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ABSTRACT

In this paper we report on the LIMSI Wall Street Journal system
which was evaluated in the November 1993 test. The recognizer
makes use of continuous density HMM with Gaussian mixture for
acoustic modeling and n-gram statistics estimated on the newspaper
texts for language modeling. The decoding is carried out in two
forward acoustic passes. The first pass is a time-synchronous graph-
search, which is shown to still be viable with vocabularies of up to
20k words when used with bigram back-off language models. The
second pass, which makes use of a word graph generated with the
bigram, incorporates a trigram language model. Acoustic model-
ing uses cepstrum-based features, context-dependent phone models
(intra and interword), phone duration models, and sex-dependent
models. The official Nov93 evaluation results are given for vocabu-
laries of up to 64,000 words, as well as results on the Nov92 5k and
20k test material.

1. Introduction

Our speech recognition research focuses on developing recogniz-
ers that are task-, speaker- and vocabulary-independent so as to be
easily adapted to a variety of applications. In this paper we report
on our efforts in large vocabulary, speaker-independent continuous
speech recognition for American English using the ARPA Wall Street
Journal-based CSR corpus [18]. The WSJ corpus is the designated
common task for continuous speech recognition work in the ARPA
community, and has become a task used for comparative develop-
ment and evaluation worldwide. LIMSI participates in the ARPA-run
evaluations in an effort to promote international scientific exchange.

The WSJ corpus contains large amounts of read speech material from
a large number of speakers and has associated text material which
can be used as a source for statistical language modeling. In these
experiments two sets of standard speech training material have been
used: WSJ0 and WSJ1, as well as the 37 M-word standardized text
training material.

The recognizer makes use of continuous density HMM with Gaussian
mixture for acoustic modeling and n-gram statistics estimated on text
material for language modeling. Acoustic modeling uses cepstrum-
based features, context-dependent phone models, duration models,
and sex-dependent models. Statistical n-gram language models are
estimated on the training corpus of newspaper text from the WSJ.
In the following sections the recognizer is described and recognition
results of the current system on the last two sets of evaluation test
material, Nov92 [16] and Nov93 [17], are given.

2. Recognizer Overview
The recognizeruses a time-synchronousgraph-search strategy which
is shown to still be viable with vocabularies of up to 20k words,
when used with bigram back-off language models (LMs). This
one level implementation includes intra- and inter-word context-
dependent (CD) phone models, intra- and inter-word phonological
rules, phone duration models, and gender-dependent models [10].
The HMM-based word recognizer graph is built by putting together
word models according to the grammar in one large HMM. Each
word model is obtained by concatenation of phone models according
to the word’s phone transcription in the lexicon.

The recognizer makes use of continuous density HMM (CDHMM)
with Gaussian mixture for acoustic modeling. The main advantage
continuous density modeling offers over discrete or semi-continuous
(or tied-mixture) observation density is that the number of parame-
ters used to modelize an HMM observation distribution can easily
be adapted to the amount of available training data associated to this
state. As a consequence, high precision modeling can be achieved
for highly frequented states without the explicit need of smoothing
techniques for the densities of less frequented states. In the exper-
imental section we demonstrate the improvement in performance
obtained on the same test data by simply using additional training
material. Discrete and semi-continuousmodeling use a fixed number
of parameters to represent a given observation density and therefore
cannot achieve high precision without the use of smoothing tech-
niques. This problem can be alleviated by tying some states of the
Markov models in order to have more training data to estimate each
state distribution. However, since this kind of tying requires careful
design and some a priori assumptions, these techniques are primar-
ily of interest when the training data is limited and cannot easily be
increased.

The main characteristics of the recognizer are:

Front end: A 48-component feature vector is computed every 10
ms. This feature vector consists of 16 Bark-frequency scale cep-
strum coefficients computed on the 8kHz bandwidth with their first
and second order derivatives. For each frame (30 ms window), a
15 channel Bark power spectrum is obtained by applying triangu-
lar windows to the DFT output. The cepstrum coefficients are then
computed using a cosine transform [3].

