
Developments in Large Vocabulary Dictation:The LIMSI Nov94 NAB System yJ.L. Gauvain, L. Lamel, M. Adda-DeckerLIMSI-CNRS, BP 13391403 Orsay cedex, FRANCEfgauvain,lamel,maddag@limsi.frABSTRACTIn this paper we report on our development work in large vo-cabulary, American English continuous speech dictation onthe ARPA NAB task in preparation for the November 1994evaluation. We have experimented with (1) alternative anal-yses for the acoustic front end, (2) the use of an enlargedvocabulary of 65k words so as to reduce the number of errorsdue to out-of-vocabulary words, (3) extensions to the lexi-cal representation, (4) the use of additional acoustic trainingdata, and (5) modi�cation of the acoustic models for tele-phone speech. The recognizer was evaluated on Hubs 1 and2 of the fall 1994 ARPA NAB CSR Hub and Spoke Bench-mark test. Experimental results on development and evalu-ation test data are given, as well as an analysis of the errorson the development data.1. IntroductionResearch in large vocabulary speaker-independent dicta-tion at LIMSI[5, 6] makes use of large newspaper-basedcorpora such as the ARPA Wall Street Journal-basedContinuous Speech Recognition corpus (WSJ)[14]. TheLIMSI recognizer has been evaluated in the last 4 ARPACSR Benchmark tests and most recently in the Novem-ber 1994 North American Business (NAB) News CSRtest, Hubs 1 and 2[4].The goal of the Hub 1 Unlimited Vocabulary NAB NewsBaseline is to improve basic performance on unlimited-vocabulary, speaker-independent (SI) speech recognitionof read-speech. The test prompts were selected fromseveral sources of North American Business news (DowJones Information Services, New York Times, ReutersNorth American Business Report, Los Angeles Times,Washington Post). Results are reported for two sys-tems: H1-C1, where the acoustic training data and the20k trigram-backo� language model are �xed so as to as-sess and compare acoustic models; and H1-P0, where anytechniques may be used to improve performance, and anyacoustic and language model training data are permit-ted predating June 16, 1994. The LIMSI H1-P0 systemused a 65k trigram language model. The aim of Hub 2Telephone NAB News is to demonstrate SI recognitionyThis work is partially funded by the LRE project 62-058SQALE.

performance on unlimited-vocabulary read-speech overlong-distance telephone lines. The LIMSI H2-P0 systemwas essentially our H1-P0 system adapted to the tele-phone channel, and with a 40k trigram language model.2. General Recognizer OverviewIn this section we give a general overview of the rec-ognizer, which is quite similar to our Nov93 system.The primary issues addressed are acoustic modeling, lan-guage modeling, lexical representation, and the decodingstrategy.2.1. Acoustic ModelingThe recognizer makes use of continuous density HMM(CDHMM ) with Gaussian mixture for acoustic model-ing. The main advantage continuous density modelingo�ers over discrete or semi-continuous (or tied-mixture)observation density modeling is that the number of pa-rameters used to model an HMM observation distribu-tion can easily be adapted to the amount of availabletraining data associated to this state. As a consequence,high precision modeling can be achieved for highly fre-quented states without the explicit need of smoothingtechniques for the densities of less frequented states. Dis-crete and semi-continuous modeling use a �xed numberof parameters to represent a given observation densityand therefore cannot achieve high precision without theuse of smoothing techniques. This problem can be alle-viated by tying some states of the Markov models. How-ever, since this requires careful design and some a prioriassumptions, these techniques are primarily of interestwhen the training data is limited and cannot easily beincreased.The acoustic models are sets of context-dependent (CD),position independent phone models, which include bothintra-word and cross-word contexts. The contexts tobe modeled are automatically selected based on theirfrequencies in the training data. Using this approach,the most frequent triphone contexts are explicitly mod-eled and less frequent contexts are modeled by less spe-ci�c models (right- and left-context phone models andcontext-independent phone models). Each phone modelProc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 1



