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Abstract. An investigation into the use of Bayesian learning of the parameters of a multivariate Gaussian mixture density has 
been carried out. In a framework of continuous density hidden Markov model (CDHMM), Bayesian learning serves as a 
unified approach for parameter smoothing, speaker adaptation, speaker clustering and corrective training. The goal is to 
enhance model robustness in a CDHMM-based speech recognition system so as to improve performance. Our approach is to 
use Bayesian learning to incorporate prior knowledge into the training process in the form of prior densities of the HMM 
parameters. The theoretical basis for this procedure is presented and results applying it to parameter smoothing, speaker 
adaptation, speaker clustering and corrective training are given. 

Zusammenfassung. Wir berichten tiber eine Untersuchung zum Einsatz der Bayes'schen Lerntbeorie zur SchS, tzung der Param- 
eter von multi-variaten Gauss'schen Verteilungsdichten. Im Rahmen eines "Hidden Markov Modells" mit kontinuierlicher 
Dichteverteilungen (CDHMM) stellt die Bayes'sche Theorie einen einheitlichen Ansatz dar zur Parametergl/ittung, Sprecher- 
adaption, Sprecherklusterung und zum korrigierenden Training. Das Ziel ist, die Modellrobustheit eines auf CDHMM basier- 
enden Spracherkennungssystems in Hinblick auf die Ergebnisse zu verbessern. Unser Ansatz ist, Bayes'sches Lernen zu 
benutzen, um Vorwissen in Form yon initialen Dichten der HMM-Parameter in den Trainingsprozess einzubringen. Wir 
stellen die theoretische Basis ftir dieses Verfahren dar und wenden es zur Glfittung von Parametern, Sprecheradaption, Sprecher- 
klusterung und im korrigierenden Training an. 

R6sum6. Une/~tude sur l'utilisation de l'apprentissage bay6sien des param6tres de densit6s multigaussiennes a +t6 effectu6e. 
Dans le cadre des mod61es markoviens cach6s ~i densities d'observations continues (CDHMM), l'apprentissage bay6sien est 
un outil tr~s g6n6ral applicable au lissage des param6tres, ~. I'adaptation au locuteur, ~ l'estimation de modules par groupe de 
Iocuteurs et ft. l'apprentissage correctif. Le but est d'augmenter la robustesse des mod61es d'un syst6me de reconnaissance afin 
d'en am6liorer les performances. Notre approche consiste a utiliser l'apprentissage bay6sien pour incorporer une connaissance 
a priori dans le processus d'apprentissage sous forme de densit6s de probabilit6s des param6tres des modules markoviens. La 
base th6orique de cette proc+dure est pr6sent6ee, ansi que les r6sultats obtenus pour le lissage des param6tres, I'adaptation au 
locuteur, l'estimation de mod61es propres ~i chaque sexe et l'apprentissage correctif. 

Keywords. Bayesian learning; Hidden Markov models; parameter smoothing; speaker adaptation; speaker clustering; 
corrective training. 

1. Introduction 

W h e n  t r a i n i n g  s u b - w o r d  un i t s  for  c o n t i n u o u s  
speech r e c o g n i t i o n  u s i n g  p robab i l i s t i c  m e t h o d s ,  we 
are faced wi th  the genera l  p r o b l e m  o f  sparse  

Jean-Luc Gauvain is with the Speech Communication 
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t r a i n i n g  data .  Th i s  l imits  the effectiveness o f  the  

