
Transcriber: development and use of a tool for

assisting speech corpora production

Claude Barras1, Edouard Geo�rois1, Zhibiao Wu2

1DGA/CTA/GIP, 16 bis av. Prieur de la Côte d'Or, 94114 Arcueil cedex, FRANCE

2LDC, 3615 Market Street, Suite 200, Philadelphia, PA, 19104-2608, USA.

Abstract

We present the development and use of �Transcriber�, a tool for assist-

ing the creation of speech corpora. It is more speci�cally geared toward

the manual segmentation and transcription of long duration broadcast

news recordings, including annotation of speech turns, topics and acous-

tic conditions. It is distributed as free software in order to encourage the

production of corpora, ease their sharing, increase user feedback and moti-

vate software contributions. It is highly portable, relying on the scripting

language Tcl/Tk with extensions such as Snack for advanced audio func-

tions and tcLex for lexical analysis, and it has been tested on various Unix

systems and Windows. The data format follows the XML standard, and

Unicode is supported for multilingual transcriptions. The use of a script-

ing language allowed a rapid prototyping development mode, with regular

feedback from users and quick adaptation to their needs. Transcriber has

been used for over a year, and we present the experience gained. There

are now many users in several countries, and new needs appear. Future

developments include the generalization of the data format and of the tool

using the recent re�ections about annotation graphs which is expected to

1

further increase �exibility.

1 Introduction

Speech research has long been conducted using small- or medium-sized databases

recorded in controlled conditions. The transcription of these databases was not

a critical issue, since the content was known in advance or utterances were short

enough to be easily transcribed. With the advent of work on realistic speech �

spontaneous speech with frequent overlaps and uncontrolled background condi-

tions �, this situation has changed. An always larger amount of transcribed

speech is required for the improvement of automatic speech recognition sys-

tems and their adaptation to new tasks. For example, several hundred hours

of manually transcribed speech have been used for the Broadcast News task

in English within the DARPA programs. Production of these data requires a

suitable software environment.

A new project for transcription and indexation of multilingual Broadcast

News started at DGA in 1997, and such a software environment was needed

for creating the necessary corpora. After examination of existing solutions, it

appeared that no available transcription software completely �lled our needs,

and we decided to develop a new tool. The development of �Transcriber� started

at the DGA in coordination with the LDC in early 1998. This tool allows to

manually segment, label and transcribe long duration speech signals, includ-

ing labeling of speech turns and topic changes. It is multi-platform and it is

distributed as free software [16]. The �rst release was presented at the LREC

conference in 1998 [1]. Since then a lot of evolutions have taken place, and we

present the current status of the tool and the experience gained.

In section 2, we present the requirements identi�ed for the tool. In section

3, we present its development, especially the choice of a programming language,

2

and the solutions chosen for an e�cient multi-platform audio management and

for the data format. The main features of the tool and its interface are described

in section 4. Our experience of using the tool is presented in section 5. Future

directions and format evolution are discussed in section 6. We conclude with a

discussion on the bene�ts we found in this experience.

2 Requirements

We identi�ed the following technical requirements for the tool: it should provide

interactive management of long duration signals, allow multilingual transcrip-

tions, be user-friendly and usable by a non-specialist, and work on a standard

PC. Furthermore, a large di�usion of the tool appeared bene�cial for the project,

and it was decided that the tool should be freely distributed, be portable and

use a standard format.

2.1 Interactive management of long signals

Interactivity of a software tool is generally considered as a practical issue being

less important than interface design, but quick responses to user actions is a

condition for the tool to be accepted by the user [9]. In the case of Broadcast

News projects, typical recording duration extend from several minutes to even

hours. An interactive access to such long signals with user-reactive playback,

scrolling and zoom should be available. In order to help the segmentation pro-

cess, showing a moving cursor perfectly synchronized on the signal waveform

during playback also seems necessary; implementation of this feature is often

platform-speci�c.

3

2.2 Multilingual transcriptions

Our project of multilingual indexation implies management of several languages

in the tool and also in the data produced, including non European languages.

Obviously, Unicode which is the most standard multilingual character encoding

should be supported.

2.3 User-friendly interface

Transcribing audio or video recordings is a very time-consuming task which can

not be left to speech scientists. It is usually done by educated, native people of

the studied language with no speci�c skill in computers science. A transcription

tool should mimic as much as possible user interfaces of standard o�ce software,

so as to reduce the training period. It has to be intuitive, and a good integration

between sound control and the annotations must be provided.

2.4 Working on standard computers

Another wish was that it should work on a low-cost, standard computer, in order

to reduce the additional cost per workplace. Previous solutions for Broadcast

News were designed to work only on higher-end workstations, but this led to a

lack of portability. Furthermore, the transcribers could only complete their work

in the o�ce. Using a standard PC (desktop or even laptop) is more economical

and makes work at home possible.

2.5 Free distribution

Apart from the technical or economical constraints mentioned above, we chose

to distribute the tool as free software under the GNU public license. Indeed,

having decided to develop a new tool, the additional cost for distributing it is

modest and important bene�ts can be expected in return. The main bene�t is

4

to encourage the production of speech corpora and ease their sharing. Another

reason is the e�ciency of open source for software development. We expected

an increase of user feedback and also some contributions by external developers.