is a left-to-right CDHMM with Gaussian mixture obser-vation densities (typically 32 components). The covari-ance matrices of all the Gaussians are diagonal. Sepa-rate male and female models are used to more accuratelymodel the speech data. These models are obtained fromspeaker-independent seed models using Maximuma pos-teriori estimators[7].2.2. Language ModelingLanguage modeling entails incorporating constraints onthe allowable sequences of words which form a sentence.Statistical n-gram models attempt to capture the syn-tactic and semantic constraints by estimating the fre-quencies of sequences of n words. Bigram and trigrambacko� LMs language models were estimated on the 230million word CSR LM-1 training text material (LDC,Aug94). A backo� mechanism [9] is used to smooth theestimates of the probabilities of rare n-grams by relyingon a lower order n-gram when there is insu�cient train-ing data, and to provide a means of modeling unobservedn-grams. Another advantage of the backo� mechanism isthat LM size can be arbitrarily reduced by relying moreon the backo�, by increasing the minimum number ofrequired n-gram observations needed to include the n-gram. This property is used in the early decoding passesof the recognizer to reduce computational requirements.2.3. Lexical RepresentationThe lexicons are represented phonemically using a setof 46 phonemes, including silence. Alternate pro-nunciations are provided for about 11% of the words(counted on the H1-C1 20k vocabulary and without tak-ing into account alternate pronunciations due to optionalphones). A pronunciation graph is generated for eachword from the baseform transcription to which wordinternal phonological rules are optionally applied dur-ing training and recognition to account for some of thephonological variations observed in 
uent speech. Thetraining and test lexicons were created at LIMSI and in-clude some input from modi�ed versions of the TIMIT,Pocket and Moby lexicons. All pronunciations have beenmanuallyveri�ed. Some example lexical entries are givenin Figure 1. The �rst word \interest", may be pro-duced with 2 or 3 syllables, depending upon the speaker,where in the latter case the /t/ may be deleted. In con-trast, the alternate pronunciations for \excuse" re
ectdi�erent parts of speech (verb or noun). In the thirdcase, the abbreviation \corp." may be pronounced inits full or its abbreviated form.2.4. Decoding strategyOne of the most important problems in implementingthe decoder of a large vocabulary speech recognizer is

interest IntrIst InftgXIstexcuse Ekskyu[sz]corp. kcrp kcrpXeSxnbaffling b@f[Ll]|GFigure 1: Example lexical entries, with phones in fgbeing optional, phones in [ ] being alternates.the design of an e�cient search algorithm to deal withthe huge search space, especially when using languagemodels with a longer span than two successive words,such as trigrams. The most commonly used approachfor small and medium vocabulary sizes is the one-passframe-synchronous beam search [12] which uses a dy-namic programming procedure. This basic strategy hasbeen extended by adding other features such as \fastmatch"[8, 1], N-best rescoring[16], progressive search[11]and one-pass dynamic network decoding[13]. The two-step approach used in our system is based on the idea ofprogressive search where the information between levelsis transmitted via word graphs. Due to memory con-straints, each step may consist of one or more passes,with each using successively