c o n v e n t i o n a l  m a x i m u m  l ike l ihood  app roach .  The  
sparse  t r a i n i n g  d a t a  p r o b l e m  c a n n o t  a lways  be 
solved by  the acqu i s i t i on  o f  m o r e  t r a i n i n g  da ta .  
F o r  example ,  in  the  case o f  r ap id  a d a p t a t i o n  to 
new speakers  or  e n v i r o n m e n t s ,  the  a m o u n t  o f  d a t a  
ava i lab le  for  a d a p t a t i o n  is usua l ly  m u c h  less t h a n  
wha t  is needed  to achieve g o o d  p e r f o r m a n c e  for  
s p e a k e r - d e p e n d e n t  app l ica t ions .  
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Techniques used to alleviate the problem of 
insufficient training data include probability 
density function (pdf) smoothing, model interpola- 
tion, corrective training and parameter sharing. 
The first three techniques have been developed for 
HMM with discrete pdfs and cannot be directly 
extended to the general case of continuous density 
hidden Markov model (CDHMM). For example, 
the classical scheme of model interpolation (Jelinek 
and Mercer, 1980) can be applied to C D H M M  
only if tied mixture HMMs or an increased number 
of mixture components are used. 

Our solution to the problem is to use Bayesian 
learning to incorporate prior knowledge into the 
CDHMM training process (Gauvain and Lee, 
1991). The prior knowledge consists of prior densi- 
ties of the HMM parameters. Such an approach 
was shown to be effective for speaker adaptation 
in isolated word recognition where the parameters 
of multivariate Gaussian state observation densi- 
ties of whole-word HMMs were adapted (Lee et 
al., 1990a). In this paper, Bayesian adaptation is 
extended to handle parameters of mixtures of 
Gaussian densities. The theoretical basis for Bay- 
esian learning of parameters of a multivariate 
Gaussian mixture density for HMM is developed. 
In a CDHMM framework, Bayesian learning is 
shown to serve as a unified approach for parameter 
smoothing, speaker adaptation, speaker clustering 
and corrective training. 

2. MAP estimate of CDHMM 

The difference between maximum likelihood 
(ML) estimation and Bayesian learning lies in the 
assumption of an appropriate prior distribution of 
the parameters to be estimated. If 0 is the param- 
eter vector to be estimated from a sequence of n 
observations x~ . . . . .  x, ,  given a prior density 
P(0), then one estimate for 0 is the maximum a 
posteriori (MAP) estimate which corresponds to 
the mode of the posterior density, 

OMAP= argmax P(Xl . . . . .  xn I O)P(O). (1) 
0 

Alternatively, if 0 is assumed to be a fixed but 
unknown parameter vector, then there is no know- 
ledge about O. This is equivalent to assuming a 

non-informative prior, i.e. P(0)=constant .  Equa- 
tion (1) is now the familiar maximum likelihood 
formulation. 

Given the MAP formulation in (1) two problems 
remain: the choice of the prior distribution family 
and the evaluation of the maximum a posteriori. 
In fact these two problems are closely related, since 
the choice of an appropriate prior distribution can 
greatly simplify the estimation of the maximum 
a posteriori. The most practical choice is to use 
conjugate densities which requires the existence of 
a sufficient statistic of a fixed dimension (DeGroot, 
1970). If the observation density possesses such a 
statistic s and if g(O Is, n) is the associated kernel 
density, MAP estimation is reduced to the evalua- 
tion of the mode of the product g(Ols, n)P(0). In 
addition, if the prior density is chosen from the 
same family as the kernel density, P(0) =g(O[t, m), 
the previous product is simply equal to 
g(O[u, m+n) since the kernel density family is 
closed under multiplication. In this case, the MAP 
estimation problem is closely related to the MLE 
problem finding the mode of the kernel density. 
In fact, g(Olu, m+n) can be seen as the kernel of 
the likelihood of a sequence of m + n observations. 

When there is no sufficient statistic of a fixed 
dimension, MAP estimation, like ML estimation, 
has no analytical solution. However, the problems 
are still very similar. For the general case of mix- 
ture densities of the exponential family, we propose 
to use a product of kernel densities of the exponen- 
tial family assuming independence between the 
parameters of the mixture components in the joint 
prior density. To simplify solving (1), we restrict 
our choice to a product of a Dirichlet density and 
kernel densities of the mixture exponential density, 
P(O)ocI~kI<=lCO~g(Ok[tk,mk ), where K is the 
number of mixture components and the oJ~'s are 
the mixture weights. 

