Developments in Large Vocabulary Dictation:
The LIMSI Nov94 NAB System |
J.L. Gauvain, L. Lamel, M. Adda-Decker

LIMSI-CNRS, BP 133
91403 Orsay cedex, FRANCE

{gauvain,lamel,madda}@limsi.fr

ABSTRACT

In this paper we report on our development work in large vo-
cabulary, American English continuous speech dictation on
the ARPA NAB task in preparation for the November 1994
evaluation. We have experimented with (1) alternative anal-
yses for the acoustic front end, (2) the use of an enlarged
vocabulary of 65k words so as to reduce the number of errors
due to out-of-vocabulary words, (3) extensions to the lexi-
cal representation, (4) the use of additional acoustic training
data, and (5) modification of the acoustic models for tele-
phone speech. The recognizer was evaluated on Hubs 1 and
2 of the fall 1994 ARPA NAB CSR Hub and Spoke Bench-
mark test. Experimental results on development and evalu-
ation test data are given, as well as an analysis of the errors
on the development data.

1. Introduction

Research in large vocabulary speaker-independent dicta-
tion at LIMSI[5, 6] makes use of large newspaper-based
corpora such as the ARPA Wall Street Journal-based
Continuous Speech Recognition corpus (WSJ)[14]. The
LIMSI recognizer has been evaluated in the last 4 ARPA
CSR Benchmark tests and most recently in the Novem-
ber 1994 North American Business (NAB) News CSR
test, Hubs 1 and 2[4].

The goal of the Hub 1 Unlimited Vocabulary NAB News
Baseline is to improve basic performance on unlimited-
vocabulary, speaker-independent (ST) speech recognition
of read-speech. The test prompts were selected from
several sources of North American Business news (Dow
Jones Information Services, New York Times, Reuters
North American Business Report, Los Angeles Times,
Washington Post). Results are reported for two sys-
tems: H1-C1, where the acoustic training data and the
20k trigram-backoff language model are fixed so as to as-
sess and compare acoustic models; and H1-P0, where any
techniques may be used to improve performance, and any
acoustic and language model training data are permit-
ted predating June 16, 1994. The LIMSI H1-P0 system
used a 65k trigram language model. The aim of Hub 2
Telephone NAB News is to demonstrate SI recognition

tThis work is partially funded by the LRE project 62-058
SQALE.

performance on unlimited-vocabulary read-speech over
long-distance telephone lines. The LIMSI H2-P0 system
was essentially our H1-P0O system adapted to the tele-
phone channel, and with a 40k trigram language model.

2. General Recognizer Overview

In this section we give a general overview of the rec-
ognizer, which is quite similar to our Nov93 system.
The primary issues addressed are acoustic modeling, lan-
guage modeling, lexical representation, and the decoding
strategy.

2.1. Acoustic Modeling

The recognizer makes use of continuous density HMM
(CDHMM ) with Gaussian mixture for acoustic model-
ing. The main advantage continuous density modeling
offers over discrete or semi-continuous (or tied-mixture)
observation density modeling is that the number of pa-
rameters used to model an HMM observation distribu-
tion can easily be adapted to the amount of available
training data associated to this state. As a consequence,
high precision modeling can be achieved for highly fre-
quented states without the explicit need of smoothing
techniques for the densities of less frequented states. Dis-
crete and semi-continuous modeling use a fixed number
of parameters to represent a given observation density
and therefore cannot achieve high precision without the
use of smoothing techniques. This problem can be alle-
viated by tying some states of the Markov models. How-
ever, since this requires careful design and some a priori
assumptions, these techniques are primarily of interest
when the training data is limited and cannot easily be
increased.