more re�ned models. Alldecoding passes use cross-word CD triphone models.Prior to word recognition, sex identi�cation is performedfor each sentence using phone-based ergodic HMMs[10].The word recognizer is then run with a bigram LM us-ing the acoustic model set corresponding to the identi�edsex.The �rst step of the decoder uses a bigram-backo� LMwith a tree organization of the lexicon for the back-o� component. This one-pass frame-synchronous beamsearch, which includes intra- and inter-word CD phonemodels, and gender-dependent models, generates a listof word hypotheses resulting in a word lattice.The tree representation of the backo� component (�rstintroduced in our Nov92 CSR system) provides an e�-cient way of arbitrarily reducing the search space and oflimiting the computational requirements of the �rst passwhich represent on the order of 75% of the computa-tion need for the entire decoding process. Additionally,this strategy allows us to use a static graph instead ofbuilding it dynamically and therefore avoids the com-putational bookkeeping costs associated with dynamicnetwork decoding.The key elements of the procedure used to generate theword graph from the word lattice are the following. Inour implementation, a word lattice di�ers from a wordgraph only because it includes word endpoint informa-tion. First, a word graph is generated from the latticeby merging three consecutive frames (i.e. the minimumProc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 2



duration for a word in our system). Then, \similar"graph nodes are merged with the goal of reducing theoverall graph size and generalizing the word lattice. Thisstep is reiterated until no further reductions are possible.Finally, based on the trigram backo� language modela trigram word graph is then generated by duplicatingthe nodes having multiple language model contexts. Bi-gram backo� nodes are created when possible to limit thegraph expansion. The trigram step may be carried outin more that one pass, using successively larger languagemodels.It should be noted that this decoding strategy based onmultiple forward passes can in fact be implemented ina single forward pass using one or two processors. Weare using a two-step solution because it is conceptuallysimpler, and also due to memory constraints.3. Recent System DevelopmentsIn this section we describe the main aspects of our devel-opmental work in anticipation of the Nov94 evaluations.3.1. Acoustic Front End OptimizationThe front end con�guration used in our Nov92 andNov93 WSJ systems was optimized using a portion ofthe Resource Management development data. For eachframe (30 ms window), a 15 channel Bark power spec-trum over the 8kHz bandwidth was obtained by apply-ing triangular windows to the DFT output. From this16 Bark-frequency scale cepstrum coe�cients and their�rst and second order derivatives were computed.We have since varied this analysis looking at di�erentmethods to obtain the cepstrum-based feature vector(LPCC vs MFCC), as well as the size of the featurevector. Analysis windows of 15ms, 20ms, 24ms, and30ms were tried, with di�erent spectral weightings suchas the commonly used Mel and Bark frequency scales,and other intermediary interpolations. The number of�lters was varied from 15 to 64, and the number of cep-stral coe�cients from 13 to 17.Four sets of test data were used to assess the di�erentanalyses: the Nov92-5k, Nov93-S6, Nov93-H2 evaluationtest data and the 1993 development test data SIdt-5k.In total, these contain 1275 sentences with 21,705 wordsfrom 28 speakers. All the experiments used a single set of903 SI models trained on the standard SI-84 training setwith the LIMSI Nov93 lexicons (training and 5k) whichare publicly available, and the o�cial 5k-nvp closed vo-cabulary LM model provided by Lincoln Labs. Eventhough this is nominally a closed vocabulary test, thereis an out-of-vocabulary rate of 0.2%.

