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Abstract

The aim of the research reported in this paper was to assess the capHdlstaye-of-the-art
methods for speaker verification in order to determine if high enough performavels le
could be obtained to support the development of telecom applications. This experimental
study quantified speaker recognition performance out of the context of any specifi@applic
tion, as a function of factors more-or-less acknowledged to affect the agci8ame issues
investigated are: the speaker model (Gaussian mixture models are compidrgdhone-

based models), the influence of the amount and content of training and test data on perfor-
mance; performance degradation due to model ageing and how can this be counteracted by
using adaptation techniques; achievable performance levels using text-depertiémita
independent recognition modes. In particular the effect of linguistic content on perhoe

is shown for both read and spontaneous speech. These and other factors were dddresse
using a large corpus of read and spontaneous speech (over 2000 hours collected from 100
target speakers and 1000 impostors) in French designed and recorded for the purpase of thi
study. On this data, the lowest equal error rate is 1% for the text-dependent mod€whe

trials are allowed per attempt and with a minimum of 1.5s of speech pér tria

Resuneg

L'objectif des travaux présentés dans cet article était d’évédsdechniques actuelles d’authen-
tification du locuteur afin de determiner s’il etait possible d'atteindre ueauvde per-
formance suffisant pour le developpement d’applications télephoniques. Les perfesna
ont été mesuréees en dehors de toute application spécifique en fonction detpasatont
l'influence sur le fonctionemment du systeme est reconnue mais pas toujours geantifié

Les parametres suivants sont analysés: le choix du modele (mélange deigags ou
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modele phonétiques), I'importance de la quantité et la nature des donnéesdiggage

et d’authentification, la dégradation des résultats due au vieillissgedeemodeles et la
maniere de compenser cet effet avec des techniques d’adaptation, la coneaissaoc du

texte prononcé par le locuteur. En particulier 'importance du contenu linguisticerds-

cés sur le niveau de performance est quantifiee pour des textes lus et de |spantémée.

Ce travail a été effectué a I'aide d’un corpus téléphonique sjg@cent conu et enregistré

pour cette etude (plus de 2000 heures provenant de 100 abonnées, 1000 imposteurs). Sur ces
données le taux d’égale erreur le plus faible est de I'ordre de 1% dans le modwldépeu

texte lorsque 2 essais sont autorisés par tentative d’authentificationrmeitiréee minimale

de 1.5s par essai.

1 Introduction

Speaker verification has been the subject of active research for mars; gedrhas many
potential applications where propriety of information is a concern (Rosenberg, 1976; Dod-
dington, 1985; Naik, 1990; Furui, 1994; Gish and Schmidt, 1994, Atal, 1976; Boves and den
Os, 1998). Despite these efforts and promising results using laboratory datkesperi-
fication performance over the telephone remains below that required for npaligations
(Boves and den Os, 1998).

The speaker recognition problem is closely related to the speech recognitidrpi@bt
lems share the same basic speech generation nf¢gel, ). The speech signad con-
veys both linguistic information{, the word sequence) and non-linguistic informatian (
the speaker identity). Obtaining the former is the goal of speech recognition, sheerea
non-linguistic information is more relevant to the speaker recognition problemcalyap-
proaches attempt to extract one of the types of information, treating the otheroasce s
of noise. Performance is acknowledged to be dependent upon the linguistic content of the
speech data. For speaker recognition there are varying degrees of control rangirfckéd

prompt texts, text-dependent (variable prompts or user selected texts)ettefteor text-



independent. In fact even when there are no restrictions on the text, useit® tesyl the
same or a similar text, which implies that a text dependent system may be appedpri
many applications.
The text mode has direct implications on model estimation. The more control thare is
the speech input, the less there is a need for acoustic training data. In geime@bpplica-
tion designers want to limit the need for user enrolment, it is essentiakta dsciminative
approach to reduce the need for training data. Judicious design of prompts can help in opt
mizing performance for a given amount of data (for example, it is generally copsideat
voiced speech contains more information about the speaker than does unvoiced.speech)
There have been a wide spectrum of proposed approaches to speaker verificdtion sta
ing with very simplistic models such as those based on long term stat{§ucui, Itakura
and Saito, 1972). The most sophisticated methods rely on large vocabulary speeghi+
tion with phone-based HMMs (Newman et al, 1996). Intermediary approaches neké us
phone or phone-class based models (Rosenberg, Lee and Soong, 1990; Lamel and Gauvain,
1992; Matsui and Furui, 1992; Gauvain, Lamel and Prouts, 1995; Lamel and Gauvain, 1995;
Carey, Parris and Bennett, 1996). Like for the training data, systems makiog lusguistic
information (prior knowledge about the text or high quality speech recognizers) typical
require less data for authentication than is required by systems not making hseiofdr-
mation source (where the linguistic information is seen as a kind of noise)n §eneral,
text-independent systems require longer speech segments in order to properly ithentif
speaker. Modeling the linguistic content is certainly more accurate, but esgsurbstan-
tially more development work and data for training the models. This type of apprészh a
inherently is language-dependent and assumes that the language spoken is known in advance.
The best compromise between accuracy and complexity is likely to be dependent upon
the particular application. For example, the widely used cepstral-based @ildéls have
been quite successful for speaker identification of conversational speechta3kiisntro-
duced by NIST in 1996, makes use of the Switchboard corpus (Przybocki and Martin, 1998).