The acoustic models are sets of context-dependent (CD),
position independent phone models, which include both
intra-word and cross-word contexts. The contexts to
be modeled are automatically selected based on their
frequencies in the training data. Using this approach,
the most frequent triphone contexts are explicitly mod-
eled and less frequent contexts are modeled by less spe-
cific models (right- and left-context phone models and
context-independent phone models). Each phone model
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is a left-to-right CDHMM with Gaussian mixture obser-
vation densities (typically 32 components). The covari-
ance matrices of all the Gaussians are diagonal. Sepa-
rate male and female models are used to more accurately
model the speech data. These models are obtained from
speaker-independent seed models using Maximum a pos-
teriori estimators[7].

2.2. Language Modeling

Language modeling entails incorporating constraints on
the allowable sequences of words which form a sentence.
Statistical n-gram models attempt to capture the syn-
tactic and semantic constraints by estimating the fre-
quencies of sequences of n words. Bigram and trigram
backoff LMs language models were estimated on the 230
million word CSR LM-1 training text material (LDC,
Aug94). A backoff mechanism [9] is used to smooth the
estimates of the probabilities of rare n-grams by relying
on a lower order n-gram when there is insufficient train-
ing data, and to provide a means of modeling unobserved
n-grams. Another advantage of the backoff mechanism is
that LM size can be arbitrarily reduced by relying more
on the backoff, by increasing the minimum number of
required n-gram observations needed to include the n-
gram. This property is used in the early decoding passes
of the recognizer to reduce computational requirements.

2.3. Lexical Representation

The lexicons are represented phonemically using a set
of 46 phonemes, including silence.  Alternate pro-
nunciations are provided for about 11% of the words
(counted on the H1-C1 20k vocabulary and without tak-
ing into account alternate pronunciations due to optional
phones). A pronunciation graph is generated for each
word from the baseform transcription to which word
internal phonological rules are optionally applied dur-
ing training and recognition to account for some of the
phonological variations observed in fluent speech. The
training and test lexicons were created at LIMSI and in-
clude some input from modified versions of the TIMIT,
Pocket and Moby lexicons. All pronunciations have been
manually verified. Some example lexical entries are given
in Figure 1. The first word “INTEREST”, may be pro-
duced with 2 or 3 syllables, depending upon the speaker,
where in the latter case the /t/ may be deleted. In con-
trast, the alternate pronunciations for “6XcUsk” reflect
different parts of speech (verb or noun). In the third
case, the abbreviation “COrRP.” may be pronounced in
its full or its abbreviated form.

2.4. Decoding strategy

One of the most important problems in implementing
the decoder of a large vocabulary speech recognizer is

INTEREST IntrIst In{t}XIst
EXCUSE Ekskyul[sz]

CORP. kcrp kcrpXeSxn
BAFFLING  bef[L1]|G

Figure 1: Example lexical entries, with phones in {}
being optional, phones in [ ] being alternates.

the design of an efficient search algorithm to deal with
the huge search space, especially when using language
models with a longer span than two successive words,
such as trigrams. The most commonly used approach
for small and medium vocabulary sizes is the one-pass
frame-synchronous beam search [12] which uses a dy-
namic programming procedure. This basic strategy has
been extended by adding other features such as “fast
match”[8, 1], N-best rescoring[16], progressive search[11]
and one-pass dynamic network decoding[13]. The two-
step approach used in our system 1s based on the idea of
progressive search where the information between levels
i1s transmitted via word graphs. Due to memory con-
straints, each step may consist of one or more passes,
with each using successively more refined models. All
decoding passes use cross-word CD triphone models.
Prior to word recognition, sex identification is performed
for each sentence using phone-based ergodic HMMs[10].
The word recognizer is then run with a bigram LM us-
ing the acoustic model set corresponding to the identified
sex.

The first step of the decoder uses a bigram-backoff LM
with a tree organization of the lexicon for the back-
off component. This one-pass frame-synchronous beam
search, which includes intra- and inter-word CD phone
models, and gender-dependent models, generates a list
of word hypotheses resulting in a word lattice.