2.6 Portability

The portability of the tool became a more important issue with its di�usion

as free software. Like many research laboratories we are mainly working un-

der the Unix operating system, and we chose to make the development under

Linux, which is a free, widespread Unix for PC. However, Windows is by far the

most common system outside laboratories, and having the tool run also under

Windows was very soon felt as important, since most transcribers are gener-

ally accustomed with this environment and do not wish to switch to another

system. A multi-platform tool is needed. Even if the drawbacks can be that

some compromises have to be done on the e�ciency of the software or that the

maintenance cost for several platforms gets higher, designing portable code is

always a good practice, especially in the long term.

2.7 Use of standard formats

The choice of a good format for the annotations is also important, if only for

their di�usion; it should as much as possible follow existing standards. Since

there is a large number of existing formats for the annotations, this choice is

not obvious.

3 Development

This section presents the main development choices which were made, in line

with the above requirements.

5

3.1 Choice of Tcl/Tk scripting language

We were confronted with the choice of a language for the development. Visual

Basic and Visual C++ from Microsoft are widely used in the industry for the

development of applications under Windows, but this choice limits the porta-

bility to other systems. Graphical applications under Unix classically involves

C language with X11 interface, but the development of user interfaces in this

framework is generally complex, and the programs are also not easily portable

to Windows. Those two solutions were not really considered.

Java was a possibility, since it is a modern, multi-platform language. An

annotation tool developed at LDC was indeed implemented in Java a few years

ago. However, compared with softwares such as Xwaves, the waveform display

and its update according to user requests were slow; it could not simultaneously

display a moving cursor during playback at the time of development, and �rst

version of Java could only support AU sound �le format. This is why the LDC

�nally dropped the idea of implementing a fully functional package in Java.

Furthermore, the status and the licensing policy of Java and of some libraries

needed for the user interface or audio management were unclear at the time of

choosing a language for a new development.

Since a few years ago, there has also been a growing interest for various

scripting languages [11]. One of the most open and successful ones is Tcl/Tk. It

is a multi-platform script language available for several Unix systems, Macintosh

and Windows [10][14]. The syntax of the Tcl language is rather simple, but

complex user interface can be written in a few lines using the Tk graphical

library. The absence of compilation signi�cantly speeds up the development

process, and computers have become so powerful that interpreted applications

provide nowadays very reactive user interfaces. The need for a C or C++

development is reduced to the critical or system-dependent parts which can

6

easily be interfaced with the Tcl script. Tcl/Tk was therefore chosen for the

development of Transcriber. In its version 1.4, Transcriber accounts for about

12.000 lines in Tcl and about 3.000 lines in C, which means that most parts

were responsive enough in Tcl.

3.2 Interactive display of long duration waveforms

As previously stated, it was necessary to provide interactive display and play-

back of long duration signals. Scrolling and if possible zooming of the waveform

had to be achieved in real time on a standard platform.

A speci�c waveform display module has been developed for Transcriber.

This part is time critical and is written in the C language. It is optimized

for interactive zooming and scrolling on long duration sound �les, which can

be performed even while listening. The sound �le is never loaded in memory,

since a single hour of signal could easily exceed the available memory. The �rst

time a long sound �le is accessed, the temporal envelope of the waveform is

computed at a low resolution (minimal and maximal sample values for each 10

ms segment) and stored on the disk in order to speed-up later display. When

drawing the waveform at low resolutions (i.e. several minutes of signal or more),

its shape is computed using only the pre-computed envelope instead of reading

megabytes of data in the sound �le. Also, only the needed part of the waveform

is computed during scrolling, not the whole display. These optimizations proved

to increase dramatically the interactivity of zooming and scrolling.

As an option, remote sound �le access is provided through a server controlled

with sockets and is speci�cally optimized for the tool, thus being more e�cient

than a standard network �le access: for signal display, the waveform is com-

puted on the server and is transmitted over the network instead of accessing the

whole signal through the network. In our experience, the annotation tool was

7

always used in a stand-alone fashion. However, this feature makes it possible to

centralize all recordings on a server, allowing interactive remote access without

duplication of large resources. In a predictable future, it will probably become

more useful for the consultation of archives.

3.3 Audio management with Snack

A cursor should also be synchronized with playback. But low-level access to

the audio driver is generally needed in order to obtain the latter behavior, and

makes portability harder. Much time was spent during development and testings

before having a reliable sound control, especially because of hardware or of low-

level OS problems (e.g. under Linux, early versions of the audio driver were not

completely safe and frequent reboot were needed before identifying the problem,

or some recent cards were not correctly recognized). The Snack audio extension

brought a good solution to the multi-platform audio question.

Snack is an extension for the Tcl/Tk scripting language which provides multi-

platform audio management [12]. It was developed by K. Sjölander at KTH

speech laboratory and its use has been illustrated for educational purpose [13].

Most commonly used sound �le formats are supported, playback is e�ciently

supported for Windows and several Unix systems including Linux, and it runs in

the background while staying under the control of the application. These excel-

lent technical characteristics and the fact that it is distributed as free software

made Snack obviously the best choice for multi-platform audio management. It

was thus chosen for use within Transcriber as soon as it was available, and most

of the code initially developed was dropped.

The possibility of remote playback was developed in the �rst version of the

tool in order to allow using it from a terminal [1]; this feature didn't prove to

be a big need, and was not maintained in later versions of the tool.