In the following subsections, we focus our atten- 
tion on the cases of normal density and mixture of 
normal densities for two reasons: solutions for the 
MLE problem are well known and we are using 
C D H M M  based on mixtures of normal densities. 

2.1. Normal density case 

Bayesian learning of a normal density is well 
known (DeGroot, 1970). If  Xl . . . . .  x, is a 
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random sample from N(xlm, r), where m and 
r are the mean and the precision (recipro- 
cal of the variance), respectively, and if P(m, r) 
is a normal-gamma prior density, P(m,r)oc 
r 1/2 exp(-  ½ r r ( m -  la)2)r ~-  i exp(-flr) ,  the joint 
posterior density is also a normal-gamma density 
whose parameters/~, /3, ~ and f may be directly 
obtained from the prior parameters and the sample 
mean and variance. The MAP estimates of m and 
r are/~ and (c~- 0.5)//3, respectively. 

This approach has been widely used for sequen- 
tial learning of the mean vectors of feature- and 
template-based recognizers, see for example (Zelin- 
ski and Class, 1983; Stern and Lasry, 1987). Fer- 
retti and Scarci (1989) used Bayesian estimation of 
mean vectors to build speaker-specific codebooks 
in an HMM framework. In all these cases, the pre- 
cision parameter was assumed to be known and 
the prior density limited to a Gaussian. 

Brown et al. (1983) used Bayesian estimation 
for speaker adaptation of CDHMM parameters 
in a connected digit recognizer. More recently 
Lee et al. (1990a) investigated various training 
schemes of Gaussian mean and variance param- 
eters using normal-gamma prior densities for 
speaker adaptation. They showed that on the 
alpha-digit vocabulary, with a small amount of 
speaker specific data (1 to 3 utterances , f  each 
word), the MAP estimates gave better results 
than the ML estimates. 

We propose to use a joint prior density which 
is the product of a Dirichlet density and gamma- 
normal densities: 

k=, Wk-k exp - - ~ - ( m k - - l l k )  2 

x r~ ~ i exp(-- f lkrk) .  (3) 

The choice of such a prior density can be justified 
by the fact that the Dirichlet density is the conju- 
gate distribution of the multinomial distribution 
(for the mixture weights) and the gamma-normal 
density is the conjugate density of the normal dis- 
tribution (for the mean and the precision param- 
eters). The problem now is to find the mode of the 
joint posterior density. 

If  we assume the following regularity conditions: 
(1) &k=Vk and (2) a k = ( r k + l ) / 2 ,  then the pos- 
terior density P(0 I xt . . . . .  x,) can be seen as the 
likelihood of a stochastically independent union of 
a set of~kr-~ rk categorized observations and a set 
of n uncategorized observations. (A mixture of K 
densities can be interpreted as the density of a mix- 
ture of K populations, and an observation is said 
to be categorized if its population of origin is 
known with probability 1.) This suggests the use 
of the EM algorithm (Dempster et al., 1977) to find 
the maximum a posteriori. The following recursive 
formulas estimate the MAP of the 3 parameter 
sets: 

2.2. Mix tu re  o f  normal  densities 

,, w~N(xilmg, rk) 
Cik -- , (4) 

P(xil 0) 

For this study we use C D H M M  where the state 
observation densities are mixtures of multivariate 
normal densities (Lee et al., 1990b, 1990c). How- 
ever, to simplify the presentation of our approach, 
we assume here a mixture of univariate normal 
densities, 

K 

P(xl 0) = y~ O)kN(Xlmk,  rk), (2) 
k = l  

. 
)~k -t- ~ Cik 

tO'k-- i= l x ' ( 5 )  

n+ Z '~k 
k = l  

n 

Tk[..lk "lc 2 CikXi 

m ~  = i=l,, , ( 6 )  

72" k -t- E eik 
i=1  

where 0-- (O)l . . . . .  oar, ml  . . . . .  mK, rl . . . . .  rx ) .  
For such a density there exists no sufficient statistic 
of fixed dimension for 0 and therefore no conjugate 
distribution. 