On this data the phone and word-based modeling approaches have not out-performed sys-



tems based on GMMs (Reynolds, 1995, Carey, Parris and Bennett, 1996; Newman et al
1996; Lamel and Gauvain, 1997). The NIST framework is very attractive,cpgatly in
enabling participants to compare technologies on a common task and corpus. Hdkever
corpus type which is evidently quite interesting for defense and criminal agphsatmay
not be representative of many potential speaker verification applicatioms gliite likely
that many telecom applications (Boves and den Os, 1998), will involve a hurtexagting
with a machine and not with another human.
The objective of this research was to assess the performance of sthte-af-methods
for speaker verification to determine if high enough performance levels could amebito
support the development of telecom applications. This experimental study aimedtdyqua
more-or-less well-known trends in speaker recognition out of the context of anyfispec
application. Some questions addressed are: how does the amount and content of training
and test data affect performance; how much degradation of performance carncimted
due to model ageing and how can this be counteracted by using adaptation techniques; what
performance levels are achievable using text-dependent and text-independentti@cogni
modes, were investigated. These and other factors were addressed usig @laus of
read and spontaneous speech in French designed and recorded for the purpose of this study.
At the time this work was started (Gauvain, Lamel and Prouts, 1995), andtedan,
there are no publically available corpora for speaker verification of theasideeontent used
in this work. (See Campbell and Reynolds (1999) for a compilation of available corpora)
The most widely used corpora for speaker verification are the TIMIT corpus (amncgde
tives), Yoho, Polycost and the portions of the Switchboard Corpus (Godfrey, Hollinthn a
McDaniel, 1992) used in the NIST evaluations. The TIMIT corpus, while offerig ftam
a relatively large number of speakers, was not designed for speaker vesifieatil has the
default that all the data for a speaker was recorded in a single session. The ofpls c
was recorded with a high quality microphone and is much smaller in terms of naraber
speakers. Polycost, which is closest in style to the corpus used here, coatepi®he

data in non-native English and European lanugages, but does not have impostor data. The



Switchboard corpus contains only conversational speech, whereas many apudicat
more likely to use prompted speech or spontanoeus responses as in a human-machine dialog
context.

Our goal was not to determine a particular setup with the best performance,ibués-
tiage key parameters that affect performance in the context of varioustel@gplications.

In the next section the corpus and methodology used in this work is presented. Sections
3, 4, and 5 provide experimental results for different training configurations, daie
and speaking style. Section 6 provides observations based on these experimesusiand

conclusions concerning the use of this approach for telephone applications.

2 Corpus & Methodology

For these experiments we make use of a corpus especially designed to evala&tr spe
recognition algorithms. This corpus contains over 20000 hours of speech data from 100
target speakers (or users), and from 1000 impostors (Gauvain, Lamel and Prouts, 1995)
Each user completed 10 training calls, and 25 verification calls, froariaty of telephone
handsets and calling locations over a period of two years. Each impostor cethalsingle
verification-type call. The training calls took about 25 minutes to complete, proglabout

15 minutes of speech data. The verification calls each resulted in abouuBasibf speech

data. The recordings are similar to the Polyphone recordings being collectederalsev
languages (Bernstein, Taussig and Godfrey, 1994; Godfrey, 1994). Each call provides a
variety of speech data, including read speech material, and ellmitédpontaneous speech

SO as to be able to assess the effects of data type on the verificationcgccuiree read
speech data consist of three types: digit strings, 5 phonetically controllecheest(SEPT),

? and sentences from the Mondenewspaper selected to cover a large number of phonetic

1The corpus, concieved and designed jointly by CNET and LIM&Is recorded over the French telephone

network and transcribed by the Vecsys company.
2The SEPT sentences were specified by the Service d’Etudes womenla poste et telecommuncations.

They are short easy to pronounce sentences containingtabmigs/oiced phonemes.



contexts. The spontaneous speech data contain responses to fixed questions (sugpes the
of handset, calling environment, calling area code, dates, times, etchbandre general
open questions designed to obtain short monologues.

A statistical modeling approach is taken, where the talker is viewed as @esoiyvhones,
modeled by a fully connected Markov chain (Gauvain and Lamel, 1993; Lamel anch{®a
1993; Lamel and Gauvain, 1995) for text-independent verificatibhe lexical and syntactic
structures of the language are approximated by local phonotactic constraints, aptheae
is in turn modeled by a 3 state left-to-right HMM. For text-dependent identidicaa left-to-
right HMM is built by concatenating phone models according to the lexical pronunciations
of words in an orthographic transcription.

When this approach is applied to speaker identification (Gauvain and Lamel, 1993;
Lamel and Gauvain, 1993; Lamel and Gauvain, 1995) a set of phone models is trained for
each speaker and identification of a speaker from the sigmslperformed by computing
the phone-based likelihoot{ x|\) for each speakeX. The speaker identity corresponding
to the model with the highest likelihood is then hypothesized. The same speaker nmodel ca
be applied to speaker verification by comparing the likelihood ratid\)/ f(x) to a single
speaker independent threshold in order to decide acceptance or rejection.

Speaker-specific models are generated from a set of speaker-independerad $hpske
els using maximum a posteriori (MAP) estimation. The speaker-independent seksdism
provide estimates of the parameters of the prior densities and also senvératsal estimate
for the segmental MAP algorithm (Gauvain and Lee, 1994). This approach allcavge |
number of parameters to be estimated from a small amount of speaker-speagtateon
data.

