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Abstract. Research in large vocabulary speech recognition has been intensively carried out worldwide, in the past several 
years, spurred on by advances in algorithms, architectures and hardware. In the United States, the D A R P A  community has 
focused efforts on studying several continuous speech recognition tasks including Naval Resource Management ,  a 991 word 
task, ATIS (Air Travel Information System), a speech understanding task with an open vocabulary (in practice on the order 
of several thousand words) and a natural  language component ,  and Wall Street Journal,  a voice dictation task with a 
vocabulary on the order of  20,000 words. Although we have learned a great deal about how to build and efficiently 
implement large vocabulary speech recognition systems, there remain a whole range of fundamenta l  questions for which we 
have no definitive answers. In this paper  we review the basic structure of a large vocabulary speech recognition system, 
address the basic system design issues, discuss the considerations in the selection of training material, choice of subword 
unit, method of training and adaptation of models of  subword units, integration of language model, and implementation of 
the overall system, and report on some recent results, obtained at AT&T Bell Laboratories, on the Resource Management  
task. 

Zusammenfassung .  Die Forschung im Bereich der Spraehworterkennung bei grossem Wortschatz wurde in den letzten 
Jahren weltweit intensiv betrieben und durch Fortschritte in den Algori thmen,  in den Strukturen und in den Ger~iten 
angespornt.  In den USA hat die DARPA-Gemeinscha f l  ihre Ans t rengungen  auf  die Unte r suchung  verschiedener Methoden 
zur kontinuierlichen Spracherkennung konzentriert,  darunter  das "Naval  Resource Management" ,  eine Aufgabe mit 991 
Worten,  ATIS (Air Travel Information System = Informationssystem fiir Flugreisen), eine Aufgabe fiir Sprachverst~indigung 
mit offenem Vokabular  (in der Praxis mit mehreren  Tausend  Worten)  und ein natfirlicher Sprachanteil sowie das Wall 
Street Journal,  eine Sprachdiktataufgabe mit einem Vokabular  von ca. 20.000 Worten.  Obwohl wir viel dariaber erfahren 
haben, wie man  Erkennungssys teme • r  ein breites Sprachvokabular aufbaut  und wirksam implementiert ,  bleiben noch eine 
ganze Reihe yon grundlegenden Fragen often, fiir die wit keine definitiven Antworten haben. In diesem Artikel geben wit 
einen fQberblick fiber die grundlegende Struktur yon Erkennungssys temen fiir ein breites Sprachvokabular, sprechen fiber 
die Ziele des Basissystems, diskutieren fiber die Wahl  yon l]bungsger~iten, sublexikalen Einheiten,  einer Methode zur 
l~lbung und Anpassung  von Modellen von sublexikalen Einheiten,  Integration yon Sprachmodellen und die Implement ierung 
des Gesamtsys tems und berichten fiber einige neuere  Ergebnisse, die im Labor AT&T Bell betreffs der "Resource  
Management"  Aufgabe erzielt wurden. 

R~sum6. La recherche dans le domaine de la reconnaissance de grands vocabulaires s'est d~velopp6e de faqon intensive, au 
niveau international ces dernibres ann6es, stimul6es par les progrbs dans les domaines de l 'algorithmique, des architectures 
et des mat6riels. Aux Etats-Unis,  la communaut6  D A R P A  a orient6 ses efforts sur l '6tude de diverses t~ches de 
reconnaissance de parole continue, dont la gestion de ressources navales (Ressource Management :  une tfiche de 991 motsL 
un syst~me d ' information sur les transports a~riens (ATIS, une tfiche de compr6hension de parole avec un vocabulaire 
ouvert (en pratique, plusieurs milliers de mots) et une composante  de t rai tement  de langage naturel) et le Wall Street 
Journal (WSJ: une t~che de dict6e vocale avec un vocabulaire de l 'ordre de 20000 mots). Bien que nous ayons beaucoup 
appris sur la fa§on de construire et d ' impl6menter  efficacement des systbmes de reconnaissance de grands vocabulaires, il 
reste toutes une  s6rie de questions fondamentales  pour  lesquelles nous n 'avons pas de r6ponses d6finitives. Dans  cet article. 
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nous rappelons la structure de base d'un syst~me de reconnaissance de grands vocabulaires, nous discutons des questions de 
structure, de s~lection du mat6riau d'apprentissage, de choix des unit6s sub-lexicales, des m6thodes d'apprentissage et des 
modules, d'integration d'un module de langage et d'impl6mentation du syst~me global. Nous fournissons des r6sultats 
r~cents obtenus ~t AT&T Bell Laboratories sur la t~che Ressource Management. 