Acoustic models: The acoustic models are sets of CD phone mod-
els, which include both intra-word and cross-word contexts, but
are position independent. Each phone model is a left-to-right
CDHMM with Gaussian mixture observation densities. The co-
variance matrices of all the Gaussians are diagonal. Duration is
modeled with a gamma distribution per phone model. The HMM
and duration parameters are estimated separately and combined in
the recognition process for the Viterbi search. Maximum a poste-



INTEREST IntrIst InftgXIst
EXCUSE Ekskyu[sz]
CORP. kcrp kcrpXeSxn
GAMBLING g@mb[Ll]|G

AREA [@e]rix
ph:rule! [@e]riyx

Figure 1: Example lexical entries, with phones in fg being optional,
phones in [ ] being alternates.

riori (MAP) estimators are used for the HMM parameters [7] and
moment estimators for the gamma distributions. Separate male
and female models have been used to more accurately model the
speech data. The contexts to be modeled are selected based on
their frequency of occurrence in the training data. Experiments
were carried out with model sets ranging in size from 493 models
to 3306 models. In the experimental section we demonstrate the
improvement in performance obtained by increasing the numberof
phone models to take advantage of the additional training material
in the WSJ1 corpus.

Lexicon: The lexicon is represented phonemically using a set of
46 phonemes. The lexicon has alternate pronunciations for some
of the words, and allows some of the phones to be optional. A
pronunciation graph is generated for each word from the base-
form transcription to which word internal phonological rules are
optionally applied during training and recognition to account for
predictable pronunciation variants. Some example lexical entries
are given in Figure 1. The first word “interest”, may be pro-
duced with 2 or 3 syllables, depending upon the speaker, where
in the latter case the /t/ may be deleted. In contrast, the alter-
nate pronunciations for “excuse” reflect different parts of speech
(verb or noun). In the third case, the abbreviation “corp” may be
pronounced in its full or its abbreviated form. Training and test
lexicons were created at LIMSI and include some input from mod-
ified versions of the TIMIT, Pocket and Moby lexicons. Missing
forms were generated by rule when possible, or added by hand.
Some pronounciations for proper names were kindly provided by
Murray Spiegel at Bellcore from the Orator system. Recognition
lexicons containing 5k, 20k, and 64k words obtained from the
standard word lists have been used in the experiments described
below.

Language Model: Language modeling entails incorporating con-
straints on the allowable sequences of words which form a sen-
tence. Statistical n-gram models attempt to capture the syntac-
tic and semantic constraints by estimating the frequencies of se-
quences of n words. Unless otherwise specified, in this work the
bigram and trigram language models provided by Lincoln Labs
[18], are used. These were estimated on the 37M words training
material of the WSJ. A backoff mechanism [9] is used to smooth
the estimates of the probabilities of rare n-grams by relying on a
lower order n-gram when there is insufficient training data, and to
provide a means of modeling unobserved n-grams.

Decoding: The recognizer uses a time-synchronous graph-search
strategy which includes intra- and inter-word CD phone models,
intra- and inter-word phonological rules, phone duration models,
and a bigram language model. Sex identification is performed
for each sentence using phone-based ergodic HMMs [12]. The
recognizer is then run using the set of models corresponding to the
identified sex. When using a trigram LM, sentence recognition is
performed in two forward passes. First, a word graph is generated
using a bigram language model. Second, the sentence is decoded

using the acoustic models and the trigram language model on the
reduced search space provided by the word graph. Both passes use
a time-synchronous Viterbi decoder.

Phonological Rules: Phonological rules are used to allow for some
of the phonologicalvariations observed in fluent speech. The prin-
ciple behind the phonological rules is to modify the phone network
to take into account such variations. These rules are optionally ap-
plied during training and recognition. Their use during training
results in better acoustic models, as they are less “polluted” by
wrong transcriptions. Using optional phonological rules during
recognition can reduce the number of mismatches. The mecha-
nism for the phonological rules allows the potential for general-
ization and extension by addition of new rules. The phonological
rules may apply word-internally or may apply at word boundaries.
The word-internal phonological rules are applied to the baseform
transcriptions of the lexical entry when generating its pronuncia-
tion graph. An example of applying a phonological rule for glide
insertion (in this case /y/) is shown in 1. In forming the word net-
work, word boundary phonological rules are applied at the phone
level to take into account interword phonological variations. For
the present, only well known phonological rules have been incor-
porated in the system. These rules include word-internal rules for
glide insertion, stop deletion, and homorganic stop insertion. The
interword rules include palatalization, stop reduction, and voicing
assimilation.

During system development phone recognition has been used to eval-
uate different acoustic model sets. It has been shown that improve-
ments in phone accuracy are directly indicative of improvements in
word accuracy when the same phone models are used for recognition
[11]. Phone recognition provides the added benefit that the recog-
nized phone string can be used to understand word recognition errors
and problems in the lexical representation.

3. Search Strategy
One of the most important problems in implementing a large vocabu-
lary speechrecognizer is the design of an efficient searchalgorithm to
deal with the huge search space, especially when using “long” span
language models such as trigrams. The most commonly used ap-
proach for small and medium vocabulary sizes is the one-pass frame
synchronous beam search [15] which uses a dynamic programming
procedure. This basic strategy has been recently extended by adding
other features such as “fast match” [8, 2], N-best rescoring [19], and
progressive search [14]. The two-pass approach used in our system
is based on the idea of progressive search [14] where the information
between levels is transmitted via word graphs.