8

3.4 XML �le format

The produced transcription consists in a set of annotations which apply to the

audio recording. These data need to be stored in a �le, processed in various

ways, and exchanged easily. The data format has thus to be chosen carefully,

since frequent changes would be inconvenient for the users. The kind of data

to be stored must of course be considered before de�ning the format. Our

primary task being automatic transcription of broadcast news, we were mainly

interested in an orthographic transcription along with a description of various

acoustic events, speech turns with an identi�cation of the speaker, and a broad

segmentation in topics.

The choice of a human-readable format was easy, since textual data prevail

in our data, and anyway binary format are always di�cult to share. But tran-

scriptions are complex objects, and a structured machine-readable format is also

needed. We considered SGML and its more recent subset XML [7]. Both allow

to describe a document structured as a tree. Each node of the tree bears a set

of attributes with a value. The syntax used in the document can be speci�ed

in a Document Type Declaration or DTD and distributed along with the docu-

ment. Tools exist for ensuring automatically the well-formedness and validity of

a document, i.e. the fact that it correctly follows the SGML or XML syntax as

well as its speci�c DTD. More important, SGML and XML are very widespread

standards, which helps sharing documents in this format. XML uses Unicode

character codes, which is very important for multilingual transcriptions. Com-

pared to SGML, automatic processing of XML documents is much easier, and

XML was thus preferred.

However, XML normalizes the way data are stored in a document, not which

data are stored nor what they mean. The design of a DTD is the preferred way

to constrain a document to a speci�c syntax or structure. The way this structure

9

has to be created, displayed, managed, is still left to a speci�c application or to

the user.

3.5 Implementation of the parser

Then we looked for an XML parser being:

� easy to interface with Tcl/Tk,

� in open source for a di�usion along with our tool,

� validating the document according to its DTD, since the production of

valid documents is needed for their automatic exploitation.

At the time of development, no completely free validating XML parser was

available for Tcl/Tk. A speci�c one was therefore designed, as a separate module

with the following features:

� it makes use of tcLex, a lexical analyzer generator extension to Tcl and

distributed as free software [5]. The tcLex extension is inspired by Unix

and GNU lex and �ex, but follows Tcl syntax and suppresses the need for

compilation of the analyzer; this feature proved to be very convenient for

the development of the XML parser.

� an image of the read XML �le is stored in memory in a tree data structure

and in an object-oriented fashion, each node of the tree being accessed to

and modi�ed by methods.

� when a DTD is active, each modi�cation of the XML data structure in

memory is validated immediately; this ensures that saving the current

XML image to a �le will produce a valid XML �le.

Furthermore, the choice was made to always keep the XML data structure in

memory up-to-date with the current state of the transcription. The advantage is

10

that saving the transcription only requires a dump of the existing data, which in

addition is already ensured to be valid; some parts of the document (comments,

tags intended for another use) can also be ignored by the application and still

remain in the document. The drawback is that the XML object-oriented tree

structure used is not always the most convenient way for data management in

Tcl (which leads to some duplication of the data in memory), and that the tool

is much more sensitive to the choice of the DTD and its possible modi�cations.

The relevance of this choice remains hard to evaluate, and would depends highly

of the internal structure for other applications.

With the growing interest around XML and the trend of normalization in

the area of programming interface to manipulate XML documents (e.g. with

the Document Object Model or DOM [6]), using another existing XML parser

would have to be considered. Indeed, relying on robust libraries tested and used

by a lot of users is one of the main advantages of open-source developments.

XML parsing and data management presently accounts for about 1/5th of the

total Tcl code in Transcriber, and using an external module would reduce the

maintenance workload for this part.

4 Main features

Combined with the free distribution, the use of a scripting language allowed

rapid prototyping development with quick user feedback on the tool. Numerous

functions were modi�ed or added according to user requests. For example,

management of overlapping speech was changed several times in order to provide

a more intuitive user interface. This development mode lasted over a year with

monthly updates. The resulting tool is now brie�y described, with more details

on the features relevant to the structure of speech annotation

11

4.1 User interface

Only a brief description of the user interface and of the main features is given

here. A more complete documentation is distributed along with the tool.

The user interface of the tool consists mainly in two parts (cf. Figure 1):

� a text editor in the upper half of the screen, for creation, display, and

edition of the transcription;

� a signal viewer in the lower half of the screen, along with the temporal

segmentation at di�erent levels (orthographic transcription, speech turn,

topic change, background noise).

Playback is controlled by tape-recorder-like buttons and by keyboard shortcuts.

Any portion of the signal can be selected, played, or zoomed. A cursor is

synchronized with current position during playback.

The segmentation of the signal is done using a menu or simple keyboard

shortcuts and is even possible during playback without stopping it; this allows

a quick rough segmentation in a �rst phase, and a more precise position of

segment boundaries in a second phase by simply dragging the boundaries under

the signal with the mouse.

Each segment boundary de�ned in the signal editor appears as a graphical

mark in the text editor, and the text typed in between two marks belongs to

the segment. Some boundaries can be de�ned as the beginning of a new speech

turn or of a new topic; a button appears in the text editor above the time mark

and can be clicked on for further editing.

Any change in the text editor is immediately displayed under the signal in

the temporal segmentation. Also, cursor position in the text editor and in the

signal viewer are synchronized and are constrained to always stay within the

same temporal segment: as soon as one cursor moves and switches to another

12

Figure 1: Screen shot of the user interface.