The tree representation of the backoff component (first
introduced in our Nov92 CSR system) provides an effi-
cient way of arbitrarily reducing the search space and of
limiting the computational requirements of the first pass
which represent on the order of 75% of the computa-
tion need for the entire decoding process. Additionally,
this strategy allows us to use a static graph instead of
building 1t dynamically and therefore avoids the com-
putational bookkeeping costs associated with dynamic
network decoding.

The key elements of the procedure used to generate the
word graph from the word lattice are the following. In
our implementation, a word lattice differs from a word
graph only because it includes word endpoint informa-
tion. First, a word graph is generated from the lattice
by merging three consecutive frames (i.e. the minimum
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duration for a word in our system). Then, “similar”
graph nodes are merged with the goal of reducing the
overall graph size and generalizing the word lattice. This
step 1is reiterated until no further reductions are possible.
Finally, based on the trigram backoff language model
a trigram word graph is then generated by duplicating
the nodes having multiple language model contexts. Bi-
gram backoff nodes are created when possible to limit the
graph expansion. The trigram step may be carried out
in more that one pass, using successively larger language
models.

It should be noted that this decoding strategy based on
multiple forward passes can in fact be implemented in
a single forward pass using one or two processors. We
are using a two-step solution because it is conceptually
simpler, and also due to memory constraints.

3. Recent System Developments

In this section we describe the main aspects of our devel-
opmental work in anticipation of the Nov94 evaluations.

3.1. Acoustic Front End Optimization

The front end configuration used in our Nov92 and
Nov93 WSJ systems was optimized using a portion of
the Resource Management development data. For each
frame (30 ms window), a 15 channel Bark power spec-
trum over the 8kHz bandwidth was obtained by apply-
ing triangular windows to the DFT output. From this
16 Bark-frequency scale cepstrum coefficients and their
first and second order derivatives were computed.

We have since varied this analysis looking at different
methods to obtain the cepstrum-based feature vector
(LPCC vs MFCC), as well as the size of the feature
vector. Analysis windows of 15ms, 20ms, 24ms, and
30ms were tried, with different spectral weightings such
as the commonly used Mel and Bark frequency scales,
and other intermediary interpolations. The number of
filters was varied from 15 to 64, and the number of cep-
stral coefficients from 13 to 17.

Four sets of test data were used to assess the different
analyses: the Nov92-bk, Nov93-S6, Nov93-H2 evaluation
test data and the 1993 development test data SIdt-bk.
In total, these contain 1275 sentences with 21,705 words
from 28 speakers. All the experiments used a single set of
903 SI models trained on the standard SI-84 training set
with the LIMST Nov93 lexicons (training and 5k) which
are publicly available, and the official bk-nvp closed vo-
cabulary LM model provided by Lincoln Labs. Even
though this is nominally a closed vocabulary test, there
Is an out-of-vocabulary rate of 0.2%.

% Word Error
Test Data || # sentences | Now92/93 Novd4
Nov93-56 217 10.8 10.0
SIdt-5k 513 11.3 10.6
Nov92-5k 330 7.0 6.3
Nov93-h2 215 10.0 8.9
All 1275 9.9 9.1

Table 1: Experimental results on development data be-
fore and after optimization of the acoustic front end us-
ing the standard 5k-nvp closed vocabulary bigram LM.

The best configuration was found to be with a 30 ms
frame and 26 cosine filters on a Mel scale over the 8kHz
bandwidth, from which 15 cepstrum coefficients and a
normalized energy are derived. The error rates for the
new analysis (Nov94) and the old analysis (Nov92/93)
are given for the individual test sets in Table 1. The
overall error reduction is small (8%), but significant, and
a consistent gain is obtained across the test sets, so this
setup was used for the H1 systems in the Nov94 evalua-
tion.

3.2. Use of Additional Acoustic Data

Last year we reported a word error reduction of about
30% in using the combined WSJ0/WSJ1 SI-284 training
(37k sentences) as compared to SI-84 training (7k sen-
tences) with a bigram LM[3]. On this year’s H1-C1 dev
data (trigram LM) we observed only a 15% error reduc-
tion when going from SI-84 training to SI-284 training.
The improvement was obtained by increasing the num-
ber of CD models using a fixed threshold of 250 occur-
rences to model a given context.