Keywords. Continuous speech recognition; subword HMMs; context dependency; task dependency; speaker dependency; 
maximum a posteriori estimation. 

1. Introduction 

In the past few years a significant portion of 
the research in speech recognition has gone into 
studying the problem of how to build and imple- 
ment a large vocabulary, continuous speech 
recognition system. Much of this effort has been 
stimulated by DARPA which has funded re- 
search on three recognition tasks, namely the 
Naval Resource Management (RM, see (Price et 
al., 1988)), the Air Travel Information System 
(ATIS, see (Hernphill et al., 1990; Hirshman et 
al., 1992)) and the Wall Street Journal (WSJ, see 
(Paul and Baker, 1992)) tasks. In addition, there 
is worldwide interest in large vocabulary speech 
recognition because of the potential applications 
for voice database access and management (e.g. 
ATIS), voice dictation (e.g. (Jelinek, 1985)) and 
limited-domain spoken language translation (Roe 
et al., 1992). In Japan, the large vocabulary recog- 
nition (LVR) systems are mostly developed 
around the concept of interpreting telephony 
(Morimoto et al., 1990; Sagayama et al., 1992). In 
Europe, the Philips SPICOS system (e.g. (Ney 
and Paeseler, 1988)), the CSELT system (e.g. 
(Fissore et al., 1989)), the Cambridge University 
system based on the HKT Toolkit (Woodland and 
Young, 1992) and the LIMSI effort (Lamel and 
Gauvain, 1992) are examples of the current activ- 
ity in large vocabulary recognition research. In 
Canada, the most notable LVR project is the 
INRS 86,000 isolated word recognition system 
(Deng et al., 1990). In the United States, in 
addition to the LVR research in AT&T (Lee et 
al., 1990; Ljolje et al., 1992) and IBM (Jelinek et 
al., 1985), most of the LVR effort is sponsored by 
DARPA, including the BBN BYBLOS system 
(Schwartz et al., 1989), the CMU SPHINX system 
(Lee, 1989) and SPHINX-II system (Huang et al., 
1993), the Dragon WSJ system (Baker et al., 
1992), the Lincoln Lab. Tied-Mixture System 

(Paul, 1989), the MIT Summit system (Zue et al., 
1989) and the SRI DECIPHER system (Murveit 
et al., 1989). Although some of the systems have 
been trained to individual speakers (Averbuch et 
al., 1987; Roe et al., 1992), most current large 
vocabulary recognition systems have the goal of 
continuous speech recognition on fluent input by 
any talker (speaker independent systems). 

Although we have learned a great deal about 
how to build and efficiently implement large vo- 
cabulary speech recognition systems, there re- 
main a whole range of fundamental questions for 
which we have no definitive answers. For exam- 
ple we do not yet know the best way to build and 
train the fundamental subword units from which 
word models are created. We do not yet know the 
best way to impose language constraints on the 
recognizer so as to utilize all available knowledge 
in the most computationally efficient manner. We 
do not yet understand the best way to implement 
a recognition system so as to maximize the proba- 
bility of recognizing the spoken string while mini- 
mizing the computation for string comparison 
and searching through the recognition network. 
We do not yet know how to integrate supraseg- 
mental information such as prosody and duration 
into the existing recognition systems which rely 
mainly on frame-level spectral information. We 
do not yet know how to extract robust features so 
that the recognition systems are less vulnerable to 
acoustic mismatch problems caused by talkers, 
transducers, channels and speaking environ- 
ments. We do not yet have satisfactory solutions 
to address the portability issues so that we can 
efficiently acquire the knowledge sources needed 
for solving new applications. Most of the existing 
systems require acquisition of a large amount of 
application-specific acoustic and language train- 
ing data in order to build application-specific 
systems. 