13

<?xml version= "1.0" ?>
<!DOCTYPE Trans SYSTEM "trans-13.dtd" >
<Trans version= "1" version_date= "981211"
 audio_filename= "frint980428" scribe= "YM" xml:lang= "fr" >
 <Topics>
 <Topic id= "to1" desc= "les titres" />
 </Topics>
 <Speakers>
 <Speaker id= "sp1" name= "Simon Tivolle" type= "male" />
 <Speaker id= "sp2" name= "Patricia Martin" type= "female" />
 </Speakers>
 <Episode program= "France Inter" air_date= "980428:0700" >
 <Section type= "filler" startTime= "0.000" endTime= "4.736" >
 <Turn speaker= "sp1 sp2" startTime= "0.000" endTime= "0.387" >
 <Sync time= "0.000" />
 <Who nb= "1" />
 ouais .
 <Who nb= "2" />
 sûr ?
 </Turn>
 <Turn speaker= "sp1" startTime= "0.387" endTime= "4.736" >
 <Sync time= "0.387" />
 ah bon ?
 <Event desc= "rire" />
 non . blague , blague de Patricia .
 <Sync time= "3.008" />
 <Event desc= "i" />
 France-Inter ,
 <Event desc= "rire" type= "noise" extent= "begin" />
 il est 7 heures
 <Event desc= "rire" type= "noise" extent= "end" />
 .
 </Turn>
 </Section>
 <Section type= "nontrans" startTime= "4.736" endTime= "9.609" >
 <Turn startTime= "4.736" endTime= "9.609" >
 <Sync time= "4.736" />
 <Background time= "4.736" type= "music" level= "high" />
 <Background time= "9.609" type= "other" level= "off" />
 </Turn>
 </Section>
 <Section type= "filler" startTime= "9.609" endTime= "10.790" >
 <Turn speaker= "sp2" startTime= "9.609" endTime= "10.790" >
 <Sync time= "9.609" />
 le journal , Simon Tivolle :
 </Turn>
 </Section>
 <Section type= "report" topic= "to1" startTime= "10.790" endTime= "20.000" >
 <Turn speaker= "sp1" startTime= "10.790" endTime= "20.000" >
 <Sync time= "10.790" />
 <Event desc= "i" />
 bonjour !
 <Sync time= "11.781" />
 <Background time= "11.781" type= "music" level= "high" />
 <Sync time= "12.237" />
 mardi 28 avril .
 <Sync time= "13.344" />
 la consultation nationale sur les programmes des lycées :
 <Sync time= "16.236" />
 <Event desc= "i" />
 grand débat aujourd’hui et demain à Lyon
 <Sync time= "18.521" />
 pour tirer les enseignements du ...
 </Turn>
 </Section>
 </Episode>
</Trans>

List of
topics

List of
speakers

T
ra

n
sc

ri
p

tio
n

Figure 2: Sample of a transcription �le.

14

Speaker A no speaker Speaker B

...

Speech Turns

Orthographic
transcription

Topic 1

Speaker A

... ...

Topic 2Sections

Music
Background

noise

...

Figure 3: The 4 segmentation levels of a transcription.

segment, the other cursor automatically moves to the same segment.

4.2 Data format

We considered existing formats, especially the ones used at LDC for the DARPA

evaluations on Broadcast News. In fact, a lot of other formats are currently in

use. As an attempt to better coordinate existing e�orts, the Text Encoding

Initiative or TEI provided in 1994 recommendations for the transcription of

written and also spoken materials in SGML [15]. TEI has not been followed

in the design of the current Transcriber format, mainly because existing LDC

formats were less complex and already adapted to the task, but it contains a

lot of relevant ideas and propositions, and current e�orts aim at adapting TEI

to XML and expanding its coverage.

LDC has used SGML formats for several years. More recently, NIST speci�ed

an Universal Transcription Format or UTF1 based on previous SGML formats

used at LDC; it was designed for production of Hub-4 Broadcast News and

Hub-5 Conversational speech corpora in 1998. After considering it, we chose

not to use it directly for several reasons: we wanted to store some informations

which are not available in UTF, e.g. some characteristics associated to the

speakers; also, UTF uses SGML features which are not available in XML, e.g.

short references or case-independence of identi�ers. Nevertheless, we tried to

keep a logical structure as near as possible to UTF or previous LDC formats and

1not to be confused with Unicode character encodings UTF-8 and UTF-16.

15

tag or attribute names are often reminiscent of LDC's ones, so that conversions

between the di�erent formats are straightforward (though partially lossy).

The transcription has three hierarchically embedded layers of segmentation:

� a basic segmentation of the orthographic transcription, with breakpoints

at pauses, breaths, sentences or any other convenient places;

� a division into speaker turns;

� a division into larger sections, such as �stories� in the Broadcast News

setting.

In addition, there is a fourth type of segmentation, hierarchically independent

of the other three, for changing acoustic background conditions. Each of the

four types of segmentation is constrained to be a partition of the whole signal

(cf. Figure 3).

Speakers and topics are grouped in separate lists and each speaker or topic

bears a unique identi�er which is used inside the transcription; this avoids the

duplication of speaker or topic names and makes them easier to edit.

We give a manually indented sample of a transcription �le in the chosen

format (cf. Figure 2); this is the one displayed in the previous screen shot of

the tool (cf. Figure 1). In our case, the validation of a document is not enough

to ensure its logical consistency; indeed, some properties � e.g. the fact that

the �startTime� and �endTime� attributes must bear numerical values which

are in increasing order � can't be speci�ed in the DTD and have to be veri�ed

afterwards in the application.