Assuming no prior knowledge about the speaker distributionathesterioriprobability

Pr(A|x) is approximated by the scorfgx; ) defined as

LX) = FeA/ X SlX)

3This phone-based approach is also compared with Gaussiartrmmodels in Section 3.
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where the\’ are the speaker-specific models for all speakers known to the system and the
normalization coefficieni was empirically determined as 0.02. (This coefficientis needed to
compensate for independency approximations in the model.) Calculating the denominator of
this expression can be very costly as the number of operations is proportional to thernumbe
of speakers used in the calculation, or as in our case, the number of target spa&kers
can significantly reduce the required computation by using a Viterbi beam seaahthe
speakers’ models in parallel. This decoder, which was developed for speakéficdéon

and the identification of other non-linguistic speech features (Gauvain andl,L488sS;

Lamel and Gauvain, 1995), provides not only the likelihood of the most probable speaker,
f(x|A), but the likelihoods for theV most probable speakers. The necessary computation
is reduced by approximating the above summation by a summation over a shortthst of
most probable speakers. In our implementation, the Viterbi algorithm is used foutenne

joint likelihood f(x, s|A) of the incoming signal and the most likely state sequence instead
of f(x]|)).

If a verification attempt is unsuccessful, it is common practice tamadisecond trial in
order to reduce the false rejection of known users. A straight-forward apgpre&e base the
decision only on the score of the second attempt, ignoring the preceding trial.ppncaah
can be justified on the ground that the actual test data is potentially invatigltérnative
it is to base the decision on the scores of both tfialdaking use of this second approach
reduced the speaker identification error rate by 21%, compared to a 13% errornioaduct
using only the score of the last attempt.

Figure 1 shows the distribution of scores for 2221 trials each for target syseakénm-
postors (truncated at 300 attempts). 87% of the attempts by impostors have a sssenf
tially 0, and 51% of the attempts by target speakers have a score of essentidlbyvever,
there is a substantial overlap in the distributions, and it is apparent frese thistograms that

the main source of error comes from a low score for certain target speaders. (Almost

41t is evidently possible to allow more than 2 trials per agnin which case the score would take into

account scores from all previous trials.
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Figure 1: Distribution of scores for target speakers and impostors (2221 atteanits,

y-axis truncated at 300 attempts.

2% of the attempts by target speakers have a score almost equal to 0.)

From the histograms it can also be seen that setting a threshold in the rahgesgiual
error rates (EER) is not too problematic. Almost any value between 0.1 dndilD keep
the average error rate near this point. It should be recalled that the EER iseubtay
selecting the decision threshold a posteriori such that the two types of ereoegjaal. In
practice, however, the decision threshold should be fixed a priori based on lapfeeat
corpus so as to minimize the cost function specific to the application. For exaioplery
secure applications a much higher cost will be associated to false acea=pthan to false
rejections. Without an appropriate cost function, it is common practice totsakedecision

threshold so as to minimize the EER. We compared average error rateswsigigcision

thresholds: one a apriori (determined using development data) and the other dedeamine

posteriori. On this data although the average error rate varies only slighéyrates of



the two error types vary more. With a single authentication attempt, the \EtRthe a
posteriori threshold is 2.61, compared to an average error of 2.64 with the agemsion
threshold. The corresponding false rejection and false acceptation ratgs2:@r and 2.30

respectively (instead of 2.61 for the a posteriori setting of the threshold).

3 Contrastive Experiments

A series of baseline experiments were carried out to quantify speaker raoogpétrfor-
mance as a function of parameters generally acknowledged to affect pentmnihis sec-
tion summarizes the experiments and presents performance results on the ceisede
above. Results are reported for speaker identification since this is@asyasure, and are
strongly correlated with speaker verification error rates. Howesiece we are interested in
assessing speaker verification performance, the equal error rates gratednfor the con-
figurations of greatest interest (those where the speaker identificationsermatrioo high).
In all experiments reported in this paper, the acoustic feature vector nongdi3 cep-
strum coefficients derived from a Mel-frequency spectrum (0-3.5kHz bandwidthjhaird
first order derivatives was computed every 10 ms. In order to minimiee&fflue to channel

differences, cepstral-mean removal was performed for each sentence

3.1 Gaussian mixture vs phone-based models

Experiments were carried out to compare speaker verification performamgg pisone-
based models with a baseline system using Gaussian mixtures. Two mixt@&Gatissians
are used, one for silence/noise (common for all speakers) and another for the speedic
to each speaker. For the phone-based approach, text-dependent and text-independent modes
are compared, for one and two verification trials. When 2 verificati@istare authorized
(for target speakers and impostors), there are on average 1.1 trials pattesgt.
Figure 2 gives some baseline ROC (Receiver Operating Charactgrstic®s for dif-

ferent model types and operational modes for a subset of the telephone data. The ROC curve
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Figure 2: ROC curves for different model sets and operational modes based on 21775 user
attempts and 109081 imposter attempts: (a) multi-Gaussian model; (b) 35 phone models,
text independent; (c) 35 phone models, text dependent; (d) same as (c) with 2 @&jals; (
same (d) with exactly 4s of speech. The dotted line shows the points of equal aiser (f

acceptance/false rejection).

for the Gaussian mixture model is shown in (a). This can be compared withgiR®C

of the phone-based approach in text-independent mode. The phone-based approach is seen
to perform significantly better than the Gaussian mixture model (7.3% v.s 9.08) &kh

only 1 trial per attempt and an average of 3.2s of speech per trial. If thesté&xiown, the

EER is reduced to 5.1% (curve c). It should be noted that with the phone-based approach,
knowing the text does not imply the use of a fixed text. The user can be prompted toyead a
text. In (d), 2 verification trials are allowed per attempt, reduchEER to 4.4% with 1.1

trials on average. Curve (e) shows the ROC if a minimum amount of 2s of speecjuised

for each trial. For the sentences having this minimal duration, the EER is redu8e5%.