This year we used all 85k sentences of WSJ0/WSJ1 read-
speech training data, but observed only a small improve-
ment of about 2% compared to SI-284 training with the
same number of CD models. By increasing the number of
CD modelsto 5000 (using the same fixed minimum count
threshold of 250) increased the word error by about 4%.
The reason for this disappointing result is surely due to
the lack of homogeneity of the new data with the old, as
all the additional data is essentially from a small num-
ber of long-term speakers. This is consistent with our
previous observations that for our system better perfor-
mance is obtained with the short-term speaker data (SI-
84) than with comparable amounts of long term data
(SI-12). In our 5k system, training comparable model
sets with the long-term speakers data gives a word er-
ror 15-20% higher than that obtained with short-term
speaker training.
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3.3. Text processing/Lexical Coverage

The lexical coverage of the bk and 20k most frequent
words in the WSJ texts are only 90.6% and 97.5% re-
spectively. With a 20k word vocabulary and unrestricted
test data, we observe about 1.6 errors for each out-of-
vocabulary (OOV) word. Thus, an obvious approach to
reducing the errors due to OOV words is to increase the
size of the lexicon. Our system is limited to a maximum
vocabulary size of 65k words.

Prior to selecting a larger recognition vocabulary,
the CSR LM-1 training texts were cleaned to re-
move the most frequent errors inherent in the
texts or arising from processing with the distributed
text processing tools. The cleaning consisted pri-
marily of correcting obvious mispellings (such as
MILLLION, OFFICALS, LITTLEKNOWN), systematic bugs
introduced by the text processing tools, and expanding
abbreviations and acronyms in a consistent manner. The
texts were also transformed to be closer to the observed
American reading style using a set of rules and the corre-
sponding probabilities derived from the alignment of the
WSJ0/WSJ1 prompt texts with the transcriptions of the
acoustic data. Some example rules and their probabili-
ties are:

HUNDRED <nb> HUNDRED AND <nb> (0.5)
ONE EIGHTH AN EIGHTH (0.50)
CORPORATION corp. (0.29)
INCORPORATED INC. (0.22)

ONE HUNDRED
MILLION DOLLARS
BILLION DOLLARS

A HUNDRED (0.19)
MILLION (0.15)
BILLION (0.15)

PO ey

The cleaning of the training texts reduced perplexity on
development data by 5 points and resulted in a better
coverage of the 65k lexicon. This lexicon was selected
by measuring the perplexity and OOV rates on the de-
velopment data (Dev93-H1, Nov93-HI1 and Dev94-H1)
for the most frequent 65k words in different subsets of
the training texts. Our aim was to minimize the overall
OOV rate, while assuring a good balance across data sets
for OOV and perplexity. The 65k lexicon thus obtained
consists of the 65,451 most common words of a subset
of this training data (years 92-94) as this was found to
provide significantly better lexical coverage than was ob-
tained with all the data (years 87-94). In Table 2 the
lexical coverage of several lexicons are given for the 1994
H1 and H2 data showing the combined effect of text
cleaning and vocabulary selection. As stated earlier, the
texts of the development data were removed from the LM
training data so as to give better estimates of the lexi-
cal coverage on unseen data. For all test sets, the OOV
rate with our 20k wordlist is significantly smaller than

Lexicon
Test set Baseline 20k | 20k 40k 65k
Dev9j-H1 2.7 2.2 0.8 0.4
Eval9d4-H1 2.5 2.0 0.8 0.4
Dev94-H2 2.7 2.1 0.9 0.4
Eval9f-H2 3.1 2.6 1.3 0.7

Table 2: OOV rate (%) on the H1 and H2 test sentences
for 20k, 40k, and 65k lexicons.

that of the baseline 20k wordlist. The OOV rate with
the 65k wordlist on the Dev94 test data is 0.39% which
Is a pretty accurate indicator of the 0.42% observed on
the 1994 H1 test data. The OOV rate with the 40k lexi-
con used in Hub 2 was 0.8% on the H1 development and
evaluation test data, and higher 0.9% and 1.3% on the
H2 development and evaluation test data, respectively.