Even though there are still a number of unre- 
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solved issues, the research community has made 
significant adwmces in the state of the large vo- 
cabulary recognition technology over the last few 
years. The approach that is conventionally taken 
to large vocabulary speech recognition is basically 
a statistical pat tern recognition approach. The 
fundamental  speech units use phonetic labels but 
are modeled acoustically based on a lexical de- 
scription of the words in the vocabulary. In gen- 
eral, no assumption is made, a priori, about the 
mapping between acoustic measurements  and 
subword linguistic units such as phonemes;  such a 
mapping is entirely learned via a finite labeled 
training set of speech utterances. The resulting 
speech units, which we call phone-like units or 
PLUs are essentially acoustic descriptions of lin- 
guistically-based units as represented in the words 
occurring in the given training set. 2 

A block diagram of a large vocabulary continu- 
ous speech recognition system developed at A T &  
T Bell Laboratories is shown in Figure 1. The 
system consists of three main modules, namely a 
feature analysis (or spectral analysis) module, a 
word-level acoustic match module, and a sen- 

2 We will return to this important point later in this paper 
when we discuss creation of so-called task-independent or 
vocabulary-independent subword units. 

tence-level language match module. The feature 
analysis module provides the acoustic feature vec- 
tors used to characterize the spectral properties 
of the time varying speech signal. The word-level 
acoustic match module evaluates the similarity 
between the input feature vector sequence (cor- 
responding to the input speech) and a set of 
acoustic word models to determine what words 
were most likely spoken. The sentence-level 
match module uses a language model (based on a 
set of syntactic and semantic rules) to determine 
the word sequence for the most likely sentence. 

This paper  is organized as follows. In Section 2 
we discuss each module of the baseline system of 
Figure 1 in more detail. We will a t tempt to ex- 
plain what is understood about each module, and 
where active research is ongoing in order to re- 
solve differences of opinion as to the best way to 
implement the desired processing. In Section 3 
we focus our discussion on acoustic modeling 
issues, including training and adaptation of mod- 
els for subword units. A brief discussion of the 
D A R P A  Naval Resource Management  task, 
databases for training and adaptation and experi- 
mental  setup is given in Section 4. We then 
present some recent results on speaker-independ- 
ent, speaker-dependent  and speaker-adaptive 
recognition of the RM task in Sections 5 and 6. 
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2. The baseline speech recognition system 

2.1. Acoustic analysis module 

The purpose of the acoustic analysis module is 
to parameterize the speech into a series of fea- 
ture vectors that contain the relevant (for recog- 
nition) information about the sounds within the 
utterance. Although there is no consensus as to 
what constitutes the optimal spectral analysis, 
there are generally several aspects of the analysis 
that are common to most recognition systems. 
For example most systems use LPC spectral anal- 
ysis methods based on fixed sized frames, e.g., 
every 10 ms an analysis of a fixed frame of 30 ms 
of signal is performed. Typically the LPC analysis 
provides a set of cepstral coefficients for the 
frame. Sometimes non-uniform frequency scales 
are used giving the so-called mel frequency cep- 
stral coefficients (Davis and Mermelstein, 1980). 
The rationale here is that since the human ear 
perceives frequencies on a non-uniform scale, it 
would be desirable to represent the spectral in- 
formation of sounds on the same perceptual scale. 

In the last few years the spectral feature set 
for each frame has been extended to include 
dynamic information about the derivatives (first 
and second order) of the cepstral vector as well 
as the static information about the cepstrum 
(Furui, 1986; Juang et al., 1987; Soong and 

Rosenberg, 1988; Lee et al., 1992) Also scalars 
representing flame energy and its derivatives are 
often used as part of the representation for each 
frame. For the system implemented at Bell Labs 
and presented in this study, each 30 ms of speech 
(8 kHz sampling rate) was analyzed 100 times per 
second (10 ms shift) to give a spectral vector with 
12 LPC-derived cepstral coefficients (on a uni- 
form frequency scale), 12 first order cepstral 
derivatives, 12 second order cepstral derivatives, 
and first and second order log energy derivatives. 
Hence a spectral vector with 38 components was 
created every 10 msec throughout the signal (Lee 
et al., 1992). 