For the remainder of the experiments reported in this paper the phone-based approach is
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used.

3.2 Authentication utterance duration

Speaker recognition performance is known to be dependent upon the duration of the test
utterance. This was illustrated in Figure 2 where a significant performarnmevement was
obtained by ensuring a minimal test signal duration. One problem in designing systems i
ensure that the talker will supply the needed amount of speech data. This is pastitule

for digit strings which tend to be quite short. In this section speaker verdgitaerformance

is assessed as a function of the duration of the test utterances. Thereoisgacstrrelation
between the test utterance type and the test utterance duration. Only 10% of tisérichigt

and SEPT utterances are longer than 2s in duration, whereas 95% of the senteatkesate

this long. Imposing a minimal duration of 1.2s eliminates almost 25% of the digit strings

and 10% of the SEPT utterances.

Conditions Average| Digits | SEPT| Sentences
1 trial, 3.3 4.2 2.3 2.6
2 trials, 2.7 3.1 1.7 2.0
2trials,>1.5s| 1.8 1.4 1.0 1.9
1 trial, 1.2s - 3.6 2.4 4.9
2 trials, 1.2s - 2.8 1.9 3.2

Table 1: Equal error rates (EER) for different test data types based on 21775tesgpta

and 10908& 91 imposter attempts. The text is known.

Table 1 gives the known-text equal error rates for the different types of testRlesalts
are given for 1 and 2 user attempts, with and without a minimal duration cantstk&ith
one trial per attempt, the average EER is 3.3%. This is reduced to 1.8% if mahiharation
of 1.5s is required and two trials per attempt are allowed. Allowing mldtattempts and

requiring a minimum amount of authentication data can significantly reduce the EER.

11



In order to eliminate the dependence on test utterance duration, the last teveaies

show the EERSs using a fixed test duration of 1.2s, for one and two trials.

3.3 Amount & recency of training data

The amount and recency of the training data are well known factors that influereeespe
verification performance. It is also known that better performance can lz@nebt with
training data recorded in multiple sessions reflecting conditions of real us&irihg the
necessary data can require a long enrolment procedure which is usually undesoable
the users’ viewpoint. A related known problem is that of model ageing: typicallyas t
time between training and test increases, performance gradually degradss adéptation
is used to keep the models up-to-date.

The aim of these experiments were to quantify the effects of limiting theitigadata
on speaker recognition performance, and for a fixed number of training utterarftesdi
means of obtaining it (single vs multiple session training). The performancesisured as a
function of the quantity of data used to train the models. Three session trasmsogipared
with single session training (the last session of the 3), and with 1/3 ofdhertg data taken
from each of the 3 training sessiohsThese training sessions are the last training sessions
recorded for each speaker, so the first of the 3 was made 6 calls beforetthathentication
call. The latter comparison enables us to investigate the effects oésagbsion and multi-
session training for a fixed amount of data, which can influence the choice of entolme
procedure.

Table 2 gives the speaker identification error rates (left) and equal exes (right) as
a function of the amount of training data, and the proximity to the test®da@taee session

training results in the lowest error rates, which is expected as thetacmlels are trained

>Due to the training call length, alternate training sessicontained complementary data types. The odd
sessions consisted of 25 digit strings and 25 journal seagewhere as the even sessions consisted of the 25

SEPT sentences and spontaneous responses to 25 questions.
5These experiments were carried out before the corpus wapleted, and therefore have a fewer number

of user and impostor trials than reported in the other tables
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Identification Error Rate Equal Error Rate

U7

Training Digits | SEPT| Sentenceg Digits | SEPT| Sentences

3 sessions 4.8 3.2 6.7 29 1.9 3.2
1/3 of 3 sessions 6.4 41 6.6 3.8 2.3 3.2
1 session (last) | 10.8 6.3 8.3 4.8 3.1 3.5

Table 2: Speaker identification error rates (left) and equal error raigist)for different
type-specific training conditions. Known text. 1 trial per attempt. (Based3¥b user

attempts and 675x91 impostor attempts.)

on the most data. If the training data is to be reduced to one-third, the best pamfogm

is still obtained by keeping 3 training sessions, but reducing the amount of datahn ea
session. Single session training results in identification error ratetasiiadly higher than
multi-session training, even when this session is temporally closéettest data. The EER

is seen to significantly increase when the training data is reduced to siersasith an of
over 60% increase for the digits and SEPT sentences. It can be noted that trenpade

on theLe Mondesentences is relatively insensitive to the training configuration. This may
be related to the total amount of training data: sinceLtadlondesentences are on average
longer (4.5s each) than the digit strings and SEPT sentences (1.6s each), éeareduted
training condition enough data is available with which to estimate the modahysders.

These results support the need for multiple training sessions.