4.3 Non-speech events and background noise

Main speaker's vocal non-speech events were initially typed in within the or-

thographic transcription as special markers between square brackets - e.g. [i]

16

for an inspiration. Such events normally do not overlap with speech, and they

can be inserted rather naturally between the uttered words in the transcription.

External short noises could also be noted in the same way, e.g. [b] for a generic

noise. Such events can overlap with speech and they often do, so beginning and

end of a noise were written in a simple way, e.g. [b-] ... [-b]; as an alternative

for short noises overlapping with a single word, it could also be written joined

to the word. This was also used for language changes. Keyboard shortcuts were

prede�ned for some frequent events.

This mechanism was easy to use by the transcriber but had several draw-

backs. Di�erent kinds of events were noted the same way and could not be

automatically distinguished, too much variability appeared in the event descrip-

tion, and further processing was needed in order to separate these annotations

from the orthographic transcription. At some point it was decided to provide a

speci�c interface within the tool for events management, and to distinguish the

internal representation of the non-speech events or of various local annotations

from their interface in the tool. As much as possible the initial display and

keyboard shortcuts were kept identical, but the data format was extended with

a new tag: several kinds of annotations were distinguished - noise, language

change, lexical annotation, pronunciation annotation, comment, and a �eld was

added to specify the temporal extent of the annotation. A set of prede�ned

descriptions for each kind of event was made available to the transcriber, but

any other description can be given.

The event description remains speci�c to the task and to the transcriber's

language. In the future, it could be possible to agree on an international set of

non-speech events or other annotations, with a localized display within the tool.

This would ease the international exchange of produced corpora. But deciding

which annotations are language-independent is not straightforward. At any

17

rate, the transcriber should remain able to add his or her own annotations.

Also, the transcriber's workload has to be considered and mouse or keyboard

manipulations should be kept minimal.

A di�erent mechanism allows for a description of long duration background

noise. A speci�c level of segmentation is displayed under the signal and music

icon appears in the text inside the transcription where the background acoustic

conditions change.

4.4 Overlapping speech

A mechanism is provided for the annotation and transcription of overlapping

speech. Our priority was the transcription of single-channel Broadcast News

recordings for speech recognition systems training, and within this framework

overlapping speech segments are currently discarded from further automatic

exploitation. However, future tasks may use them, it makes the transcription

more complete, and anyway it was judged less frustrating for the transcriber to

be able to transcribe overlapping speech, whether he uses this feature or not.

It proved to be di�cult to provide an ergonomic user interface in the tool for

this task. In a �rst implementation, the constraint imposed to the segmentations

to be a strict partition of the signal was relaxed, and the last speech segment of

one turn could overlap with the �rst speech segment of the next turn (cf. solution

1 in Figure 4). The overlapping segments could be drawn in the temporal

segmentation under the signal, but the display of this solution in the text editor

was confusing, because the two overlapping speech segments belonged to two

separate speech turns and their simultaneousness did not appear clearly enough.

Several interfaces were tried and changed at user's request before eventually

choosing another representation (cf. solution 2 in Figure 4). The overlapping

part is clearly marked as a speech turn with two speakers. Despite the creation of

18

Speaker A Speakers
 A+B

Speaker B

... ...
...

... ...

Speaker A Speaker B

...A: ...
B: ...

...

1. overlapping segments

2. simultaneous speech wit h
non−overlapping segments

Turn
segmentation

Turn
segmentation

Orthographic
segmentation

Orthographic
segmentation

Figure 4: Two solutions tested for the representation of overlapping speech

this arti�cial speech turn, this led to a more acceptable solution in the interface.

In the text editor, the parallelism between the two utterances has to be suggested

as clearly as possible (cf. Figure 1).

In conversational speech, overlapping is often so common that this approach

becomes problematic both for the transcriber and for the user. In the case of

telephone speech recordings, two simultaneous speakers are often well enough

separated on the separate channels for automated processing to go forward with-

out special source-separation algorithms. In this case, it is much easier for the

transcriber to segment and transcribe each channel as an independent stream,

and the result is also more easily assimilated by training or testing programs as

well as by human users. This approach to the transcription of heavily overlapped

speech with a separate audio channel for each speaker (which is essentially the

one that the LDC has been using) requires a di�erent user interface as well as

a di�erent transcription speci�cation. Providing such a solution in Transcriber

19

is one of our goals for the future. Meanwhile, we understand that one user

has solved the problem temporarily by running two simultaneous invocations of

Transcriber, one for each channel! The resulting �les are then merged (or split)

automatically later on. A better solution would integrate the parallel streams

of transcription under simultaneous program control.

5 Practical use

Transcriber has been used for the DGA project on Broadcast News for over a

year. It has also been used by the VECSYS French company for several months

in the framework of the European Language Engineering project "OLIVE". In

this section we describe the material which was transcribed, the working condi-

tions and the productivity, the transcription guidelines which were provided to

the transcribers, and report on the experience gained.

5.1 Material transcribed

The reference material for the DGA project was chosen from the national French

program �France-Inter�, and 20 hours taken from the morning news program (7h-

9h) were recorded in December 1998 (10 weekdays from 2 consecutive weeks).