2.2. Word level match module 

The essence of the word level match module is 
the set of subword models and the lexicon, as 
seen in Figure 1. The subword models are the 
representation of the fundamental speech units 
used as the building blocks for words, phrases 
and sentences. Probably the most research in 
large vocabulary speech recognition has gone into 
defining these subword units in a manner such 
that they can be easily trained from finite training 
sets of speech material, such that they are robust 
to natural variations in accent, word pronuncia- 
tion and test material, and such that they provide 
high recognition accuracy for the required speech 

Table 1 
The 47 context- independent PLUs 

Number Symbol Word Number Symbol Word Number Symbol Word 

1 h #  silence 17 er b i rd  33 p pop  
2 aa f a the r  18 ey bait 34 r r ed  

3 ae ba t  19 f f ie f  35 s sis 
4 ah bu t t  20 g gag  36 sh shoe 
5 ao bought  21 hh hag 37 t tot  
6 aw b ou gh 22 ih b i t  38 th thief 
7 ax again 23 ix roses 39 uh book  
8 axr din er 24 iy b eat 40 uw boo t 
9 ay b i te  25 jh judge  41 v very 

10 b bob 26 k k ick  42 w wet 
11 ch church 27 1 led 43 y yet  

12 d dad  28 m room 44 z zoo 
13 dh they 29 n no 45 zh measu re  
14 eh be t  30 ng sing 46 dx bu t te r  
15 el bottle 31 ow boat 47 nx center  
16 en but ton 32 oy boy 
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task. To date no one has defined the " ideal"  set 
of subword units. However a great deal of thought 
has gone into deciding what the real issues are in 
defining and using various alternatives for the 
subword units. 

Perhaps the. simplest set of subword units, 
which are widely used, is the set of basic 
phonemes of the language. Although there is no 
complete agreement  as to what sounds are part  
of this basic set, Table 1 shows one representative 
set of 47 such phonemes with typical words in 
which the phonemes  appear.  These basic units, 
when trained from real speech material,  are called 
context-independent (CI) phone-like units (PLU) 
since the sounds are represented independent  of 
the linguistic context in which they occur, and 
since the spectral properties of the sounds are 
learned from a training set, rather than postu- 
lated on the basis of the linguistic features of the 
units. 

In contrast to the 47 CI-PLUs of Table 1, one 
could consider subword units which were context 
dependent  (CD). Thus, for example, a separate 
unit could exist for the sound / a e /  when pre- 
ceded by / f /  and followed by / t /  (as in fat), 
then for / a e /  when preceded by / b /  and fol- 
lowed b y / t / ( a s  in bat). In theory there could be 
as many as (47) 3 CD-PLUs when considering all 
preceding and following sounds; in practice there 
are on the order of 10,000 such possibilities, a 
number  significantly less than the 100,000 count 
of (47) 3, but significantly more than the 47 CI- 
PLUs of Table 1. Such CD-PLUs have been 
extensively used for large vocabulary speech 
recognition (Lee, 1989; Morimoto et al., 1990), 
but practical methods are generally used to re- 
strict the number  of units to something on the 
order of 1000-2000 units. 

The second basic component  of the word-level 
match module is the lexicon which provides a 
linguistic description of the words in the task 
vocabulary in terms of the basic set of subword 
units. Among the issues in the creation of a 
suitable word lexicon is the base (or standard) 
pronunciation of each word and the number  of 
alternative pronunciations provided for each 
word. The base pronunciation is the equivalent, 
in some sense, of a pronunciation guide to the 
word. The number  of alternative pronunciations 

is a measure of word variability across different 
regional accents and talker populations. Al- 
though there have been some very interesting 
experiments based on multiple word pronuncia- 
tion lexicons (Weintraub et al., 1989), most large 
vocabulary speech recognition systems rely on a 
lexicon with only a single pronunciation provided 
for each word. This "canonic" representation of 
each word must be consistent with the subword 
units; hence its form changes as different sets of 
CD or CI subword units are used. Also. for 
function words like " the" ,  "and",  " to",  etc., it is 
well known that there is no "canonic" or stand- 
ard pronunciation. Hence a single representation 
for such function words will invarianlly lead to 
some problems with recognition. Another  issue 
with the lexical representat ion of words is that 
the word pronunciation changes as a result of 
coarticulation in fluently spoken continuous 
speech. This can lead to an increase in recogni- 
tion error rate unless such pronunciation changes 
are modeled properly. Phonological ::ules have 
been proposed to handle intra-word and inter- 
word coarticulation (Giachin et al., 1991; Lamel 
and Gauvain, 1992) and shown to be effective in 
producing a more accurate set subword models 
and giving better  results in recognition. 