3.4 Model ageing and adaptation

The well known effects of model ageing can be illustrated by the differenbpagnces
observed for single session training. If speaker-specific models are tr@amedn the first

of the 3 sessions instead of on the last one (given in the last line of Table 2, titidicd¢ion
error rates almost double: 19.7%, 11.5% and 16.7% respectively for the digits, SHEPT a

sentences. (On average several weeks passed between the first afdHasB training

13



sessions.) Speaker-adaptation techniques can be used to reduce the effecis|afgaing.
We experimented with MLLR based adaptation (Legetter, and Woodland, 1994) using dat
from all but the last two test sessions per speaker. Without adaptation, theli&Red on
the last two test sessions is 2.5%. This error rate is significantly highethleEER of 1.6%
obtained on the first two test sessions (the first two calls subsequent taitlirdrsessions).
After adapting the speaker models on data from the intervening session, the EER on t
last two sessions is reduced to 1.7%. This indicates that adaptation ial¢ocugiaintaining

system performance over time.

3.5 Discussion of contrastive results

From these comparative results we can make the following conclusions:

¢ On this telephone corpus phone-based approach outperforms the simpler approach
based on a mixture of Gaussians. (This is different from what we observed19%86e

NIST evaluation using a conversational speech corpus (Lamel and Gauvain, 1997.)

e As expected, a significant gain is observed when the text is kreopaiori.” So for
telecom applications where a cooperative user is expected, this differdngersough
by itself to justify the use of known text recognition which is both more performant

and less complex.

¢ Allowing a second verification trial reduces the EER without significanttreasing
the number of trials for the target speakers. A second trial is needed in onl{Q in

attempts.

¢ Requiring 4s of speech signal duration reduces the error rate substantially (about 20%
comparing curves d and e of Figure 2). Therefore, the verification procedure should

ensure that a minimum of 4s of speech is collected in each authenticatiompatte

"Although this condition made use of an orthographic trapsion of the speech, in a contrastive experi-

ment using the prompt text no difference in performance veeoved.
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e It is preferable to acquire the training data in several sessions, tharsimgle ses-
sion. Multiple session training is less sensitive to channel conditions aadsp&aker

variability. The relative reduction in EER is between 10 and 25%.

e As the time between the training calls and the authentication call ireseagrfor-
mance tends to decrease. This model ageing can be successfully counteiticted w

unsupervised adaptation so as to maintain performance over time.

In the following sections the experimental setup is restricted to the phoses bap-
proach. Most of the experiments are for the known-text condition, with the exception of
the spontaneous speech where results are provided for both the known and unknown text

conditions.

4 Choosing the Prompt Linguistic Content

One important factor to be addressed is the influence of the linguistic content cditheadr
and test material on speaker identification and verification performdiacevestigate this
factor experiments were carried out using different subsets of the corpus ifangrand
different types of test material.

The left side of Table 3 shows text-dependent speaker identification erroasaéefsinc-
tion of the utterance type and the training condition (multi-style or type-spediiglti-style
training makes use of all types of read-speech training data for the 10 trainisag Bge-
specific training makes use of only one of these data types in training, i.e. dig®sl S
sentences oke Mondesentences. For the training data, the average duration of the digit
strings and the SEPT sentences are 1.6s, and the average durationeMbadesentences
is 4.5s. The type-specific models are trained with only one-third of the uttesarsesl to
train the multi-style models. Using multi-style training, the speaker ifleation error rate
ranges from 9.5% for the digit strings to 4.5% for the SEPT sentences.

When type-specific training is used, and testing is carried out on the same tyjpgaof

(the diagonal entries in the lower part of Table 3), the speaker identificationretes are
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Test data

Identification Error Rate Equal Error Rate
Training data | Digits | SEPT| Sentenceg Digits | SEPT| Sentences
Multistyle 9.5 4.5 5.5 4.2 2.3 2.6
Digits 8.6 | 68.6 35.6 4.1 - -
SEPT 64.1 | 3.6 24.3 - 2.3 -
Sentences 21.1 | 143 5.9 - - 2.7

Table 3: Speaker identification error rates (left) and equal error raggg)as a function of
test data type with multi-style training and with type-specific trainingedasn 21775 user
attempts and 1090891 imposter attempts. 1 trial per authorization attempt with no minimal

duration constraint. The text is known.

seen to be slightly lower than with multistyle training for the digits andSE® T sentences,
even though the acoustic models have been trained with significantly lessTtatéowest
identification error rate (3.6%) is still obtained with the SEPT sentences

Exactly the same pattern of performance is observed for speaker veoificatierms of
the equal error rate for both multistyle and type-specific conditions, with thedb®ER of
2.3% for the SEPT sentences (cf. right part of Table 3).

To assess how important it is to have matched conditions in the linguistic carftidra
training and test data, speaker identification performances was alsan@@asder crossed-
type training and testing conditions (the off-diagonal entries in Table 3). Suadhatch
results in a dramatic performance degradation, with the best training iadateder mis-
matched conditions being tHeeMondesentences. This result was to be expected as the
sentences have the largest variety of phonetic contexts.

Several conclusions can be drawn from this experiment. Some types of linguisg&ntont
are seen to clearly result in better speaker recognition performancetiars, showing the

importance of this aspect in system design. Comparing the 3 types of data, it isdenttdoi
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identify a single differentiating factor that can explain the observed pedace differences.
Some characteristics of the prompt texts that can affect performandeedieguistic content
(in terms of lexical coverage and phonological characteristics), theesssio pronounce, the
familiarity of the words and the utterance duration.