% Word ErrorTest Data # sentences Nov92/93 Nov94Nov93-S6 217 10.8 10.0SIdt-5k 513 11.3 10.6Nov92-5k 330 7.0 6.3Nov93-h2 215 10.0 8.9All 1275 9.9 9.1Table 1: Experimental results on development data be-fore and after optimization of the acoustic front end us-ing the standard 5k-nvp closed vocabulary bigram LM.The best con�guration was found to be with a 30 msframe and 26 cosine �lters on a Mel scale over the 8kHzbandwidth, from which 15 cepstrum coe�cients and anormalized energy are derived. The error rates for thenew analysis (Nov94) and the old analysis (Nov92/93)are given for the individual test sets in Table 1. Theoverall error reduction is small (8%), but signi�cant, anda consistent gain is obtained across the test sets, so thissetup was used for the H1 systems in the Nov94 evalua-tion.3.2. Use of Additional Acoustic DataLast year we reported a word error reduction of about30% in using the combined WSJ0/WSJ1 SI-284 training(37k sentences) as compared to SI-84 training (7k sen-tences) with a bigram LM[3]. On this year's H1-C1 devdata (trigram LM) we observed only a 15% error reduc-tion when going from SI-84 training to SI-284 training.The improvement was obtained by increasing the num-ber of CD models using a �xed threshold of 250 occur-rences to model a given context.This year we used all 85k sentences of WSJ0/WSJ1 read-speech training data, but observed only a small improve-ment of about 2% compared to SI-284 training with thesame number of CD models. By increasing the number ofCD modelsto 5000 (using the same �xed minimumcountthreshold of 250) increased the word error by about 4%.The reason for this disappointing result is surely due tothe lack of homogeneity of the new data with the old, asall the additional data is essentially from a small num-ber of long-term speakers. This is consistent with ourprevious observations that for our system better perfor-mance is obtained with the short-term speaker data (SI-84) than with comparable amounts of long term data(SI-12). In our 5k system, training comparable modelsets with the long-term speakers data gives a word er-ror 15-20% higher than that obtained with short-termspeaker training.Proc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 3



3.3. Text processing/Lexical CoverageThe lexical coverage of the 5k and 20k most frequentwords in the WSJ texts are only 90.6% and 97.5% re-spectively. With a 20k word vocabulary and unrestrictedtest data, we observe about 1.6 errors for each out-of-vocabulary (OOV) word. Thus, an obvious approach toreducing the errors due to OOV words is to increase thesize of the lexicon. Our system is limited to a maximumvocabulary size of 65k words.Prior to selecting a larger recognition vocabulary,the CSR LM-1 training texts were cleaned to re-move the most frequent errors inherent in thetexts or arising from processing with the distributedtext processing tools. The cleaning consisted pri-marily of correcting obvious mispellings (such asmilllion, officals, littleknown), systematic bugsintroduced by the text processing tools, and expandingabbreviations and acronyms in a consistent manner. Thetexts were also transformed to be closer to the observedAmerican reading style using a set of rules and the corre-sponding probabilities derived from the alignment of theWSJ0/WSJ1 prompt texts with the transcriptions of theacoustic data. Some example rules and their probabili-ties are:hundred<nb> =) hundred and<nb> (0.5)one eighth =) an eighth (0.50)corporation =) corp. (0.29)incorporated =) inc. (0.22)one hundred =) a hundred (0.19)million dollars =) million (0.15)billion dollars =) billion (0.15)The cleaning of the training texts reduced perplexity ondevelopment data by 5 points and resulted in a bettercoverage of the 65k lexicon. This lexicon was selectedby measuring the perplexity and OOV rates on the de-velopment data (Dev93-H1, Nov93-H1 and Dev94-H1)for the most frequent 65k words in di�erent subsets ofthe training texts. Our aim was to minimize the overallOOV rate, while assuring a good balance across data setsfor OOV and perplexity. The 65k lexicon thus obtainedconsists of the 65,451 most common words of a subsetof this training data (years 92-94) as this was found toprovide signi�cantly better lexical coverage than was ob-tained with all the data (years 87-94). In Table 2 thelexical coverage of several lexicons are given for the 1994H1 and H2 data showing the combined e�ect of textcleaning and vocabulary selection. As stated earlier, thetexts of the development data were removed from the LMtraining data so as to give better estimates of the lexi-cal coverage on unseen data. For all test sets, the OOVrate with our 20k wordlist is signi�cantly smaller than