This choice was motivated by the news-oriented but varied content, and by the

fact that the distribution rights of this program could be obtained. The typical

2-hour program contains 3 news bulletins (for a total of about 50 minutes),

specialized news (20 mn), various chronicles (10 mn), review of the French press

and of the European press (15 mn), interviews and live questions from listeners

(20 mn), and weather reports (5mn). The review of the European press is

done by a non-native speaker, and contains of course a lot of foreign names and

expressions.

The material transcribed by VECSYS were 15 hours of radio recordings from

20

French programs �France-Inter� and �France-Info�, and 65 hours of television

soundtracks from various channels in French and German (23 hours of �Arte�

programs in French, 30 hours of �Arte� programs in German, and 12 hours of

French channels �France 3�, �France 2� or �TF1�). �Arte� programs consisted

mostly in news bulletins and documentaries on social or political issues.

5.2 Working conditions

Two half-time working transcribers were hired for the DGA project. They were

educated, native French speakers. Both were given a standard PC (Pentium

Pro 200 MHz) under Linux with headphones and loud-speakers. Each one had

to transcribe a set of 10 one-hour sound �les copied to their hard disks. They

worked in the same room and could share their experience. They had at their

disposal dictionaries, newspapers from the period of the broadcast material to

transcribe, and lists of journalist names. When they had completed a one-hour

sound �le, an additional veri�cation was done in the presence of a researcher in

order to discuss the speci�c problems which arose. Further normalizations were

performed in the laboratory on the whole set of transcriptions.

Eight half-time working French or German native speakers produced the

transcriptions for VECSYS. They started working within the company for about

15 days of training. Then they were provided with a PC running Linux with a

modem and the sound �les on a CD-ROM and worked at home. They were also

given a list of known French journalists, and paper drafts which were available

for some Arte programs; otherwise they relied on their own resources - some

proved to do veri�cations using their internet access. The produced transcrip-

tions were sent by e-mail. They were veri�ed and corrected afterwards by a

person specialized in this task and using all necessary dictionaries.

21

5.3 Productivity

A monitoring function was added to the tool in order to better analyze the

production of transcriptions and estimate the amount of work needed for the

transcription of one hour of material. This was also a user's request, since they

were interested in monitoring their own daily progress. Time spent using the tool

was measured and recorded, along with various measures on the transcription

size (number of temporal breakpoints, of speech turns, of words...).

The total time needed for the production of one hour, including careful

veri�cation of the transcription, amounted to around 50 hours for both DGA

transcribers. Of interest is that they did not follow the same strategy: the

�rst one chose to segment and annotate the whole signal �rst, performing the

orthographic transcription in a second pass; the second one did segmentation,

annotation and transcription in parallel. The superiority of one strategy over

the other one could not be demonstrated. However, it showed that much time

was spent to get an accurate segmentation. This is an indication that a good

automatic segmentation of the signal in short segments might speed up the

overall transcription work.

Mean transcription time for the VECSYS experience amounted also to around

50 times real time, with a large disparity depending on the program. Radio news

were easier, and television debate were much harder due to frequent overlapping

speech and di�culty of speaker identi�cation.

It was not possible to track the evolution of productivity of the transcribers,

since the monitoring feature was not available at the beginning of the task and

anyway the tool evolved much during the task. This would have to be studied

using a stable version of the tool.

22

5.4 Transcription guidelines

Transcribers were provided a written document describing the transcription

guidelines, i.e. explanations about what should be annotated and how to anno-

tate it. Initial guidelines were written by LIMSI on the basis of previous ones

that they had written for short utterances of spontaneous telephone speech and

of their experience of broadcast news transcription. They were intentionally

kept simple (and thus predictably incomplete) in their �rst version, and were

augmented as necessary when speci�c questions arose.

The transcription guidelines covered the following topics:

� What should be annotated : orthographic transcription of the foreground;

non-speech events and background noise conditions; speech turns with a

precise identi�cation of the speaker (name, gender, accent in the case of

foreign speakers); topics. And what should not be annotated, such as

transcription of commercials.

� How to add punctuation to increase readability without interfering with

automatic processing.

� How to deal with numbers, spelled letters, unknown words, foreign words,

etc.

� How to mark pronunciation errors, truncated words, overlapping speech.

Designing good guidelines proved to be far from being straightforward. They

must meet several, sometime con�icting, requirements: they must ensure usabil-

ity for several types of automatic processing, and take into account readability

for the transcriber or another user who navigates through long transcriptions;

they must help the transcriber in ambiguous situations and standardize the ex-

pected annotations, without bothering him with too many conventions which

23

might be di�cult to remember or causing him to lose time on �ne details; they

must cover most cases without becoming inconsistent. To summarize, they have

to keep a good balance between completeness and simplicity.

5.5 Experience gained

In practice, the initial transcription conventions have evolved along with the

tool itself during the sessions to take into account the problems encountered

and the transcribers' questions.

Capitalization

The principle was to transcribe mostly in lower case. Titles were also in lower

case and put in quotes. Brand names, however, were capitalized. In practice,

there were some confusions between titles and brand names, and both tran-

scribers didn't always choose the same solution, e.g. for political party names.

As a rule, following a standard orthography, e.g. as observed in the newspapers,

should be the correct guess except when it makes automatic processing much

harder. Designing speci�c entities - titles, brand names, etc. - should be left to

another annotation mechanism independent of the orthography and could even

be done automatically in some cases.

