking the boundary between in “the average”, giving the phone
sequence /iy@/. The same speaker, however, uses a glottal stop to
mark the boundary in “the AAW”, even though the phonetic envi-
ronment is very similar. The semivowels /r,w/ may be inserted in
the same way; an example of a /w/-insertion is seen in the right
most spectrogram in the word sequence “do any.”

Figure 2 shows some of the variability observed in the realization
of stops. The left two spectrograms were taken from the same
sentence, and show that even in a similar context, the acoustic
realization can be very different. The final /t/ in “chart of” is
manifest as a glottal stop, where as the final /t/ in “start at” is
flapped. The spectrogram on the right shows that the final /k/ in
“pacific ocean” is produced as a /g/. One could argue that this
should be considered a speech error, however, the word string is
perfectly understood.

Given that even a single speaker may mark phonetic distinctions
in different ways, even in a similar phonetic environment, indicates
that the use of CD phones as they are typically defined, even if they
are word position dependent, will still combine allophones which
are acoustically very different. (This distinction was refered to as
hard vs soft by Giachin et al.[10].) Therefore, it seems obvious
that the use of phonological rules during training will result in purer
acoustic models, which should improve the system performance.

The effects of these developmental changes are summarized in
Table 6 for four test sets using sex-dependent models. Phase 1 is
prior to the use of the speaker-dependent test data, and Phase 2 is
after the errors on this data were analysed. It can be seen that the
error reduction is between 0% and 20% depending on the test, and
that the objective of reducing the difference in performance across
tests was acheived.

Test JUN88 FEB89 OCT89 FEB91
Phase 1 4.1 3.2 4.0 2.8
Phase 2 3.3 2.8 3.2 2.9

Table 6: Effect of developmental changes.

Evaluation test: Sep92
The Sep92 evaluation test was run on a Silicon Graphics R3000

workstation, with a liberal prunning threshold. The recognition
time per sentence, running the sex-dependent models in parallel, is
on the order of 5 min with the word pair grammar and 17 min with
no grammar. This is the first time that the system was run without
a grammar. The results are summarized in Table 7. (Complete
results are reported by NIST, this proceedings.) The word accuracy
for the WPG condition was 95.6%. For the NG case, the inter-word
phonological rules were not used.

Lexicon Corr. Subs. Del. Ins. WErr. SErr.
WPG 96.0 2.9 1.2 0.4 4.4 25.0
NG1 83.2 14.0 2.8 3.2 20.0 70.7

Table 7: Recognition results with a word-pair grammar.

After the evaluation test we attempted to evaluate how much
each of the components of the system contributed to the perfor-
mance for this test set. Unfortunately, it was not possible to undo
each component individually as intermediary versions of the system
during developmentwere not kept. In addition, most of the changes
introduced by the phonological rules affect the sequence of phones
in the recognized string. Since the phone contexts modeled are cho-
sen by thresholds based on counts in the training data, any change
to the training phone sequence can ultimately affect the particular
contexts modeled. Since it seemedmore unfair to compare different
sets of models, than to evaluate without components used in train-
ing, the assessment of the contribution of the various components
was made using the same set of models used for the evaluation test
which had been trained with all the components. Components were
then sequentially removed for the test.

These results are summarized in Table 8. Removing the inter-
word phonological rules increases the error rate by about 18%. The
removal of the alternate pronunciations had no additional effect on
the error rate. Removing the optional phones (which may have
been explicitly specified in the lexicon, or added as intra-word
phonological rules) increased the error rate by less than 4%. The
effect of removing optional within word silences was about the
same. Using only one set of SI models gave a word error rate of
5.4%, indicating that for this test the sex-dependent models reduces
the error rate by about 20%. Subsequently removing the inter-word
phonological rules increased the error by an additional an 11%.

After the Sep92 evaluation, additional performance improve-
ments have been obtained on the development tests using the same

1With no inter-word phonological rules.
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Condition WErr.
baseline (male/female models, phono. rules) 4.4
- inter-word phonological rules 5.2
- alternate pronunciations 5.2
- optional phones (except silences) 5.4
- optional silences (intra-word) 5.7
SI models (phono. rules) 5.4
- inter-word phonological rules 6.0

Table 8: Assessment of the contribution of some system components on
the Sep92 test by sequential removal.

(more liberal) pruning threshold as was used for the official evalu-
ation. The treatment of inter-word silence was also altered, since
it was observed that silence could easily be be inserted to take up
the slack for poor acoustic matches. These changes resulted in a
small error reduction (4%) on the developmentdata: 96.7%(Jun88),
97.5% (Feb89), 96.7% (Oct89), and 97.4% (Feb91).

SUMMARY
In this paper an overview of the speech recognition research at

LIMSI has been presented. Our recent work focuses on developing
phone-based recognizers that are task-, speaker- and vocabulary-
independent so as to be easily adapted to various applications.
Phone and word recognition results were reported for French, us-
ing data from the BREF corpus. A phone accuracy of 74.2% was
obtained using 428 context-dependent phone models, with phono-
tactic constraints provided by a phone bigram model. The phone
recognition results are somewhat superior to those reported for
English[16, 21]. This may be simply because French has a smaller
number of phonemes, or that the phonemes are less variable due
to context. Word recognition for BREF was evaluated on lexicons
ranging from 1000 to 10,000 words, for the no-grammar case and
with a word-pair grammar. For the no-grammar case the word accu-
racy was 69.2% with 1000 words and dropped to 49% with 10,000
words. With a word-pair grammar the word accuracy was 87.9%
and 86.1% respectively for 1000 and 3000 words.

Phone recognition has also been shown to be powerful for iden-
tifying non-linguistic speech features, e.g. sex, language, speaker.
Experiments in language identification show that for English sen-
tences, 400 ms sufficed to identify the language as English, whereas
for French, 1000 ms were needed to unambiguouslyidentify the lan-
guage as French. Speaker identification experiments with TIMIT
had an identification rate of 99.6%, comparing one utterance from
each speaker to models from all 462 training speakers.

The RM Sep92 evaluation system uses a reduced set of 36 phones
to represent the lexicon so as to eliminate infrequent phones and
to allow more sharing of contexts. CD phone models are used, in-
cluding cross-word contexts which are position independent. Each
phone model is a left-to-right CDHMM with gaussian mixture.
Duration is modeled with a gamma distribution per phone model.
Phonological rules are used in training to obtain purer acoustic mod-
els. The same rules are used in testing so as to allow for unseen
events. Separate male and female models were trained and used
in parallel. The word accuracy on the Sep92 evaluation test was
95.6%. Average word accuracy on the development tests (1200
sentences: Jun88, Feb89, Oct89, Feb91) is 97.1%.
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