LexiconTest set Baseline 20k 20k 40k 65kDev94-H1 2.7 2.2 0.8 0.4Eval94-H1 2.5 2.0 0.8 0.4Dev94-H2 2.7 2.1 0.9 0.4Eval94-H2 3.1 2.6 1.3 0.7Table 2: OOV rate (%) on the H1 and H2 test sentencesfor 20k, 40k, and 65k lexicons.that of the baseline 20k wordlist. The OOV rate withthe 65k wordlist on the Dev94 test data is 0.39% whichis a pretty accurate indicator of the 0.42% observed onthe 1994 H1 test data. The OOV rate with the 40k lexi-con used in Hub 2 was 0.8% on the H1 development andevaluation test data, and higher 0.9% and 1.3% on theH2 development and evaluation test data, respectively.After processing the training texts, removing all articlescontaining the prompts for the devtest acoustic data,and selecting the recognition lexicon, the H1-P0 65k andthe H2-P0 40k language models were trained on the CSRtraining texts and read speech transcriptions predatingJune 16, 1994.3.4. Recognition LexiconWe also extended the training and recognition lexiconsto include additional frequent pronunciations found inthe training data as well as alternate pronunciationswhich have been seen to occur systematically. An ex-ample is the su�x \ization" which can be pronouncedwith a diphthong (/Y/) or a schwa (/x/). As always,we attempt to insure and improve the consistency ofthe pronunciations for similar words and di�erent wordforms. For example, in the new lexicon all words end-ing in \mann" are transcribed with the phone sequence/m@n/. In previous versions this was transcribed as ei-ther /m@n/ or /mxn/ or both. We have observed thatfast speakers tend to poorly articulate (and sometimesskip completely) unstressed syllable, particularly in longwords with sequences of unstressed syllables. Althoughsuch long words are typically well recognized, often anearby function word is deleted. In an attempt to reducethese kinds of errors, alternate pronunciations for longwords such as authorization, positioning, and re-alistically were added to the lexicon allowing schwa-deletion or syllabic consonants in unstressed syllables.While these changes were not systematically evaluated,results with the new lexicon reduced the overall worderror reported in Table 1 to 9.0%, with a small improve-ment on each individual test set. On the Dev94-H1 testdata the improved lexicon reduced the word error from13.0% to 12.8%.Proc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 4



The recognition lexicon was extended to the new 65kvocabulary. Pronunciations for the new words were gen-erated by semi-automatically applying a�x rules to ex-isting lexical entires, or were added by hand. A substan-tial portion of the new lexical items were proper names,many of which are of foreign origin. In the 65k lexicon,9% on the words have more than one pronunciation, andon average there are 1.1 pronunciations per word (notcounting alternate pronunciation corresponding to op-tional phones). 4% of the words contain optional phones,typically stops or reduced vowels that are allowed to bedeleted. The largest number of pronunciations for a sin-gle word is 8, for the word \apartheid" represented as/xpar[Tt][Ye][td]/. 5% of the entries have alternate pro-nunciations which are typically di�erences in fricativevoicing or in vowel color such as use /yu[zs]/ and devise/dIvY[sz]/ (corresponding to di�erent parts of speech),and disney /dI[sz]ni/ and adelson /[@e]dLsxn/ (cor-responding to di�erent pronunciation variants.3.5. Experiments with Telephone DataIn order to develop a Hub 2 system, we carried out ex-periments with the Nov93 Spoke 6 evaluation test datawhich provides parallel speech data for wideband andtelephone quality speech. The multichannel data allowsmore accurate comparisons to be made by controllingsome of the factors that a�ect recognition accuracy. Thesystem was evaluated using the 5k vocabulary and stan-dard trigram LM. For the telephone speech the acousticfeature vector contains 13 MFCCs and their �rst and 2ndorder derivatives computed on the 3.5kHz bandwidth ev-ery 10ms.The basic idea is to start with clean speech models andto adapt them to the telephone channel conditions. Thisadaptation is performed by reducing the bandwidth ofthe clean speech and adapting the reduced bandwidthacoustic models with telephone speech. For each of thetraining sets (SI-84 and SI-284) we built 3 sets of acousticmodels so as to measure the recognition performancein di�erent acoustic channel conditions and to evaluatethe progressive reduction in channel mismatch. These 3sets correspond to training with 8kHz bandwidth cleanspeech, training with reduced bandwidth clean speech,and to adaption of the latter model set with telephonespeech.Experimental results are given in Table 3 for SI-84and SI-284 training with and without telephone adap-tation data, for 3 channel conditions: Sennheiser 8kHz,Sennheiser reduced bandwidth, and telephone. On theSennheiser 8kHz data, word errors of 7.5% and 6.3%wereobtained with SI-84 and SI-284 models, respectively. Us-ing a reduced bandwidth analysis increased the word er-