2ak- -  l + ~ c~k 
t i=1  r~ = (7) 

2ilk + ~ Cik(Xi-- m~) 2 + Vk(/.tk-- m~) 2" 
i=1  
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By using a non-informative prior density (i.e. 
an improper prior with ;tk=0, rk=0, •k----- I/2 and 
flk = 0) the classical EM reestimation formulas to 
compute the maximum likelihood estimates of the 
mixture parameters can be recognized. 

Generalization to a mixture of multivariate nor- 
mal densities is relatively straightforward. For the 
general case where the covariance matrices are not 
diagonal, the joint prior density is the product of 
a Dirichlet density and multivariate normal- 
Wishart densities. In the case of diagonal covari- 
ance matrices, the problem for each component 
reduces to the 1-dimensional case, and (6) and (7) 
are applied to each vector component. 

It should be noted that  the convergence of this 
algorithm can be proved even when the above regu- 
larity conditions are not satisfied (Gauvain and 
Lee, 1992). 

2.3. Segmental MAP algorithm 

The above procedure to evaluate the MAP of a 
mixture of Gaussians can be used to estimate the 
observation density parameters of an HMM state 
given a set of observations X assumed to be 
independently drawn from the state distribution. 
Following the scheme of the segmental k-means 
algorithm (Rabiner et al., 1986), we obtain a seg- 
mental MAP algorithm (Lee et al., 1990a; Gauvain 
and Lee, 1991). First, the HMM parameters are 
initialized with values corresponding to the mode 
of the prior density. Second, the Viterbi algorithm 
is used to segment the training data ~r into sets of 
observations associated with each HMM state, and 
third, the MAP estimate procedure is applied to 
each state. The second and third steps are iterated 
until convergence. 

In order to compare our results to results previ- 
ously obtained with the k-means segmental algo- 
rithm (Lee et al., 1990b), we used the segmental 
MAP algorithm to evaluate the HMM parameters. 
However, if it is desired to maximize P(SFI 0)P(0) 
over the HMM and not only state by state along 
the best state sequence, a Bayesian version of the 
Baum-Welch algorithm can also be designed 
(Gauvain and Lee, 1992). 

As in the case of MLE, one simply replaces cik 
by cijk in the re-estimation formulas and applies 

the summations over all the observations for each 
state sfi 

c,Tk ~ 7'~ ~okN(xil mj~, rj~) 
a(xil 0j) ' (8) 

where 7/,y is the probability of being in the state sj 
at time i, given that the model generates 5f. For 
the segmental MAP approach ),/j is equal to 0 
or 1. 

2.4. Prior density estimation 

The method of estimating the prior parameters 
depends on the desired goals. We envisage the fol- 
lowing three types of applications for Bayesian 
learning. 
Sequential training. The goal is to update models 
with new observations without reusing the original 
data in order to save time and memory. After each 
new data set has been processed, the prior densities 
must be replaced by an estimate of the posterior 
densities. In order to approach the HMM MLE 
estimators the size of each observation must be as 
large as possible. The process is initialized with 
non-informative prior densities. 
Model adaptation. For model adaptation most of 
the prior density parameters are derived from 
parameters of an existing HMM. (This justifies the 
term "model adaptation" even if the only sources 
of information for Bayesian learning are the prior 
densities and the new data.) To estimate param- 
eters not directly obtained from the existing model, 
training data is needed in which the "missing" 
prior information can be found. This can be the 
data already used to build the existing models or a 
larger set containing the variability we want to 
model with the prior densities. 
Parameter smoothing. Since the goal of parameter 
smoothing is to obtain robust HMM parameters, 
shared prior parameters must be used. These 
parameters are estimated on the same training data 
used to estimate the HMM parameters via Bay- 
esian learning. For example, with this approach 
context-dependent (CD) models can be built from 
context-independent (CI) ones. 
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In this study we were mainly interested in the 
problems of speaker-independent training and 
speaker adaptation. Therefore parameter smooth- 
ing and model adaptation in which the prior 
density parameters must be obtained from SI or 
SD models and from SI training data were investi- 
gated. The prior density parameters were estimated 
along with the estimation of the SI model param- 
eters using the segmental k-means algorithm. Infor- 
mation about the variability to be modeled by the 
prior densities was associated with each frame of 
the SI training data. This information was repre- 
sented by a class label corresponding to the speaker 
number, sex or phonetic context. The prior density 
parameters were estimated from the class mean 
vectors and the SI HMM parameters (Gauvain and 
Lee, 1991). 