Acronyms

Transcribers were initially asked to prepend each acronym with a mark, depend-

ing upon it is read or spelled. This was thought to bring a potentially useful

pronunciation information for a low additional cost. In practice, it brought

errors in some non-ambiguous cases, and it was decided that a speci�c pronun-

ciation mark was to be added only to acronyms for which both pronunciations

are possible, and might even be dropped altogether.

24

Foreign words

In order to avoid processing utterances in foreign languages, these need to be

marked. Foreign word or expressions in the transcription had to be marked with

a language-switch tag, except for the most current foreign words which have

become widely used in French. However, it was not always easy to decide if a

word was current enough. Some foreign location names were rather frequent

- e.g. �Wye Plantation� which is often mentioned because of the agreements

signed there.

There were a lot of foreign expressions and names in the European press

review which were di�cult to transcribe. Transcribers were not requested to

fully transcribe foreign expressions, but could do so if they wished.

Proper names

The transcribers at DGA always made impressive e�orts to always �nd the

correct writing of proper names, despite the fact that a speci�c marking was

available for uncertain orthography. They were informed of the recording ses-

sions that they will have to transcribe and decided to get newspapers from the

corresponding days. This proved to be a valuable source for the orthography

of the names. The name orthography of the journalists was available from the

radio or in some specialized publications. Once again, the European press re-

view proved to be a di�cult challenge, since the foreign newspapers were not

available to the transcribers, and they were often reluctant to mark a word as

�orthography unknown�.

Speaker identi�cation

A speci�c situation was encountered by transcribers working on television sound-

tracks. Radio journalist are generally introduced, but this is not the case on

25

television. Speaker identi�cation was much harder, and it was even di�cult to

gather the various occurrences of a same anonymous journalist across several

programs.

Overlapping speech

Transcription of overlapping speech was of course a di�cult point. Di�erent

situations were identi�ed, each one with a di�erent processing:

1. clear foreground speech with background speech - e.g. translation with

the original foreign voice in background: in this case, only the foreground

voice had to be transcribed with a noise marker indicating background

speech.

2. limited interjections from other speakers (e.g. hum, yes...): they were

indicated as instantaneous noises inside the main speaker transcription.

3. a dialog between two speakers with frequent overlapping at the boundaries:

when feasible, it could be transcribed using the speci�c mechanism for

simultaneous speech already described (cf. section 4.4).

4. more than two overlapping speakers: it was requested not to transcribe.

The 3rd situation occurred about 20 times per hour, with a mean extent of

less than 3 seconds. The orthographic transcription of overlapping speech was

di�cult to produce; this is easily understandable since two sentences are inter-

mixed, and the sound segment has to be listened to repeatedly. Locating the

time boundaries was also di�cult, since each speaker has its own starting and

stopping times which generally occur inside a word from the other speaker. The

user interface and data representation had to be modi�ed several times before

reaching an acceptable state. Even if it accounts for a few percent of the total

26

duration in our task, a correct management of overlapping speech should be

carefully designed in any speech annotation tool.

As we indicated earlier, overlapping in conversational speech, especially

where each speaker is recorded on a separate audio channel, typically moti-

vates a di�erent approach in which each speaker's utterances and pauses are

treated as a separate partition of the time stream, with the relationship be-

tween speakers' productions determined by the relationship of these logically

independent time markings.

6 Future directions

6.1 New needs

The need for several new features was identi�ed during our experiments:

� More tools are clearly needed for ensuring the consistency of proper names

throughout the various transcriptions. A user-de�ned glossary and ed-

itable shortcuts have been introduced in the tool at user request; however,

this is not yet completely satisfactory. Online dictionaries, encyclopedias,

or even maps for place names, should be made easily available to the tran-

scriber. A mechanism of automatic completion using previously written

names in all existing transcriptions (compiled by hand or even automati-

cally) seems to be an interesting solution and remains to be implemented.

� Speaker identi�cation on television soundtracks was very di�cult. The

best solution for this problem would be to provide the complete video

recording, not only the audio track. This would also ease the whole tran-

scription process in the case of background noise. With the current devel-

opment of video capabilities on standard computers, it can be hoped that

easy technical solutions for interfacing the tool with a video player will be

27

available in the near future. Such an interface will also be useful for other

applications, such as the study of gesture in communicative interaction.

In the short term, watching the video during the veri�cation phase is an

alternative (as has been the practice at the LDC).

� An automatic segmentation could be given to the transcriber as a starting

point in order to speed-up the segmentation phase.

� Multiple sound �les could be conveniently be managed in a single tran-

scription �le. Also, a speci�c management should be available for multi-

channel sound �les (e.g. telephonic conversations as in the Switchboard

task).

Some limitations remains. Management of transcription �les over 1 hour be-

comes slow in our con�gurations, mostly because of the numerous embedded

buttons inside the text editor which reaches the limits of the Tk library; at the

same time, signal display remains perfectly smooth. Also, the �undo� function

is too limited.

6.2 Format evolution

Concerning the data format, XML is a convenient way to structure a complex

document, but the design of our DTD was in much ways arbitrary. We kept

from previous LDC formats and from UTF a transcription structured in a single

tree, which brought serious limitations to further extensions.

Future developments will without any doubt take into account S. Bird and M.

Liberman re�ections about annotation graphs [2][3]. They show that virtually

any existing annotation can be viewed as a labelled acyclic graph, some nodes

of which bear ordered time values, and they develop a complete formalism for

annotation graphs. Within this framework, all segments of the transcriptions

28

would be stored as an unordered set of typed arcs between identi�ed nodes.