Training Test dataConditions Senn., 8k Senn., Tel Tel.SI-84 7.5 8.0 14.8SI-84 + ad - 8.5 12.1SI-284 6.3 6.3 13.1SI-284 + ad - 7.2 10.4Table 3: Experimental results on 1993 Spoke 6 evalua-tion test data using the standard 5k lexicon and trigramLM.ror to 8.0% for SI-84 training, but no error increase wasobserved for SI-284 training. For the telephone speechdata, the channel mismatch has been partially compen-sated for by adapting the clean speech models with arelatively small amount of telephone data (only 403 sen-tences from Dev93-S6 for SI-84, and 7,130 sentences forSI-284). With the adapted SI-84 models, the word erroron telephone data was reduced by 18%, and the word er-ror on Sennheiser data increased by 6%. For the adaptedSI-284, the word error on the telephone data was reducedby about 21%, with an increase of 14% on the Sennheiserdata. Thus, the additional training data used to adaptthe SI-284 models leads to a better match to the tele-phone channel. The word error on telephone data isabout 60% higher than the error rate obtained for theSennheiser data.4. Nov94 NAB SystemsThe system con�gurations used in the Nov94 NAB CSRevaluation are described in this section, along with ex-perimental results on the H1 and H2 tests.4.1. Nov94 NAB H1 SystemThe acoustic models used in the baseline test H1-C1 weretrained on the standard set of 37,518 WSJ0/WSJ1 sen-tences (SI-284, primary microphone). The resulting twosets of 3309 gender-dependent models each have 308kGaussians. For the primary system, H1-P0, all the avail-able WSJ0/WSJ1 training data (85,343 sentences from359 speakers) were used to train two sets of 3600 gender-dependent acoustic models. Each model set has 343kGaussians.For the H1-C1 system, the o�cial 20k trigram languagemodel provided by CMU was used[15]. For the H1-P0 condition, a 65k trigram LM was trained on thecleaned-up versions of the standard CSR LM-1 train-ing texts (years 87-94), the 1994 NAB development data(excluding articles containing the dev test prompts), andthe WSJ0/WSJ1 read speech transcriptions (85,343 sen-tences). The CMU language modeling toolkit[15] wasused to build the 65k LM.Proc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 5



Test dataSystem Dev94 Eval94H1-C1, 20k 12.8 12.7H1-P0, 40k 9.8 10.3H1-P0, 65k - 9.8H2-P0, 40k - 25.1Table 4: Results on 1994 test data (unadjudicated1).For the H1-C1 system, the �rst pass of the decoder useda bigram-backo� LM with a cuto� of 10. This resultedin a word graph with about 2.2M interword connections,including those corresponding to the lexicon tree of thebacko� component. The resulting phone graph has 169kphone nodes and 2.6M arcs. The same bigram cuto� wasused for the H1-P0 and H2-P0 systems.4.2. Hub-1 Experimental ResultsThe Nov94-H1 devtest data contains 316 sentences from20 speakers, each with prompt texts selected from NorthAmerican Business news. Recognition results for theNov94 tests are given in Table 4. For comparison, re-sults are also given for the Dev94-H1 data containing310 sentences from 20 speakers. The H1-C1 results areseen to be comparable for the two data sets. The use ofa larger vocabulary is seen to substantially reduce theword error, mainly by reducing the OOV rate. Com-pared to the H1-C1 system, the H1-P0 system reducesthe word error by 23%.To better understand the errors due to OOV words, adetailed analysis of the 198 OOV words in the Dev94-H1-C1 test was carried out. On average, 1.6 word errorsare generated for each OOV word. 45% of the OOV er-rors are single word substitutions and 45% have 2 errors.The remaining 10% generate 3 or more errors. The useof a 40k vocabulary reduces the OOV rate from 2.7%to 0.8%, so potentially 70% of the 20k OOV words canbe recognized. In the 40k run, 45% the 20k OOV wordswere correctly recognized. Some examples of typical er-rors on OOV words are:stringer =) strangermarch's =) marchesdivorces =) divorce isbusier =) busy yournoriyuki =) nor you keepIn the �rst two examples an unknown word is replaced1We have chosen to provide the unadjudicated results in orderto facilitate a comparison with results on the development testdata. The adjudicated word error rates on the Nov94 evaluationtest data are: H1-P0: 9.2%, H1-C1: 12.1%, H2-P0: 24.6%.