3. Experiments 

In the following subsections we discuss experi- 
ments on parameter smoothing, speaker adapta- 
tion, speaker clustering and corrective training. In 
these experiments three sets of phone models were 
used: 1769 CD phone models and 47 and 21 CI 
phone models. Each model is a 3 state left-to-right 
HMM with Gaussian mixture state observation 
densities (except for silence which is a one-state 
model). Diagonal covariance matrices are used and 
the transition probabilities are assumed to be fixed 
and known. A 38-dimensional feature vector (Lee 
et al., 1990c) composed of 12 cepstrum coefficients, 
12 delta cepstrum coefficients, the delta log energy, 
12 delta-delta cepstrum coefficients and the delta- 
delta log energy is used. 

The training and testing materials were taken 
from the DARPA Naval Resource Management 
task and from the TI/NIST connected digits 
corpus as provided by NIST. For telephone band- 
width compatibility, the original RM speech signal 
was filtered from 100 Hz to 3.8 kHz and down- 
sampled at 8 kHz, and the TI/NIST digits were 
low-pass filtered at 3.2 kHz and down-sampled at 
6.67 kHz. For RM, results are reported using the 
standard word-pair grammar with a perplexity of 
about 60. The SI training data consisted of 3969 
sentences from 109 speakers (78 males and 31 

females), subsequently referred to as the SI-109 
training data. 

3.1. CD model smoothing 

It is well known that HMM training requires 
smoothing, particularly if a large number of CD 
phone models are used with limited training data. 
While several solutions have been investigated to 
smooth discrete HMMs, such as model interpola- 
tion, co-occurrence smoothing and fuzzy VQ, only 
variance smoothing has been proposed for continu- 
ous density HMMs. We investigated the use of 
Bayesian learning to train CD phone models with 
prior densities obtained from CI phone training. 
This approach can be seen either as a way to add 
extra constraints to the model parameters so as to 
reduce the effect of insufficient training data, or as 
an "interpolation" between two sets of parameter 
estimates: one corresponding to the desired model 
and the other to a smaller model which can be 
trained using MLE on the same data. Here the 
reduced set is obtained by removing the context 
dependency, but other prior parameter tyings can 
be investigated. 

Models were built with MLE and MAP 
approaches using the SI-109 training data. For the 
MAP estimation, the prior densities were based on 
a 47 CI model set. Covariance clipping, as reported 
in (Lee et al., 1990b), was used for the two 
approaches. Experiments were carried out using 
mixtures of 16 Gaussian components on the 
FEB89, OCT89, JUN90 and FEB91 DARPA tests 
containing 1380 sentences (11843 words). An 
average word error reduction of 10% (from 6.0 
to 5.5) was obtained using parameter smoothing. 
Although this improvement is small (we suspect 
because the 1769 phone model set had originally 
been designed (Lee et al., 1990b) to be trained with 
an MLE approach on the SI-109 training data), it 
validates the approach. 

3.2. Speaker adaptation 

In the framework of Bayesian learning, speaker 
adaptation may be viewed as adjusting speaker- 
independent models to form speaker-specific ones, 
using the available prior information and a small 
amount of speaker-specific adaptation data. The 
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prior densities are simultaneously estimated during 
the speaker-independent training process along 
with the estimation of the parameters for the SI 
CD models. The speaker-specific models are built 
from the adaptation data using the segmental MAP 
algorithm. 