The word model composition component  of 
the word-level match module is simply the pro- 
cess of retrieving the word pronunciation from 
the lexicon, and then connecting appropriate  sub- 
word units to form pronunciation networks ac- 
cording to some phonological rules. The individ- 
ual word model is created according to the net- 
work that corresponds to the word. Word models 
are then used to match against the spectral vec- 
tors of the input speech signal to locate words in 
continuous speech. In the next section, we will 
discuss how subword units are modeled and how 
the models are trained from a finite set of speech 
utterances. 

2.3. Sentence let;el ma tch  module  

The sentence level match module uses the 
constraints imposed by a grammar  (a set of syn- 
tactic rules on which words are allowe, d in given 
contexts) and a set of semantic rules (which elimi- 
nate meaningless sentences) to determine the op- 
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Fig. 2. Network representation of the WP grammar. 

timal sentence in the language - i.e. the best 
word sequence, consistent with the grammar and 
the semantics, that matches the input speech. 
Although there have been proposed a number of 
different forms for the grammar (e.g. formal 
grammar, N-gram word probabilities, word pair, 
etc.), we assume a simple grammar that can be 
represented as a finite state network (FSN). In 
this manner it is relatively straightforward to im- 
plement the grammar directly with the word-level 
match module. In particular, for the D A R P A  
RM task (991 words), we have used either a 
word-pair (WP) grammar, which specifies explic- 
itly, for each word in the vocabulary, which words 
are allowed to follow that word, or a no-grammar 
(NG) grammar, in which we assume that every 
word can follow every word in the vocabulary. 
The perplexities (average word branching factor) 
of these two grammars is 60 for the WP case and 
991 for the NG case. The implementations of 
these grammars as FSNs is shown in Figures 2 
and 3. For the WP case we exploit the fact that 
only a subset of the vocabulary occurs as the first 
word in a sentence (condition B for beginning 

words), and only a subset of the vocabulary oc- 
curs as the last word in a sentence (condition E 
for ending words); hence we can partition the 
vocabulary into 4 non-overlapping sets of words, 
namely 
{BE} = set of words which can either begin or 

end a sentence, ] B E ] =  117, 
{BE} = set of words which can begin but which 

cannot end a sentence, ] B/~] = 64, 
{BE} = set of words which cannot begin but can 

end a sentence, [ B E ] =  488, 
{BE} = set of words which cannot begin or end a 

sentence, [BE] = 322. 
The resulting FSN of Figure 2 has 995 real arcs 
and 18 null arcs. To account for silence between 
words (which is optional) each word arc bundle 

start ~ n c e ' W ~ _ ~  {words}.  r-~ silence ~-~ stop 
o- . . . .  0 1 2 3  . . . .  +. 

- - . . _ _ . I / - - . , ~ , ,  " ~ - "  / stop 

]Fig. 3. Network  representat ion o f  the N O  grammar. 
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(nodes 1 to 4) is expanded to individual words 
followed by optional silence, as shown at the 
bot tom of Figure 2. Hence the overall FSN allows 
recognition of sentences of the form 

S: (silence)-{B/7, B E } - ( s i l e n c e ) - ( { W } ) . . .  ({W})- 
(silence)-{BE, BE}-(silence), 

where (W} is any word which is allowed to follow 
the previous word and includes optional silence. 

The FSN for the N G  case, as shown in Figure 
3, is considerably simpler than the FSN for the 
WP case. The sentences allowed by this grammar  
are of the form 

S: ( s i l ence ) - ({W})  . . -  ({ W}) - ( s i l ence ) ,  

where {W} is now any word in the task vocabu- 
lary. 

The grammar  FSNs of Figures 2 and 3 have 
the property that they can produce any valid 
sentence in the task language. Unfortunately they 
also have the property that they can produce a 
large number  of sentences which are not valid in 
the task language, e.g. the sentence S: "and"  
"and . . . .  and" is valid for the NG network but not 
for the RM task. The overcoverage (ratio of sen- 
tences generated by the FSN to sentences valid in 
the task language) of the FSNs is often extremely 
large and this is a negative feature of using these 
simple networks as the grammar  network. On the 
other hand, using a full g rammar  (i.e. no overcov- 
erage) is generally prohibitive from a computa-  
tional point of 'view. 