Limited phonetic contexts are desired as better acoustic models can batedtwith
limited amounts of training data. Both the SEPT sentences and digit stringdiimetesl
linguistic contents, but quite different phonemic contents. They are both easy to prenounc
but the familiarity of users with digit strings can result in sloppy arttian (reduced pro-
nunciations and short durations). The SEPT sentences are comprised of almost o&dly voi
sounds which are widely acknowledged to contain more information about the vartadftra
the talker than unvoiced sounds. Another factor is utterance duration. The testdigys
range from 3 to 5 digits and some of the digit strings can be very short. As canibaégbe
next section, even if a minimal duration is required the SEPT sentences autpéne digit
strings.

We can thus conclude that for text-dependent speaker recognition the choice of text used
for training and for test, has a major impact on the performance. It is impdhaiihe train-
ing and test texts are of the same style. Simple, easy to pronounce textsnicgpaedom-
inantly voiced sounds will result in the best performance, particularly wherraining data
is limited. Digits strings are often used in applications because they hasgee@l meaning
and can correspond to a speaker code, but are not optimal in terms of linguistintcdihie
SEPT sentences are more phonetically balanced and contain predominantlysmioced.
They are also easy to pronounce and remember, however they may be awkwardrt@uos
application, as they serve only for speaker verification and do not correspong tamal

data input.
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5 Using Spontaneous Speech

There are a variety of applications where only spontaneous speech is avadiafbedker
recognition. Applications in the domain of criminology often come to mind, but other ap-
plications concern the transcription of radio and television broadcasts or dingeand
conferences. In this case automated methods may be used to partition thetalapeaker
turns and to identify the speakers. The identification can be used to enhancandwip-

tion as well or to decode the speech signal with speaker-specific acousticsmdatbler
applications can be envisioned where transparent, continual speaker recognitiog auri
conversation with a human or a machine. In this case the aim is to avoidulent access
via prerecorded speech or to detect any change of speaker during the transaction.

The responses to the fixed and open questions were used for the experiments with spon-
taneous speech. The fixed questions correspond to the type of data that could be used in
a spoken dialog system where there is a desire to restrict access or dresigerttity of
the caller supplying the information. These questions are of the type: “Say andlspell t
name of the town you are calling from.”, “What is the zip code in the town yoicalieng
from?”, “What time is it?”. The average utterance duration in respondeetixed and open
guestions are shown in Table 4. The open questions were designed to incite theéocalle
say a short monologue. Some example questions are: “Describe the last movie ypu saw.
“Describe your last vacation.”, “What is your favorite meal?”, “What adeget are offered
by public transportation?”. The responses to the fixed questions were much sh&sesr(1.
average) than to the open questions (8.2s on average). The response duration for the open
guestions was quite variable from a few seconds to very long monologues when tine calle
was interested in the question.

Figure 3 shows the ROC curves for the spontaneous responses to the fixed and open ques-
tions. An automatic phone transcription was generated for each utterancehesspebker-
independent seed models (35 context-independent phone models) and phone bigrams esti-
mated on the BREF corpus (Lamel, Gauvain and Eskénazi, 1991) This autormascrip-

tion was then used in place of the true phone sequence in computing the likelihoodler all t
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Questions Avg. duration

calling place 1.3s

telephone type 1.7s

handset type 1.3s
city/country 0.9s
postal code 1.3s
telephone no. 1.6s
date 2.3s
time 1.6s

open questions 8.2s

Table 4: Average durations for fixed and open questions.

speakers’ models. The same multi-style speaker models were used as invibagpsec-

tion. The EERs for the fixed responses and open responses are 6.4% and 7.3% réspective
with a maximum of two trials per attempt. These EERs are quite a bit highetthioge that
observed for the read speech data.

A logical question then is how much of this degradation is due to the differences in
speaking style, and how much is due to the use of an imperfect phone transcriptioa. Ther
are two ways in which this question can be answered. The first is to carrypeaker
verification for the read speech data without knowledge of the transcription.etoad is to
assess the verification performance on the spontaneous speech if an oracte previde
the correct orthographic transcription (and the phone transcription via the lexicon).

The ROC curves for the digits, SEPT abel Mondesentences in the unknown text con-
dition using the same phone models are also shown in Figure 3. The EER for the digits
is 4.0%, whereas the EER for the SEPT sentences is 2.4% and the lowest EER a$ 1.7%
for the Le Mondesentences. This indicates that in the presence of phone errors, longer test

utterance durations result in better verification performance. For the digitthe SEPT sen-

19



14 \

I I I I I
& 1 s s 1 . ;
! 1 Fixed questions+—
0 | | | Open questions=—
\ . . . . h o .
A2 [ SR R ~Digit strings--o--
N ! ! SEPT SentenceSX”'
m i & 5 : Le Monde sentences>--
o 10 N = N S S 4
2 L
=3 X 1 1 1
£ \ | | |
© CH N N I N A R
o X | | |
g & BN | ; |
B Sl S B . T S S
: SN
© X : : :
3 A0 %
S O VI B U e N S
= DS | | 1
A% | | |
T . i
W Xege | | ol ?
RN S 3 Ot o
TR R e e
0 i i i I ile il i
0 2 4 6 8 10 12 14