The iterative adaptation process is initialized 
with the SI models. After segmenting the training 
sentences with the models generated in the previous 
iteration, the speaker-specific training data is used 
to adapt the CD phone models both with and 
without reference to the segmental labels. Three 
types of adaptation were investigated: adapting all 
CD phones with the exact triphone label (type 1), 
those with the same CI phone label (type 2), and 
all models without regard to the label (type 3). 
Each frame of the sentence is distributed over the 
models based on the observation densities of the 
preceding iteration. When the model labels are not 
used, this method can be viewed as probabilistic 
spectral mapping constrained by the prior densi- 
ties. It was found that a combination of adaptation 
types 1 and 2 was the most effective for fast (2 
minutes of speech) speaker adaptation. While a 
maximum of 8 mixture components per density 
was allowed, the actual average number of compo- 
nents was 7. This represents a total of 3 million 
parameters to be estimated and adapted. 

Experiments were conducted using approxi- 
mately 1 and 2 minutes of adaptation data to build 
the speaker-specific models. In 40 utterances, 
roughly 2 minutes of speech, only 45% of the CD 
phones appear (28% for 20 sentences), whereas 
typically all the CI phones appear. Table 1 summa- 
rizes the test results on the JUN90 data for the last 
80 utterances of each speaker, where the first 20 
(or 40) utterances were used for supervised adapta- 
tion of types 1 and 2. Speaker-independent recogni- 
tion results are shown for comparison. With 1 

Table 1 
Speaker adaptation results given as word error rate (%) and 
word error reduction on the JUN90 test data 

Speaker SI SA SA Err. red. 
(1 min) (2 min) (2 min) 

BJW(F) 4.7 3.4 2.2 53% 
JLS(M) 3.6 3.0 3.4 5% 
JRM(F) 9.2 7.0 5.3 42% 
LPN(M) 3.2 4.7 3.2 0% 

Overall 5.1 4.3 3.5 31% 

Table 2 
Unsupervised speaker adaptation results given as 
word error rate (%) and word error reduction on the 
JUN90 test data 

Speaker SI SA (2 × 2 min) Err. red 

BJW(F) 4.7 3.4 28% 
JLS(M) 3.6 3.5 3% 
JRM(F) 9.2 6.6 28% 
LPN(M) 3.2 3.7 -16% 

Overall 5.1 4.3 16% 

minute and 2 minutes of speaker-specific training 
data, reductions in word error of 16% and 31% 
were obtained as compared to the SI results. On 
this test speaker adaptation appears to be effective 
only for the female speakers for whom the SI 
results were lower than for the male speakers. 

Experiments have also been carried out using 
unsupervised speaker adaptation, which is more 
applicable to on-line situations. Adaptation of the 
SI phone models is performed every 40 utterances 
using type 2 adaptation with the recognized labels. 
The adapted models are then used to recognize the 
next 40 utterances. The results on the JUN90 test 
are shown in Table 2 for the last 80 sentences of 
each speaker. There is an overall error reduction 
of 16%. 

In order to compare speaker adaptation to ML 
training of SD models, an experiment has been 
carried out on the FEB91-SD test material which 
includes data from 12 speakers (7 male and 5 
female), using a set of 47 CI phone models. Two, 
five and thirty minutes of the SD training data were 
used for training and adaptation. The SD, SA (SI) 
word error rates are given in the two first rows of 
Table 3. The SD word error rate for 2 minutes of 
training data was 31.5%. The SI word error rate (0 
minutes of adaptation data) for the SI-109 model 
was 13.9% which is comparable to the SD results 
with 5 minutes of SD training data. The SA models 

Table 3 
Summary of SD, SA (SI) and SA (M/F) results on 
FEB91-SD test. Results are given as a word error rate 
(%) 