One way to compensate  for the overcoverage 
of the FSN grammar  implementations is to use a 
semantic processor to detect and correct invalid 
sentences. In a sense the semantic processor ex- 
ploits the fact that the syntax used in recognition 
has a great deal of overcoverage, i.e. it allows 
meaningless sentences to be passed to the seman- 
tic module. The semantic processor can use the 
actual task perplexity (generally much lower than 
the perplexity of the syntax) to convert the recog- 
nized output to a semantically valid string 
(Pieraccini and Lee, 1991). 

In theory, the semantic processor should be 
able to communicate back to the recognizer to 
request a new string whenever the resulting string 
from the syntactic FSN is deemed invalid. In 

practice, one of two simple strategies can be 
used; either the recognizer can generate a list of 
the best N sentences ( N  = 10-1000) that a lan- 
guage processor can search until a semantically 
valid string is found (Schwartz et al., 1992), or it 
can assume that the best (recognized) string is 
semantically "close" to the correct string, and 
therefore process it appropriately to determine a 
semantically valid approximation (e.g. (Pieraccini 
and Lee,  1992)). 

3. Training of subword units 

3.1. Subword unit models 

A key to the success of modern speech recog- 
nition systems is the use of statistical modeling 
techniques (e.g. hidden Markov models - HMMs) 
to represent  the basic subword units (e.g. 
(Rabiner,  1989)). Although many variants exist, 
perhaps the simplest way subword units are mod- 
eled is as a left-to-right HMM, of the type shown 
in Figure 4. Each unit is represented by a simple 
first-order, left-to-right H M M  having N states, 
S 1, S 2 . . . . .  SN, with only sel f  and forward transi- 
tions. 

Within each state of the model there is an 
observation density which specifies the likelihood 
(or probability) of a spectral vector from the 
speech signal occurring within the model state. 
This observation density can either be a discrete 
density (implying the use of a common codebook 
to discretize the input spectral vector), or a con- 
tinuous density, or even what is called a semi- 
continuous density (Huang et al., 1990) or a tied- 
mixture density (Bellegarda et al., 1990) which is 
a codebook of continuous densities whose weights 
are chosen according to the model state. Al- 
though continuous density modeling usually pro- 
vides the highest performance recognition sys- 
tems, it requires the most computation to imple- 

SUB-WORD UNIT 

Fig. 4. HMM representation of subword model. 
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ment. The performance obtained with discrete or 
semi-continuous densities is often comparable to 
or only slightly lower than that obtained with 
continuous densities; often at significantly re- 
duced computation rates. 

For continuous density modeling in the Bell 
Labs system described in Section 2 uses both an 
observation probability density function (for each 
state) represented by a weighted sum of M multi- 
variate Gaussian density functions with a diago- 
nal covariance matrix, and an energy histogram 
representing the log probability of observing a 
frame with a given log-energy. All subword unit 
models have three states except the model for 
silence which has only one state. Fur thermore  no 
transition probabilities are used. 

tences should come from the same linguistic ma- 
terial as the recognition task (i.e. same vocabu- 
lary, same language model). However, in such a 
case, the universality of the resulting speech mod- 
els is poor; i.e. the same models may perform 
poorly on a totally different recognition task be- 
cause of poor coverage of subword units for the 
new task. Hence the issue of " task dependent"  
training, which at tempts to maximize perform- 
ance for a given task, versus " task independent"  
training, which maximizes performance for any 
task has to be addressed. Most systems use task 
dependent  training - we will present  results on 
both types of training in this paper.  

3.3. Adaptation of subword unit models 

3.2. Training of subword unit models 

Training of subword unit models consists of 
estimating the H M M  parameters  from a labeled 
training set of continuous speech utterances 
where all of the relevant subword units are known 
to occur "sufficiently" often. The training prob- 
lem is another  key aspect of the system, as the 
way in which training is performed affects greatly 
the overall recognition system performance.  