by a homophone or a phonemically close word. The nexttwo words divorces and busier generate two errors theroot word and a function word to replace the su�x. Inaddition there are errors due to compound words suchas overblown being recognized as the sequence overblown, which should perhaps not really be consideredas errors. Reducing the OOV rate recovers on average1.2 errors for every OOV word removed.4.3. Nov94 NAB H2 SystemOur aim for the Hub 2 test was to minimally change ourH1-P0 system and to run it on the telephone data. Forthe telephone hub, H2-P0, a reduced bandwidth analysiswas carried out as described earlier, and SI models werebuilt from the SI-284 primary microphone (Sennheiser)data. These models were then adapted using MAP es-timation with 7130 sentences: 403 sentences from the1993 WSJ1 Spoke 6 development test data, 313 sen-tences from 1994 H2-dev data and 6,414 WSJ sentencesfrom the macrophone corpus[2]. Due to time constraintswe were not able to directly port our H1-P0 system tothis task, and needed to limit the vocabulary size to40k words. The 40k vocabulary list was obtained by se-lecting the 39,637 most common words of the 65k wordlist. The OOV rate of this vocabulary was 0.9% on thedev94-h2 data as given in Table 2. The 40k LM wastrained on the same text material as the H1-P0 sys-tem, i.e., on the cleaned-up versions of the standard CSRLM-1 training texts (years 87-94), the 1994 NAB devel-opment data (excluding articles containing the dev testprompts), and the WSJ0/WSJ1 read speech transcrip-tions (85,343 sentences). We also used a single set of1928 gender-independent CD models, compared to twosets of 3600 models as used in H1-P0. This model sethad 184k Gaussians.We observed that using comparable pruning thresholdsfor H2 as had been used in H1 considerably increased thedecoding time, as well as the word lattice size. So in or-der to keep the decoding time and the memory require-ments essentially the same as the H1 system, a muchmore aggressive pruning level was used at the risk ofintroducing search errors.4.4. Hub-2 Experimental ResultsThe Hub 2 test data consists of 20 speakers readingabout 15 sentences each for a total of 312 sentences. Theprompt texts were taken from the same source as the H1test, but the exact texts and speakers are not the same.The word error for the H2-P0 test with a 40k vocabularyis 25.1%. The error rate is over twice that of the H1-P040k system. This di�erence is larger than that observedin our development work with the matched Spoke 6 dataProc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 6



(see Table 3) and may be attributed to di�erences in thechannel, as well as to the speaking style which seemsto be less formal. The Hub 2 data was recorded overlong distance telephone lines in unknown environments,and whereas the Spoke 6 data were recorded at SRI overexternal lines.4.5. Additional ObservationsSince a word graph is used to transmit information be-tween successive passes, it is obviously important thatthe correct solution be in the graph. In general, wehave found the word graph error to be small, on theorder of 2% for the graph used in the last pass (i.e. theworst case). However, we have noticed that poor speak-ers tend to have higher graph error rates, which can beas high as 10%. The average graph error on the tele-phone data is 8%, which is signi�cantly higher than thatof the Sennheiser channel.More generally, the system appears to not be very robustwith regard to channel and speaker di�erences. The 40kH2 system had a word error of 25%, compared to 10%for the 40k H1 system. We also have observed large dif-ferences in word error across speakers. Concerning theDev94-H1 test set the best speaker (4q9) had an errorrate of 3.4%, whereas the worst speaker (4qg) had a worderror of 42.7%. (This speaker is di�cult for even humansto understand.) A