Training 0 min 2 min 5 min 30 min 

SD - -  31.5 12.1 3.5 
SA (SI) 13.9 8.7 6.9 3.4 
SA (M/F) 11.5 7.5 6.0 3.5 
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were shown to perform better than SD models 
when relatively small amounts of data were used 
for training or adaptation. When all the available 
training data (about 30 minutes) was used, the SA 
and SD results were comparable, consistent with 
the Bayesian formulation that the MAP estimate 
asymptotically converges to the MLE. Relative to 
the SI results, the word error reduction was 37% 
with 2 minutes of adaptation data, an improvement 
comparable to that observed on the JUN90 test 
data with CD models. As in the previous experi- 
ment, a larger improvement was observed for the 
female speakers (51%) than for the male speakers 
(22%). 

3.3. Sex-dependent modeling 

It has recently been reported that the use of 
different models for male and female speakers 
reduced recognizer errors on the RM task using a 
word-pair grammar with models trained on the SI- 
109 data set (Huang et al., 1990). We investigated 
the same idea within the framework of Bayesian 
learning. Two sets of 1769 CD phone xnodels were 
generated using data from the male speakers for 
one set and from the female speakers' for the other 
set. For both sets the same prior density param- 
eters, which had been estimated during SI training 
on all 109 speakers, were used. Recognition was 
performed by computing the likelihoods of the sen- 
tence for the two sets of models and by selecting 
the solution with the highest likelihood. In order 
to avoid problems due to likelihood disparities 
caused by implementation details, all HMM 
parameters other than the Gaussian mean vectors 
were assumed to be known and set to the parameter 
values of the SI models. 

Recognition of the FEB91-SI test data (5m/5f 
speakers) gave a 4.6% word error rate with both 
sets of models, compared to 5.4% with the SI model 
set. This error rate is 33% less than that obtained 
using sex-dependent models trained with MLE. 
These results reinforce the interest of the speaker 
clustering and validate Bayesian learning as a way 
to generate sex-dependent models. 

Given that we have demonstrated the effec- 
tiveness of sex-dependent SI models, we pose the 
question of whether or not we can obtain addi- 
tional improvement with speaker adaptation start- 
ing from the combined M/F  models. To address 

this question we trained male and female models 
for the 47 CI units and evaluated speaker adapta- 
tion with the FEB91-SD test data. The results are 
given in the third row of Table 3 for 2, 5 and 30 
minutes of adaptation data. The word error rate 
for the sex-dependent models with no speaker 
adaptation is 11.5%. The error rates are reduced to 
7.5°/,, with 2 minutes and 6.0% with 5 minutes, of 
adaptation data. Comparing the last 2 rows of the 
table it can be seen that speaker adaptation is more 
effective when sex-dependent seed models are used. 
The error reduction with 2 minutes of training data 
is 35% compared to the sex-dependent model 
results and 46% compared to the SI model results. 

3.4. Corrective training 

Bayesian learning provides a scheme for model 
adaptation which can also be used for corrective 
training. Corrective training maximizes the recog- 
nition rate on the training data hoping that that 
will also improve performance on the test data. 
One simple way to do corrective training is to use 
the training sentences which were incorrectly recog- 
nized as new data. 

In order to do so, the second step of the segmen- 
tal MAP algorithm was modified to obtain not 
only the frame/state association for the sentence 
model states but also for the states corresponding 
to the model of all the possible sentences (general 
model). In the re-estimation formulas, the values 
cok for each state sj are replaced by 
7vcojkN(x~lmj,, rjk)/P(xiL Oj), where 7~j is equal to 
1 in the sentence model and to -1 in the general 
model. While convergence is not guaranteed, in 
practice it was found that by using large values for 
rjk (~200) the number of training sentence errors 
decreased after each iteration until convergence. It 
should be noted that if the Viterbi alignment is 
replaced by the Baum-Welch algorithm we obtain 
a corrective training algorithm for CDHMM very 
similar to the corrective MMIE training proposed 
by Normandin and Morgera (1991). 