After processing the training texts, removing all articles
containing the prompts for the devtest acoustic data,
and selecting the recognition lexicon, the H1-P0 65k and
the H2-P0 40k language models were trained on the CSR
training texts and read speech transcriptions predating

June 16, 1994.

3.4. Recognition Lexicon

We also extended the training and recognition lexicons
to include additional frequent pronunciations found in
the training data as well as alternate pronunciations
which have been seen to occur systematically. An ex-
ample 1s the suffix “1ZzATION” which can be pronounced
with a diphthong (/Y/) or a schwa (/x/). As always,
we attempt to insure and improve the consistency of
the pronunciations for similar words and different word
forms. For example, in the new lexicon all words end-
ing in “MANN” are transcribed with the phone sequence
/m@n/. In previous versions this was transcribed as ei-
ther /m@n/ or /mxn/ or both. We have observed that
fast speakers tend to poorly articulate (and sometimes
skip completely) unstressed syllable, particularly in long
words with sequences of unstressed syllables. Although
such long words are typically well recognized, often a
nearby function word 1s deleted. In an attempt to reduce
these kinds of errors, alternate pronunciations for long
words such as AUTHORIZATION, POSITIONING, and RE-
ALISTICALLY were added to the lexicon allowing schwa-
deletion or syllabic consonants in unstressed syllables.
While these changes were not systematically evaluated,
results with the new lexicon reduced the overall word
error reported in Table 1 to 9.0%), with a small improve-
ment on each individual test set. On the Dev94-H1 test
data the improved lexicon reduced the word error from

13.0% to 12.8%.

Proc. ARPA Spoken Lang Tech Wshop, Austin, TX, Jan’95 4



The recognition lexicon was extended to the new 65k
vocabulary. Pronunciations for the new words were gen-
erated by semi-automatically applying affix rules to ex-
isting lexical entires, or were added by hand. A substan-
tial portion of the new lexical items were proper names,
many of which are of foreign origin. In the 65k lexicon,
9% on the words have more than one pronunciation, and
on average there are 1.1 pronunciations per word (not
counting alternate pronunciation corresponding to op-
tional phones). 4% of the words contain optional phones,
typically stops or reduced vowels that are allowed to be
deleted. The largest number of pronunciations for a sin-
gle word 1s 8, for the word “apartheid” represented as
/xpar[Tt][Ye][td]/. 5% of the entries have alternate pro-
nunciations which are typically differences in fricative
voicing or in vowel color such as USE /yu[zs]/ and DEVISE
/dIvY(sz]/ (corresponding to different parts of speech),
and DISNEY /dI[sz]ni/ and ADELSON /[@e]dLsxn/ (cor-
responding to different pronunciation variants.

3.5. Experiments with Telephone Data

In order to develop a Hub 2 system, we carried out ex-
periments with the Nov93 Spoke 6 evaluation test data
which provides parallel speech data for wideband and
telephone quality speech. The multichannel data allows
more accurate comparisons to be made by controlling
some of the factors that affect recognition accuracy. The
system was evaluated using the bk vocabulary and stan-
dard trigram LM. For the telephone speech the acoustic
feature vector contains 13 MFCCs and their first and 2nd
order derivatives computed on the 3.5kHz bandwidth ev-
ery 10ms.