False rejection (users) %

Figure 3: ROC curves for spontaneous speech fixed respoasesopen questiorggwith-
out transcriptions (unknown text, phone recognition). Multi-style training. (Fixedtopuness
8823 user attempts, 794070 imposter attempts (simulated); Open questions: 4691 user at
tempts, 422190 imposter attempts (simulated).) Maximum of two trials etioler each

attempt with an average of 1.1 trials/attempt. ROC curves for the 8B T and.e Monde
sentences are given for comparison.
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Figure 4: ROC curves for spontaneous speech fixed resporases open questions us-
ing transcriptions (text known). Multi-style training. (Fixed questions: 8823 agempts,
794070 imposter attempts (simulated); Open questions: 4691 user attempts, 422190 im-
poster attempts (simulated).) Maximum of two trials allowed for eatdmapt with an aver-

age of 1.1 trials/attempt. ROC curves for the digits, SEPTLanMlondesentences are given
for comparison.
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tences the EERs are doubled compared to the known text condition (see Figure 4yedrow
the performance on the read speech data remains substantially better tharspartaneous
data.

In an attempt to further understand the large performance differences, tGecRR@es
for all 5 data types under the known-text condition are shown in Figure 4. Even in this
unrealistic condition for the spontaneous speech, the error rates for both error tgpes a
significantly higher than for the read texts. We can therefore conclude that maisé of
performance difference is due to the nature of the spontaneous speech - morenvguistd
content, less fluent, less well articulated - and not to the errors in the phamseitiptions.
Knowing the correct phone sequence only reduces the EER to 5.0%. Comparing the curves
in Figures 3 and 4, the degradation due to imperfect phone recognition can be attimate
ThelLe Mondesentences are the least affected by recognition errors, which is probably due t
their longer average duration, and that the phone bigrams are well adapted to thifh#ata
larger degradation observed for the SEPT sentences and digits strings cabdilegtributed
to a mismatch between their linguistic content and the phone bigram.

From the spontaneous speech ROC curves it appears that it is easier to rediatsethe
acceptances than to reduce false rejections. For the open questions in FigeréaBe
rejection rate remains higher than 6%, whereas the false acceptandss restuce to 2%.

These results confirm that speaker recognition using unconstrained spontaneous speech
is significantly more difficult than with known prompts. This higher error rate loa partly

attributed to a larger variation in speaking style and the larger véitiaini phonetic contexts.

6 Conclusion

With the recent advances in speech technologies, there has been increasesg intdevel-
oping interactive telephone-based services using voice. Some of these seoutbenefit
from speaker verification technology in order to provide additional access sedure pur-

pose of the experiments reported in this paper was to quantitatively asskEssnagice as a
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function of system design choices, without constraints linked to a particulacapiph. The
main factors considered were the type of speaker model, the amount of test dataptna
and recency of the training data, the linguistic content, and speaking style.

Several observations can be made concerning these experiments. As expentad, the
a correlation between the amount of training data and the system performaticenave
data yielding higher performance. Similarly, for comparable amounts of trainitag oletter
performance is obtained when the data is taken from several training sessapposed to
all from a single call. Concerning the amount of data needed, estimation of sysgedatiic
models requires a minimum of about 1 minute of speech. For the test utterancesulte re
indicate that it is advantageous to ensure a minimal duration of at least 1.5 An2gual
error rate of 1% was obtained on the SEPT sentences, in the text-dependent moée with
trials per verifcation attempt and with a minimum of 1.5s of speech pdr tria

It is evidently preferable that the linguistic content of the training data andltta are
closely matched. If the test data is different in linguistic content (or uncdettpImulti-
style training is to be prefered, however type-specific training resulteiter performance
when the same type of test data is used. The importance of phonetic content wasalistr
for the crossed-type conditions, which led to significant degradation in performance

Better performance is obtained for the SEPT sentences, with controlleddirmgcon-
tent, than for digit strings or the more varialidle Mondesentences. This can be partially
attributed to the smaller number of phonetic contexts, for which more accuw@istec mod-
els can be estimated for a given amount of training data. Another contributitay fa that
they are easy to remember and pronounce. As a result, speakers tend to sayatheaslly
without hesitation. In contrast, reading aloud the Mondesentences sometimes caused
difficulty for the users. Verification performance using unrestricted spootanspeech is
significantly worse than for prompted speech. This can be partly attributethrger varia-

tion in speaking style and the larger variability in phonetic contexts.

23



References

Atal, B.S. (1976). “Automatic Recognition of Speakers from Their VoicBsgdceedings of
the IEEE 64(4), 460-475, April.

Bernstein, J., Taussig, K. and Godfrey, J. (1994), “MACROPHONE: An ArtaerEnglish
Telephone Speech Corpus for the Polyphone Projéstt. IEEE ICASSP-94Adelaide,
Australia,l, pp. 81-84, May.

Boves, L. and den Os, E. (1998), “Speaker Recognition in Telecom Applicatimns 1EEE
IVTTA-98 Torino, pp. 203-208, September.

Campbell, J.P. and Reynolds, D.A. (1999), “Corpora for the Evaluation of Speakegiitec
tion Systems,Proc. IEEE ICASSP-9%hoenix, AZ, pp. 829-832, April.