The first issue of note is the size of the train- 
ing set. The optimal training set size is infinity - 
i.e. the more training material that is used, the 
higher the reliability of the resulting speech mod- 
els. Since infinite size training sets are impossible 
to obtain (and computationally unmanageable),  
we must use a finite size training set. This imme- 
diately implies that some subword units will occur 
much less often than others (at least in any natu- 
ral recording this will be the case). Hence we 
immediately see a t radeoff  between using fewer 
subword units (where we get bet ter  coverage of 
individual units, but poor  resolution as to linguis- 
tic context), and more subword units (where we 
get poor coverage of the infrequently occurring 
units, but improved resolution of linguistic con- 
text). 

A second issue is the choice of training mate-  
rial. For a given amount of training material,  the 
best coverage is obtained when the statistics of 
occurrence of the training set units match those 
of the recognition task; i.e. the training set sen- 

An alternative to using a large training set is to 
use some initial set of subword unit models and 
adapt  them over time (with new training material, 
possibly derived from actual test utterances) to 
the speaker and speaking environment. In princi- 
ple adaptation can be performed on lexical, syn- 
tactical and semantic models. We will focus our 
discussion only on adaptive training of subword 
acoustic models. Such methods of adaptive train- 
ing are reasonable for new speakers, vocabular- 
ies, transducer or environments, and will be shown 
later to be an effective way of bootstrapping a 
good set of specific models from a more general 
set of models. 

For adaptive training of subword unit models, 
we assume a set of initial models, called seed 
models, is available. The seed model can be a set 
of speaker- independent  subword models or a set 
of gender-dependent  subword models. Based on 
a small number  of adaptation utterances, the 
adaptation algorithm attempts to combine the 
seed models with the adaptation data and gener- 
ate a speaker adaptive model. In doing so, the 
d ispersed seed models  (e.g. the speake r  
independent models), which were designed to 
cover a wide range of speaking environments and 
a large number  of speakers in the test population, 
are modified by the adaptat ion data (e.g. 
speaker-specific, application-specific utterances) 
so that a more focused set of models is created. 
The adaptive models are therefore useful in a 
more specific environment for a smaller number  
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of speakers whose speech has similar acoustic 
characteristics to those of the adaptation data. In 
our HMM-based system, we used the segmental 
MAP algorithm (Gauvain and Lee, 1992a, 1992b) 
to perform adaptive training. Given the acoustic 
data and the word transcriptions of the adapta- 
tion utterances, the Viterbi algorithm is first used 
to segment the adaptation utterances into sub- 
word segments using the seed models. The MAP 
estimation algorithm is then used to obtain the 
parameters of the adapted subword models. In 
essence, the MAP estimate is a weighted sum of 
the prior parameters and the statistics of the 
adaptation data (Lee and Gauvain, 1992). The 
weights are functions of both the prior parame- 
ters and the adaptation data, and are recomputed 
in a nonlinear manner  using the expectation-max- 
imization (EM) algorithm. 

4. RM task and experimental setup 

The DARPA Resource Management (RM) 
task (Price et al., 1988) is a database access and 
retrieval task biased on information about proper- 
ties of battleships throughout the world. The task 
vocabulary contains 991 words and the language 
perplexity is about 9 (i.e. considerably smaller 
than that of the WP or NG FSNs). Three training 
sets were used in this study to create subword 
models. The first, referred to as SI-109, consisted 
of approximately 3990 read sentences from 109 
talkers (30-40 sentences per talker) as provided 
by NIST. It was used for speaker-independent 
model training. The second training set, referred 
to as SD-600, was designed for speaker depend- 
ent model training and can be used for speaker 
adaptation experiments. It consisted of 600 sen- 
tences from each of 12 talkers, 6 females and 6 
males, as provided by NIST. None of the 12 
talkers in the SD-600 set was in the SI-109 train- 
ing set. The third training set, referred to as 
GE-10000, was obtained from a set of 10,000 
general English utterances recorded at CMU. It 
was designed fl3r creating subword unit models 
from non-task specific sentences (Hon, 1992). 3 

These sentences were recorded at CMU and graciously 
provided to AT&T by the speech group at CMU. 