The first pass uses a bigram-backoff language model with a tree or-
ganization of the lexicon for the backoff component.1 This one-pass
frame synchronous beam search generates a list of word hypotheses
resulting in a word lattice. Since the size of the second pass’ search
space is directly proportional to the size of this word lattice, it is
desirable that this size remain as small as possible.

Two problems need then to be considered. The first is whether or not
the dynamic programming procedure used in the first pass, which
guarantees the optimality of the search for the bigram, generates an

1An advantage offered by the backoff mechanism is that LM size can
be arbitrarily reduced by relying more on the backoff, by increasing the
minimum number of required n-gram observations needed to include the n-
gram. This property can be used in the first bigram decoding pass to reduce
computational requirements.



“optimal” lattice to be used with a trigram language model. For any
given word in the lattice, there will be many hypotheses with different
ending points but only a few hypotheses with different starting points.
This problem, which motivated forward-backward approaches [1],
was in fact less severe than expected since the time information
appears to not be critical for generating an “optimal” word graph
from the lattice. The multiple word endings were found to provide
enough flexibility to compensate for single word beginnings.

The second consideration is that the lattice generated in this way
cannot be too large or there is no interest in a two-pass approach. To
solve this second problem, two pruning thresholds are used during
the first pass, a beam search pruning threshold which is kept to a level
insuring almost no search errors (from the bigram point of view) and
a word lattice pruning threshold which is used to control the lattice
size.

While a complete description of the procedure used to generate the
word graph from the word lattice is beyond the scope of this paper,
the following steps provide the key elements behind the procedure.2

First, a word graph is generated from the lattice by merging three
consecutive frames, which is the minimum duration for a word in
our system. Then, “similar” graph nodes are merged with the goal
of reducing the overall graph size and generalizing the word lattice.
This step is reiterated until no further reductions are possible. Finally,
based on the trigram backoff language model a trigram word graph
is then generated by duplicating the nodes having multiple language
model contexts. Bigram backoff nodes are created when possible to
limit the graph expansion.

To fix these ideas, let us consider some numbers for the WSJ 5k
closed vocabulary. The first pass generates a word lattice containing
on average 10,000 word hypothesis per sentence, with the pruning
threshold set to have a negligable number of search errors. The
generated word graph before trigram expansion contains on average
1400 arcs. After trigram expansion, based on a trigram backoff LM
there are on average 3900 word instanciations including silences
which are treated the same way as words.

It should be noted that this decoding strategy based on two forward
passes can in fact be implemented in a single forward pass using one
or two processors. We are using a two-pass solution because it is
conceptually simpler, and also less memory consuming.

4. Experimental Results
Two sets of standard training material have been used for these
experiments: The standard WSJ0 SI-84 training data which include
7240 sentences from 84 speakers, and the standard set of 37518
WSJ0/WSJ1 SI-284 sentences from 284 speakers. Only the primary
microphone data were used for training. Using the SI-84 training
data, model sets containing respectively 493 (si84a), 884 (si84b),
and 1084 (si84c) models were trained, by varying the number of
occurrences of a triphone required in the training material. The
minimal number of occurrences were 500, 250 and 200 respectively.
A set of 3306 models were trained from the SI-284 training material
where each phone context had at least 250 occurrences in the training
data.

While we have built n-gram-backoff LMs directly from the 37M-
word standardized WSJ training text material, in these experiments

2In our implementation, a word lattice differs from a word graph only
because it includes word endpoint information.

5k - Conditions Corr. Subs. Del. Ins. Err.
Nov92, si84a, bg� 91.8 6.9 1.3 1.5 9.7
Nov92, si84c, bg 94.4 5.0 0.6 0.9 6.6
Nov92, si284, bg 96.0 3.6 0.3 0.9 4.8
Nov92, si284, tg 97.7 2.1 0.2 0.8 3.1
Nov93, si84c, bg 91.9 6.2 1.9 1.3 9.4
Nov93, si284, bg 94.1 4.8 1.2 0.9 6.8
Nov93, si284, tg 95.5 3.5 1.1 0.8 5.3

Table 1: 5k results - Word recognition results on the WSJ corpus
with bigram/trigram (bg/tg) grammars estimated on WSJ text data.�official ARPA NOV92 evaluation results.

all results are reported using the 5k or 20k, bigram and trigram
backoff LMs provided by Lincoln Labs [18] as required by ARPA
for participation in the tests.