Carey, M.J., Parris, E.S. and Bennett, S.J. (1996), “Speaker VaofcatProc. Institute of
Acoustics (Speech & Hearing)vindermere, U.K., pp. 99-106, November.

Doddington, G.R. (1985). “Speaker Recognition - Identifying People by their VoiPes;”
ceedings of the IEEE3(11), pp. 1651-1664, November.

Furui, S., Itakura, F. and Saito, S. (1972) “Talker recognition by longtime aversggeech
spectrm, Transactions IECE55-A(1), pp. 549-556.

Furui, S. (1994), “An Overview of Speaker Recognition TechnoloBygc. ESCA Workshop
on Automatic Speaker Recognition, Identification, and Verificatartigny, pp. 1-9, April.
Gauvain, J.L. and Lamel, L.F. (1993), “Identification of Non-Linguistic Spefeeatures,”
Proc. ARPA Human Language Technology WorksiRd@insboro, NJ, pp. 96-101, March.
Gauvain J.L., Lamel, L.F. and Prouts, B. (1995), “Experiments with speakgication over
the telephone,Proc. ESCA Eurospeech’9Madrid, pp. 651-654, September.

Gauvain, J.L., Lamel, L.F. and Prouts, B. (1997), Final report Marchaderdelecom No.
94 6M 714, “Authentification vocale du locuteur a travers le réseau teleghefiiMay.
Gauvain, J.L. and Lee, C.H. (1994) “MaximuanPosteriori Estimation for Multivariate
Gaussian Mixture Observations of Markov Chaing§EE Trans. on Speech & Audig(2),
pp. 291-298, April.

Gish, H. Schmidt, M. (1994), “Text-Independent Speaker Identificati&E Signal Pro-

24



cessing Magazingp. 18-32, October.
Godfrey, J., Holliman, E. and McDaniel, J. (1992), “SWITCHBOARD: TelephSpeech
Corpus for Research and Developmempc. IEEE ICASSP-95an Francisco, CAL, pp.
517-520, March.
Godfrey, J. (1994) “Multilingual Speech Databases at LORI3c. ARPA Human Language
Technology Workshoglainsboro, NJ, pp. 23-26, March.

Higgins, A.L., Bahler, L., and Porter, J. (1991) “Speaker Verification Ustagdomized
Phrase PromptingPigital Signal Processingl.
Lamel, L.F. and Gauvain, J.L. (1992). “Continuous Speech Recognition at LINBidl
review of theProceedings of the DARPA Atrtificial Neural Network Technology Speech Pro-
gram, Stanford, CA, September.
Lamel, L.F. and Gauvain, J.L. (1993) “Identifying Non-Linguistic Speech FeatuProc.
Eurospeech’93Berlin, Germanyl, pp. 23-28, September.
Lamel, L.F. and Gauvain, J.L. (1995) “A Phone-based Approach to Non-Linguistiec8pe
Feature Identification,Computer Speech and Langua@gl), pp. 87-103, January.
Lamel, L.F. and Gauvain, J.L. (1997), “Speaker Recognition with the Switchliampus,”
Proc. IEEE ICASSP-9Munich, April.
Lamel, L., Gauvain, J.L. and Eskénazi, M. (1991), “BREF, a Large Voeapubpoken
Corpus for French,Proc. ESCA Eurospeech’9Genoa, September.
Legetter, J.C., Woodland, P.C. (1994), “Speaker adaptation using linear regie3schni-
cal report, CUED/F-INFENG/TR.181
Matsui, T. and Furui, S. (1993). “Concatenated Phoneme Models for Text-Varipbk&r
Recognition,”Proc. IEEE ICASSP-93I, pp. 391-394, Minneapolis, MN, May.
Naik, J.M. (1990), “Speaker Verification: A TutorialEEE Communication Magazinpp.
42-48, January.
Newman, M., Gillick, L., Ito, Y, McAllister, ?, Peskin, B. (1996), “ Spea Verification
through Large Vocabulary Continuous Speech RecognitiBrd¢. ICSLP’96 Philadephia,
PA, pp. 2419-2422, November.

25



Przybocki, M.A. and Matrtin, A.F. (1998), “NIST Speaker Recognition Evaluati®@97,”
Proc. RLA2C Avignon, pp. 120-123, April.

Reynolds, D. (1995), “Speaker Identification and Verification using GaussiamnidiSpeaker
Models,” Speech Communicatiph?, pp. 91-108.

Rosenberg, A.E. (1992), “The Use of Cohort Normalized Scores for Speaker \&oifica
Proc. ICSLP-92Banff, October.

Rosenberg, A.E. (1976), “Automatic Speaker Verification: A Revidwgceedings of the
|EEE, 64(4), pp. 475-487.

Rosenberg, A.E., Lee, C.H. and Soong, F.K. (1990). “Sub-Word Unit Talker Veitfica
Using Hidden Markov Models,Proc. IEEE ICASSP-9®RIbuquerque, NMS5.3 pp. 269-
272.

Rosenberg, A.E. and Soong, F.K. (1992) “Recent Research in Automatic Speakegr Rec
nition,” Chapter 22 inAdvances in Speech Signal Process{iigls. Furui, Sondhi), Marcel
Dekker, NY.

Tseng, B.L., Soong, F.K. and Rosenberg, A.E. (1992), “Continuous Probabilistic Acoustic
MAP for Speaker RecognitionProceedings of the IEEE ICASSP;%an Francisco, CA,

I, pp. 161-164.

26