Corrective training was evaluated on both the 
TI/NIST SI connected digit task and the RM task. 
Only the Gaussian mean vectors and the mixture 
weights are corrected. For the connected digit task 
a set of 21 phonetic HMMs were trained on the 
8565 digit strings. Results on the 8578 test strings 
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Table 4 
Corrective training results in string and word error rates (%) 
on the TI-digits for 21 CI models with 16 and 32 mixture com- 
ponents per state; string error counts are given in parentheses 

Training Training Test 

conditions String Word String Word 

MLE-16 1.6 (134) 0.5 2.0 (168) 0.7 
CT-16 0.2 (18) 0.1 1.4 (122) 0.5 

MLE-32 0.8 (67) 0.2 1.5 (126) 0.5 
CT-32 0.3 (29) 0.1 1.3 (111) 0.4 

increases the separation between the correct string 
and the other competing strings, resulting in better 
performance on the test data. (The error rate 
reduction is only 15% with a standard beam 
width.) 

From these results we can conclude that this 
approach works in that the performance on the 
training data was dramatically improved and that 
increasing the performance on the training data 
gave improved recognition of the test data. 

are given in Table 4 using 16 and 32 mixture com- 
ponents for the observation pdfs. String and word 
error rates are given with and without corrective 
training for both test and training data. The CT-16 
results were obtained with 8 iterations of corrective 
training while the CT-32 results were based on only 
3 iterations. Here one full iteration of corrective 
training is implemented as one recognition run 
which produces a set of "new" training strings (i.e. 
errors and/or barely correct strings) followed by 
ten iterations of Bayesian adaptation using the data 
of these strings. String error rates of 1.5% and 1.3% 
were obtained with 16 and 32 mixture components 
per state, respectively, compared to 2.0% and 1.5% 
without corrective training. These represent string 
error reductions of 27% and 12%. We note that 
corrective training helps more with smaller models, 
as the ratio of adaptation data to the number of 
parameters is larger. 

The corrective training procedure is also effective 
for continuous sentence recognition of the RM 
task. Table 5 gives results for this task, using 47 SI- 
CI models with 32 mixture components. Corrective 
training gives an average word error rate reduction 
of 20% on the test data. For this experiment we 
used a small beam search width to recognize the 
training data so as to increase the amount of cor- 
rective training data and also to speed up the train- 
ing process. It was observed that this procedure 
not only reduces the error rate in training but also 

4. Summary 

An investigation into the use of the Bayesian 
learning of CDHMM parameters has been carried 
out. The theoretical framework for training 
HMMs with Gaussian mixture densities was pre- 
sented. It was shown that Bayesian learning can 
serve as a unified approach for parameter smooth- 
ing, speaker adaptation, speaker clustering and 
corrective training. Performance improvements 
have been observed for these four applications. On 
the DARPA RM task we observed a word error 
reduction of 10% with HMM parameter smooth- 
ing, 31% to 46% for speaker adaptation with 2 
minutes of speaker specific training data, and 15% 
to 17% with sex-dependent modeling. It was also 
found that speaker adaptation based on sex-depen- 
dent models gave a better result than that obtained 
with a speaker-independent seed. Compared to 
speaker-dependent training, speaker adaptation 
achieved a better performance with the same 
amount of training/adaptation data. Corrective 
training was also found to be effective on the RM 
and TI/NIST connected digit tasks. We observed 
a word error reduction of 20% on the RM task and 
a string error reduction of 12-27% on the TI/NIST 
task. It was observed that corrective training helps 
more with models having a smaller number of 
parameters. 

Table 5 
Corrective training results on the RM task for 47 CI models with 32 mixture components per 
state; results are given as word error rate (%) 

Test Training FEB89 OCT89 JUN90 FEB91 FEB91-SD 

MLE-32 7.7 l 1.9 11.5 10.2 I 1.4 13.9 
CT-32 3.1 8.9 8.9 8.1 10.2 I 1.0 
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