The WSJ corpus provides a wealth of material that can be used for
system development. In our experiments, we have worked primarily
with the WSJ0-Dev (410 sentences,10 speakers), and the WSJ1-Dev
from spokes S5 and S6 (394 sentences, 10 speakers). Development
was done with the 5k closed vocabulary system in order to reduce
the computational requirements. The Nov92 5k and 20k nvp test
sets were used to assess progress during this development phase.

The LIMSI WSJ system was evaluated in the Nov92 DARPA eval-
uation test for the 5k-closed vocabulary using the standard bigram
language models [18] with the WSJ0 SI-84 training data. The offi-
cial reported results are given in the first line of Table 1 using 493
CD models (si84a), without the second derivative of the cepstral
coefficients. Increasing the number of CD models and the number
of features (si84c), reduced the error rate by about 30% over the
system used for the Nov92 evaluation. With the same model set,
a word error of 9.4% was obtained on the Nov93 test data. Using
the combined WSJ0/WSJ1 SI-284 training data reduces the error by
about 27% for both tests. When a trigram LM is used in the second
pass, the word error is reduced by 35% on the Nov92 test and by 22%
on the Nov93 test. The gap between the Nov92 and Nov93 results
is mainly due to speaker differences, as the perplexity for both test
sets are almost the same (111 for Nov92 versus 106 for Nov93).

Results are given in the Table 2 for the Nov92 nvp 64k test data using
both open and closed 20k vocabularies. With SI-84 training (si84b)
the word error rate is doubled when the vocabulary increases from
5k to 20k words and the test perplexity goes from 111 to 244. The

20k - Conditions Corr. Subs. Del. Ins. Err.
Nov92, si84b, bg 88.3 10.1 1.5 2.0 13.6
Nov92+, si84b, bg 86.8 11.7 1.5 2.7 15.9
Nov92+, si284, bg 91.6 7.6 0.8 2.6 11.0
Nov92+, si284, tg 93.2 6.2 0.6 2.3 9.1
Nov93+, si284, bg 87.1 11.0 1.9 2.3 15.2
Nov93+, si284, tg 90.1 8.5 1.4 1.9 11.8

Table 2: 20k/64k results - Word recognition results with 20,000
word lexicon on the WSJ corpus. Bigram/trigram (bg/tg) grammars
estimated on WSJ text data. +: 20,000 word lexicon with open test.



higher error rate with the 20k open lexicon can be attributed to the
out-of-vocabulary (OOV) words, which account for almost 2% of
the words in the test sentences. Processing the same 20k open test
data with a system trained on the SI-284 training data, reduces the
word error by 30%. The word error on the Nov93 20k test is 15.2%
with the same system. The use of a trigram reduces the error rate by
18% on the Nov92 test and 22% on the Nov93 test. As for the 5k
tests, the higher error rate for the Nov93 test data can be primarily
attributed to speaker differences.

The 20k trigram sentence error rates for Nov92 and Nov93 are 60%
and 62% respectively. Since this is an open vocabulary test, the lower
bound for the sentence error is given by the percent of sentences
with OOV words, which is 26% for Nov92 and 21% for Nov93. In
addition, there are inevitably errors introduced by the use of word
graphs generated by the first pass. The graph error rate (ie. the
correct solution was not in the graph) was 5% and 10% respectively
for Nov92 and Nov93. In fact, in most of these cases the errors
should not be considered search errors as the recognized string has a
higher likelihood than the correct string.

A final test was run using a 64k lexicon in order to eliminate the errors
due to unknown words. (In principle, all of the read WSJ prompts
are found in the 64k most frequent words, however, since the WSJ1
data were recorded with non-normalized prompts, additional OOV
words can occur.) Running a full 64k system was not possible with
the computing facilities available, so we added a third decoding
pass to extend the vocabulary size. Starting with the phone string
corresponding to the best hypothesis of the 20k trigram system,an A�
algorithm was used to generate a word graph using phone confusion
statistics and the 64k lexicon. This word graph was then used by the
recognizer with a 64k trigram grammar constructed at LIMSI using
the standard 37M-word WSJ training texts. Using this approach we
recovered only about 30% of the errors due to OOV words on the
Nov93 64k test, reducing the word error to 11.2% from 11.8%.