The basic idea is to start with clean speech models and
to adapt them to the telephone channel conditions. This
adaptation is performed by reducing the bandwidth of
the clean speech and adapting the reduced bandwidth
acoustic models with telephone speech. For each of the
training sets (SI-84 and SI-284) we built 3 sets of acoustic
models so as to measure the recognition performance
in different acoustic channel conditions and to evaluate
the progressive reduction in channel mismatch. These 3
sets correspond to training with 8kHz bandwidth clean
speech, training with reduced bandwidth clean speech,
and to adaption of the latter model set with telephone
speech.

Experimental results are given in Table 3 for SI-84
and SI-284 training with and without telephone adap-
tation data, for 3 channel conditions: Sennheiser 8kHz,
Sennheiser reduced bandwidth, and telephone. On the
Sennheiser 8kHz data, word errors of 7.5% and 6.3% were
obtained with SI-84 and SI-284 models, respectively. Us-
ing a reduced bandwidth analysis increased the word er-

Training Test data

Conditions Senn., 8k | Senn., Tel Tel.
SI-84 7.5 8.0 14.8
SI-84 + ad - 8.5 12.1
SI-284 6.3 6.3 13.1
SI-284 + ad - 7.2 10.4

Table 3: Experimental results on 1993 Spoke 6 evalua-
tion test data using the standard bk lexicon and trigram
LM.

ror to 8.0% for SI-84 training, but no error increase was
observed for SI-284 training. For the telephone speech
data, the channel mismatch has been partially compen-
sated for by adapting the clean speech models with a
relatively small amount of telephone data (only 403 sen-
tences from Dev93-S6 for SI-84, and 7,130 sentences for
S1-284). With the adapted SI-84 models, the word error
on telephone data was reduced by 18%, and the word er-
ror on Sennheiser data increased by 6%. For the adapted
SI-284, the word error on the telephone data was reduced
by about 21%, with an increase of 14% on the Sennheiser
data. Thus, the additional training data used to adapt
the SI-284 models leads to a better match to the tele-
phone channel. The word error on telephone data 1s
about 60% higher than the error rate obtained for the
Sennheiser data.

4. Nov94 NAB Systems

The system configurations used in the Nov94 NAB CSR
evaluation are described in this section, along with ex-
perimental results on the H1 and H2 tests.

4.1. Nov94 NAB H1 System

The acoustic models used in the baseline test H1-C1 were
trained on the standard set of 37,518 WSJ0/WSJ1 sen-
tences (SI-284, primary microphone). The resulting two
sets of 3309 gender-dependent models each have 308k
Gaussians. For the primary system, H1-P0, all the avail-
able WSJ0/WSJI1 training data (85,343 sentences from
359 speakers) were used to train two sets of 3600 gender-
dependent acoustic models. Fach model set has 343k
Gaussians.

For the H1-C1 system, the official 20k trigram language
model provided by CMU was used[15]. For the H1-
PO condition, a 65k trigram LM was trained on the
cleaned-up versions of the standard CSR LM-1 train-
ing texts (years 87-94), the 1994 NAB development data
(excluding articles containing the dev test prompts), and
the WSJ0/WSJ1 read speech transcriptions (85,343 sen-
tences). The CMU language modeling toolkit[15] was
used to build the 65k LM.
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Test data
System Dev94 | Eval9y
HI1-C1, 20k 12.8 12.7
HI-PO, 40k 9.8 10.3
HI-PO, 65k - 9.8
H2-PO, 40k - 25.1

Table 4: Results on 1994 test data (unadjudicated?).

For the H1-C1 system, the first pass of the decoder used
a bigram-backoff LM with a cutoff of 10. This resulted
in a word graph with about 2.2M interword connections,
including those corresponding to the lexicon tree of the
backoff component. The resulting phone graph has 169k
phone nodes and 2.6M arcs. The same bigram cutoff was
used for the H1-P0O and H2-P0 systems.