Switching to this framework for internal data management and for the ref-

erence transcription �le format would lead to a much more generic tool, and

conversion to other formats would become easier. This does not prevent us

from providing alternative formats, with time-ordered segments or in a human-

readable format. The format would no longer constrain speech turns to be con-

tiguous, or new sections to impose a new turn, though such constraints could

remain in the interface of the tool itself if wanted.

7 Conclusions

Interface prototyping in a scripting language proved to be an e�cient devel-

opment way, provided robust libraries are available. Being distributed as free

software, our project has been followed by numerous speech scientists and engi-

neers who gave precious hints for further developments and made the tool much

more portable and usable. A web site has been designed for the distribution

of the tool, and an announcement and a developer mailing list are already in

function [16]. Transcriber is now used by several research or development teams

in various countries. Most e�ort was devoted to development, and external

contributions were not organized despite of spontaneous proposals; but future

versions should be developed in a modular fashion with an interactive dialog

with the potential co-developers. Future developments will be based on recent

re�ections about annotation graphs for a more general approach.

After more than one year of experience, we feel that Transcriber is suitable

for large-scale production of speech resources. It is not universal, and other tools

exist [4]; among them the segmentation tool developed at ISIP shares several

conception choices with our tool [8]. But we learned much from its development,

and we hope it can bene�t to the whole community.

29

Acknowledgements

The initial directions of the tool and the most promising ideas for its evolution

arose from discussions with LDC members, especially Mark Liberman. Ini-

tial transcription conventions for French were designed by Martine Adda from

LIMSI. Martine Garnier-Rizet coordinated the use of Transcriber within VEC-

SYS and gave us a valuable feedback on this. Snack's developer Kåre Sjölander

was very helpful in always taking into account the changes which were needed

for Transcriber. We are also glad to thank here all users and testers who gave us

report of their experience and their problems, since this helped us very much im-

proving our tool. And �nally many thanks to the transcribers for their patience

using a program under development!

References

[1] C. Barras, E. Geo�rois, Z. Wu, M. Liberman, �Transcriber: a Free Tool for

Segmenting, Labeling and Transcribing Speech�, Proc. 1st Int. Conf. on

Language Resources and Evaluation, pp. 1373-1376, Granada, May 1998.

[2] S. Bird, M. Liberman, �A Formal Framework for Linguistic Annotation�,

Technical Report MS-CIS-99-01, Department of Computer and Information

Science, University of Pennsylvania, 1999.

[3] S. Bird, M. Liberman, �Annotation graphs as a framework for multidimen-

sional linguistic data analysis�, Proceedings of ACL Workshop: Towards

Standards and Tools for Discourse Tagging, pp. 1-10, 1999.

[4] S. Bird, M. Liberman, �Linguistic Annotation�,

http://www.ldc.upenn.edu/annotation/.

30

[5] F. Bonnet, �tcLex: a lexical analyzer generator for Tcl�,

http://www.multimania.com/fbonnet/Tcl/tcLex/index.en.htm .

[6] Document Object Model (DOM), http://www.w3.org/DOM/.

[7] Extensible Markup Language (XML), http://www.w3.org/XML/.

[8] ISIP software, http://WWW.ISIP.MsState.Edu/projects/speech/software/.

[9] M. K. McCandless, A Model for Interactive Computation: Applications

to Speech Research, Ph.D. Thesis, Massachusetts Institute of Technology,

1998.

[10] J. K. Ousterhout, Tcl and the Tk Toolkit. Addison Wesley, ISBN: 3-89319-

793-1, 1994.

[11] J. K. Ousterhout, �Scripting: Higher-Level Programming for the 21st Cen-

tury�, IEEE Computer, March 1998.

[12] K. Sjölander, "The Snack Sound Visualization Module",

http://www.speech.kth.se/snack/.

[13] K. Sjölander, J. Beskow, J. Gustafson, E. Lewin, R. Carlson, B. Granström,

�Web-based Educational Tools for Speech Technology�, Proc. 5th Int. Conf.

on Spoken Language Processing, pp. 3217-3220, Sydney, November 1998.

[14] The Tcl/Tk scripting language, http://www.scriptics.com/.

[15] TEI Guidelines for Electronic Text Encoding and Interchange (P3),

http://www.uic.edu/orgs/tei/.

[16] Transcriber, http://www.etca.fr/CTA/gip/Projets/Transcriber/.

31

Contents

1 Introduction 2

2 Requirements 3

2.1 Interactive management of long signals 3

2.2 Multilingual transcriptions . 4

2.3 User-friendly interface . 4

2.4 Working on standard computers 4

2.5 Free distribution . 4

2.6 Portability . 5

2.7 Use of standard formats . 5

3 Development 5

3.1 Choice of Tcl/Tk scripting language 6

3.2 Interactive display of long duration waveforms 7

3.3 Audio management with Snack 8

3.4 XML �le format . 9

3.5 Implementation of the parser . 10

4 Main features 11

4.1 User interface . 12

4.2 Data format . 15

4.3 Non-speech events and background noise 16

4.4 Overlapping speech . 18

5 Practical use 20

5.1 Material transcribed . 20

5.2 Working conditions . 21

5.3 Productivity . 22

32

5.4 Transcription guidelines . 23

5.5 Experience gained . 24

6 Future directions 27

6.1 New needs . 27

6.2 Format evolution . 28

7 Conclusions 29

33