5. Discussion
In this paper, we have described the LIMSI Nov93 continuous speech
dictation system. The system uses CDHMM with Gaussian mix-
ture for acoustic modeling and n-gram statistics estimated on the
newspaper texts for language modeling. The recognizer uses a time-
synchronous graph-search strategy which is shown to still be viable
with vocabularies of up to 20k words when used with bigram back-
off language models. This one level implementation includes intra-
and inter-word CD phone models, intra- and inter-word phonolog-
ical rules, phone duration models, and gender-dependent models.
For trigram language models, decoding is performed in two forward
passes. The first pass generates a word graph using a bigram lan-
guage model, this graph is then used in a second acoustic pass with
the trigram language model. The recognizer has been evaluated in
the Nov92 and Nov93 ARPA tests with vocabularies of up to 20,000
words.

Looking at the recognition results for individual speakers, it ap-
pears that interspeaker differences are much more important than
differences in perplexity. Just considering the relationship between
speaking rate and word accurracy, in general, speakers that are faster
or slower than the average have a higher word error. It has been
observed that the better/worse speakers are the same on both the 5k
and 20k tests.

Improving the acoustic modeling, by taking advantage of the avail-
able training data, has led to better system performance. By increas-

ing the amount of training utterances from 7k to 37k, reduced the
word error by about 30%. In the LIMSI Nov93 system, a trigram
LM has been incorporated in a second acoustic pass. The trigram
pass gives an error rate reduction of 20% to 30% relative to the
bigram system. The combined error reduction is on the order of
50%. Comparable amounts of acoustic data from BREF[6, 13] and
text material from the French newspaper Le Monde have been used
to develop 5k and 20k recognizers for French. Results of evaluat-
ing this system were reported at the 1994 ARPA Human Language
Technology workshop [5].

References
1. F. Alleva, X. Huang, M.-Y. Hwang, “An Improved Search Al-

gorithm Using Incremental Knowledge for Continuous Speech
Recognition,” ICASSP-93.

2. L.R. Bahl et al, “A Fast Match for Continuous Speech Recog-
nition Using Allophonic Models,” ICASSP-92.

3. S.B. Davis, P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously
spoken sentences,” IEEE Trans. ASSP, 28(4), 1980.

4. J.L. Gauvain, L. Lamel, G. Adda, M. Adda-Decker, “ Speaker-
Independent Continuous Speech Dictation,” Eurospeech-93.

5. J.L. Gauvain, L. Lamel, G. Adda, M. Adda-Decker, “The
LIMSI Continuous Speech Dictation System,” ARPA Work-
shop Human Language Technology, 1994.

6. J.L. Gauvain, L. Lamel, M. Eskénazi, “Design considerations
& text selection for BREF, a large French read-speech corpus,”
ICSLP-90.

7. J.L. Gauvain, C.H. Lee, “Bayesian Learning for Hidden
Markov Model with Gaussian Mixture State Observation Den-
sities,” Speech Communication, 11(2-3), 1992.

8. L. Gillick, R. Roth, “A Rapid Match Algorithm for Continuous
Speech Recognition,” DARPA Speech & NL Wshop, 1990.

9. S.M. Katz, “Estimation of Probabilities from Sparse Data for
the Language Model Component of a Speech Recognizer,”
IEEE Trans. ASSP, 35(3), 1987.

10. L. Lamel, J.L. Gauvain, “Continuous Speech Recognition at
LIMSI,” Final review DARPA ANNT Speech Prog., Sep. 1992.

11. L. Lamel, J.L. Gauvain,“High Performance Speaker-Indepen-
dent Phone Recognition Using CDHMM,” Eurospeech-93.

12. L. Lamel, J.L. Gauvain, “Identifying Non-Linguistic Speech
Features,” Eurospeech-93.

13. L. Lamel, J.L. Gauvain, M. Eskénazi, “BREF, a Large Vocab-
ulary Spoken Corpus for French,” Eurospeech-91.

14. H. Murveit et al, “Large-Vocabulary Dictation using SRI’s De-
cipher Speech Recognition System: Progressive Search Tech-
niques,” ICASSP-93.

15. H. Ney, “The Use of a One-Stage Dynamic Programming Al-
gorithm for Connected Word Recognition,” IEEE Trans. ASSP,
32(2), pp. 263-271, April 1984.

16. D.S. Pallett et al., “Benchmark Tests for the DARPA Spoken
Language Program,” ARPA Wshop Human Lang. Tech., 1993.

17. D.S. Pallett et al., “1993 Benchmark Tests for the DRPA Spoken
Language Program,” ARPA Wshop Human Lang. Tech., 1994.

18. D.B. Paul and J.M. Baker, “The Design for the Wall Street
Journal-based CSR Corpus,” ICSLP-92.

19. R. Schwartz et al.,“New uses for N-Best Sentence Hypothesis
within the BYBLOS Speech Recognition System,” ICASSP-
92.