large di�erence in error rate was alsoobserved for the Nov94-H1 test data where the word er-ror ranged from 1.3% for the best speaker (4t3) to 24.5%for the worst (4td). Some of the errors may be attributedto higher than average OOV rates or high perplexitysentences, where the text is not well predicted by thelanguage model. However, the high error rates observedfor poor speakers are primarily due to non-standard pro-nunciations and to poorly articulated words (which fre-quently occur for fast speaking rates). In analyzing theerrors for the worst speakers, we observed many errorsinvolving groups of frequent short words such as \wheredo you get" which was pronounced as \where'dya get"and recognized as \weren't get" or \were ticket".5. SummaryIn the paper we have presented our 1994 ARPA NABCSR system and highlighted some of the more importantaspects of our development work. We developed a 65k-word speech recognizer which makes use of phone-basedCDHMMs with Gaussian mixture for acoustic modelingand 3-gram statistics estimated on NAB newspaper textsfor language modeling. The system uses a multipass de-coder, where more accurate models are used in successivepasses and information is transmitted between passes viaword graphs.

During our development work, we mainly worked on im-proving the acoustic front end, the lexical coverage, thelexicon representation and the acoustic models throughthe use of more acoustic data. Regarding this last point,we were disappointed to observe that by using as manyas 85k sentences of acoustic training data instead of 37ksentences (SI-284 data set) does not signi�cantly improvethe model accuracy. We attribute this partly to the factthat the mixture of \long-term" and \short-term" speak-ers in the 85k sentences constitutes an inhomogeneousdata set that our current training strategy is not ablethe use adequately.In order to port our system to the telephone channel, weadapted acoustic models trained on reduced bandwidthclean speech with a relatively small amount of telephonetraining data coming primarily from the Macrophonecorpus.For a speaker-independent, open-vocabulary read-speechtest, a word error of 9.8%was obtained with a 65k vocab-ulary system. Using a vocabulary of 40k words, a worderror of 10.3% was obtained. With the same 40k vocab-ulary the word error on telephone speech from di�erentspeakers is 25.1%Increasing the vocabulary size, at least up to 65k words,was found to reduce the average word error. This sim-ple approach to reducing the errors due to OOV wordsappears to be e�ective despite the potential increasedconfusability of the lexical entries. We observed that byreducing the OOV rate, we recover on average 1.2 timesas many errors as OOV words removed.The observed large di�erence in performance acrossspeakers is certainly an outstanding challenge for speechrecognition. The high error rates observed for poorspeakers arise mainly from non-standard pronunciationsand high speaking rates which result in poorly articu-lated words. We have observed that better acoustic andlanguage models do not signi�cantly improve these er-rors. Modeling at the phonological level, perhaps withparticular pronunciations that are invoked for frequentword sequences or for fast speakers, and speaker adapta-tion techniques may be needed to improve performance.References1. L.R.Bahl et al, \A Fast Match for Continuous SpeechRecognition Using Allophonic Models," ProceedingsICASSP-92.2. J. Bernstein, K. Taussig, J. Godfrey, \Macrophone:An American English Telephone Speech Corpus for thePolyphone Project," Proceedings ICASSP-94.3. J.L.Gauvain, L.F. Lamel, G.Adda, M.Adda-Decker,\The LIMSI Continuous Speech Dictation System:Evaluation on the ARPA Wall Street Journal Task,"Proc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan'95 7
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