4.2. Hub-1 Experimental Results

The Nov94-H1 devtest data contains 316 sentences from
20 speakers, each with prompt texts selected from North
American Business news. Recognition results for the
Nov94 tests are given in Table 4. For comparison, re-
sults are also given for the Dev94-H1 data containing
310 sentences from 20 speakers. The H1-C1 results are
seen to be comparable for the two data sets. The use of
a larger vocabulary is seen to substantially reduce the
word error, mainly by reducing the OOV rate. Com-
pared to the H1-C1 system, the H1-PO system reduces
the word error by 23%.

To better understand the errors due to OOV words, a
detailed analysis of the 198 OOV words in the Dev94-
H1-C1 test was carried out. On average, 1.6 word errors
are generated for each OOV word. 45% of the OOV er-
rors are single word substitutions and 45% have 2 errors.
The remaining 10% generate 3 or more errors. The use
of a 40k vocabulary reduces the OOV rate from 2.7%
to 0.8%, so potentially 70% of the 20k OOV words can
be recognized. In the 40k run, 45% the 20k OOV words
were correctly recognized. Some examples of typical er-
rors on OOV words are:

STRINGER — STRANGER
MARCH’S — MARCHES
DIVORCES — DIVORCE IS
BUSIER — BUSY YOUR
NORIYUKI — NOR YOU KEEP

In the first two examples an unknown word is replaced

1We have chosen to provide the unadjudicated results in order
to facilitate a comparison with results on the development test
data. The adjudicated word error rates on the Nov94 evaluation
test data are: H1-P0: 9.2%, H1-C1: 12.1%, H2-P0: 24.6%.

by a homophone or a phonemically close word. The next
two words DIVORCES and BUSIER generate two errors the
root word and a function word to replace the suffix. In
addition there are errors due to compound words such
as OVERBLOWN being recognized as the sequence OVER
BLOWN, which should perhaps not really be considered
as errors. Reducing the OOV rate recovers on average
1.2 errors for every OOV word removed.

4.3. Nov94 NAB H2 System

Our aim for the Hub 2 test was to minimally change our
H1-PO system and to run it on the telephone data. For
the telephone hub, H2-P0, a reduced bandwidth analysis
was carried out as described earlier, and SI models were
built from the SI-284 primary microphone (Sennheiser)
data. These models were then adapted using MAP es-
timation with 7130 sentences: 403 sentences from the
1993 WSJ1 Spoke 6 development test data, 313 sen-
tences from 1994 H2-dev data and 6,414 WSJ sentences
from the macrophone corpus[2]. Due to time constraints
we were not able to directly port our H1-PO system to
this task, and needed to limit the vocabulary size to
40k words. The 40k vocabulary list was obtained by se-
lecting the 39,637 most common words of the 65k word
list. The OOV rate of this vocabulary was 0.9% on the
dev94-h2 data as given in Table 2. The 40k LM was
trained on the same text material as the H1-PO sys-
tem, i.e., on the cleaned-up versions of the standard CSR,
LM-1 training texts (years 87-94), the 1994 NAB devel-
opment data (excluding articles containing the dev test
prompts), and the WSJO/WSJ1 read speech transcrip-
tions (85,343 sentences). We also used a single set of
1928 gender-independent CD models, compared to two
sets of 3600 models as used in H1-PO. This model set
had 184k Gaussians.

We observed that using comparable pruning thresholds
for H2 as had been used in H1 considerably increased the
decoding time, as well as the word lattice size. So in or-
der to keep the decoding time and the memory require-
ments essentially the same as the H1 system, a much
more aggressive pruning level was used at the risk of
introducing search errors.

4.4. Hub-2 Experimental Results

The Hub 2 test data consists of 20 speakers reading
about 15 sentences each for a total of 312 sentences. The
prompt texts were taken from the same source as the H1
test, but the exact texts and speakers are not the same.
The word error for the H2-P0 test with a 40k vocabulary
is 25.1%. The error rate is over twice that of the H1-P0
40k system. This difference is larger than that observed
in our development work with the matched Spoke 6 data
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(see Table 3) and may be attributed to differences in the
channel, as well as to the speaking style which seems
to be less formal. The Hub 2 data was recorded over
long distance telephone lines in unknown environments,
and whereas the Spoke 6 data were recorded at SRI over
external lines.

4.5. Additional Observations

Since a word graph is used to transmit information be-
tween successive passes, 1t i1s obviously important that
the correct solution be in the graph. In general, we
have found the word graph error to be small, on the
order of 2% for the graph used in the last pass (i.e. the
worst case). However, we have noticed that poor speak-
ers tend to have higher graph error rates, which can be
as high as 10%. The average graph error on the tele-
phone data is 8%, which is significantly higher than that
of the Sennheiser channel.

More generally, the system appears to not be very robust
with regard to channel and speaker differences. The 40k
H2 system had a word error of 25%, compared to 10%
for the 40k H1 system. We also have observed large dif-
ferences in word error across speakers. Concerning the
Dev94-H1 test set the best speaker (4q9) had an error
rate of 3.4%, whereas the worst speaker (4qg) had a word
error of 42.7%. (This speaker is difficult for even humans
to understand.) A large difference in error rate was also
observed for the Nov94-H1 test data where the word er-
ror ranged from 1.3% for the best speaker (4t3) to 24.5%
for the worst (4td). Some of the errors may be attributed
to higher than average OOV rates or high perplexity
sentences, where the text is not well predicted by the
language model. However, the high error rates observed
for poor speakers are primarily due to non-standard pro-
nunciations and to poorly articulated words (which fre-
quently occur for fast speaking rates). In analyzing the
errors for the worst speakers, we observed many errors
involving groups of frequent short words such as “WHERE
DO YOU GET” which was pronounced as “where’dya get”
and recognized as “WEREN’T GET” or “WERE TICKET” .

5. Summary

In the paper we have presented our 1994 ARPA NAB
CSR system and highlighted some of the more important
aspects of our development work. We developed a 65k-
word speech recognizer which makes use of phone-based
CDHMMs with Gaussian mixture for acoustic modeling
and 3-gram statistics estimated on NAB newspaper texts
for language modeling. The system uses a multipass de-
coder, where more accurate models are used in successive
passes and information is transmitted between passes via
word graphs.

During our development work, we mainly worked on im-
proving the acoustic front end, the lexical coverage, the
lexicon representation and the acoustic models through
the use of more acoustic data. Regarding this last point,
we were disappointed to observe that by using as many
as 8bk sentences of acoustic training data instead of 37k
sentences (SI-284 data set) does not significantly improve
the model accuracy. We attribute this partly to the fact
that the mixture of “long-term” and “short-term” speak-
ers in the 85k sentences constitutes an inhomogeneous
data set that our current training strategy is not able
the use adequately.

In order to port our system to the telephone channel, we
adapted acoustic models trained on reduced bandwidth
clean speech with a relatively small amount of telephone
training data coming primarily from the Macrophone
corpus.

For a speaker-independent, open-vocabulary read-speech
test, a word error of 9.8% was obtained with a 65k vocab-
ulary system. Using a vocabulary of 40k words, a word
error of 10.3% was obtained. With the same 40k vocab-
ulary the word error on telephone speech from different
speakers is 25.1%

Increasing the vocabulary size, at least up to 65k words,
was found to reduce the average word error. This sim-
ple approach to reducing the errors due to OOV words
appears to be effective despite the potential increased
confusability of the lexical entries. We observed that by
reducing the OOV rate, we recover on average 1.2 times
as many errors as OOV words removed.

The observed large difference in performance across
speakers is certainly an outstanding challenge for speech
recognition. The high error rates observed for poor
speakers arise mainly from non-standard pronunciations
and high speaking rates which result in poorly articu-
lated words. We have observed that better acoustic and
language models do not significantly improve these er-
rors. Modeling at the phonological level, perhaps with
particular pronunciations that are invoked for frequent
word sequences or for fast speakers, and speaker adapta-
tion techniques may be needed to improve performance.
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