The original data provided by NIST and CMU 
were sampled at 16 kHz. For our experiments, we 
bandpass filtered the speech data and down-sam- 
pled them to 8 kHz. This makes the speech data 
compatible with a standard telephone bandwidth 
signal however this down-sampling procedure has 
the potential of lowering overall system perform- 
ance because the information in high band was 
discarded. In a recent study (Lamel and Gauvain, 
1992), it was found that recognition, based on reel 
frequency cepstral coefficients generated from 16 
kHz speech data, gave significantly better per- 
formance than that obtained with both mel fre- 
quency and LPC-derived cepstral coefficients 
generated from the downsampled 8 kHz data. 
However, there was no observed performance 
difference between the system using either the 
mel frequency cepstral coefficients or LPC-de- 
rived cepstral coefficients generated from the 8 
kHz data. We also conducted a similar study and 
found that using the 16 kHz signal resulted in 
30% fewer word errors than those obtained from 
using the 8 kHz signal. In this study, we only 
present results obtained with the LPC-derived 
cepstral coefficients using the 8 kHz signal. 

The recognizer was implemented as a large 
FSN with something on the order of 20,000 HMM 
states and word junction nodes to keep track of 
at each frame of the input. To reduce computa- 
tion, a frame synchronous beam search algorithm 
was used (Lowerre and Reddy, 1980, Lee et al., 
1990), in which the best accumulated likelihood 
score, L*, was determined at each flame, and 
based on the beam width A, all nodes whose 
accumulated likelihoods were less than ( L * - A )  
were eliminated from a list of active nodes (i.e. 
these paths were no longer followed). In order to 
prevent an excessive number of insertions of short 
function words, a word insertion penalt3r was used 
in the Viterbi decoding at the end of each word 
arc. By adjusting the value of the word penalty we 
can balance the word insertion and word deletion 
error rates. Appropriate values of word penalty 
are determined experimentally. 

In the following two sections we present some 
recent experimental results on the RM task. In 
Section 5, we report on speaker-independent (SI) 
recognition results obtained with both CI and CD 
unit models. We also evaluate system perform- 
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ance based on both task-independent (TI) and 
task-dependent (TD) training materials. By TD 
training material, we mean the training sentences 
are designed to cover typical sentences used for a 
particular task. While the TI training material are 
sentences with no task specification. It is gener- 
ally agreed that TD training usually outperforms 
TI training in speech recognition under normal 
testing conditions. The TD training material used 
in this study is the commonly known SI-109 RM 
training set and the TI training material is the 
CMU GE-10000 training set. Comparisons of 
speaker-independent,  speaker-dependent  (SD) 
and speaker-adaptive (SA) recognition results will 
be given in Section 6. 

5. Speaker- independent  recognit ion 

We used 4 different sets of test data to evalu- 
ate speaker-independent recognition perform- 
ance. The test set names reflect the date that 
D A R P A distributed the testing material. The first 
three sets are referred to as feb89, oct89 and 
feb91. Each of the sets consisted of 30 test utter- 
ances from non-overlapping sets of 10 talkers, 
none of whom was in the 109 talker training set. 
The fourth set, referred to as jun90, consisted of 
a set of 120 sentences from each of 4 new talkers, 
none of whom was in the 109 talker training set. 

We contrast speech recognition performance 
based on choice of subword units (context de- 
pendency) and selection of training material (task 
dependency). The combination of the two factors 
gives four sets of experimental conditions. The 
recognition results are reported in the following 
four subsections, respectively. 

5.1. Context-independent, task-dependent units 

The set of 47 CI units were trained from the 
3990 training sentences for the DARPA task 
(SI-109 set). Hence these units are task depend- 
ent units. HMMs were built with continuous mix- 
ture densities with up to 256 mixtures per state. 
Recognition tests were then performed using each 
of the four independent test sets with both the 
WP and NG grammars with no semantic process- 
ing. The results of these baseline tests, in terms 
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Fig. 5. Word and sentence accuracy versus the maximum 
number of mixture components per state using C I / T D  units 

for the WP grammar. 

of word and sentence accuracies, are given in 
Figures 5 and 6. It can be seen that, although 
there are detailed differences in performance 
among the different test sets (especially for small 
numbers of mixtures per state), the performance 
trends are essentially the same for all test sets. In 
particular, we see that with the WP grammar, the 
range of word accuracies for 1 mixture (Gaussian) 
per state is 42.9% (feb89) to 56.0% (jun90), 
whereas for 256 mixtures per state the range is 
90.9% (feb89) to 93.0% (jun90). For the NG 
grammar, the range of word accuracies for 1 
mixture per state is 20.1% (feb91) to 28.5% 
(jun90) and for 256 mixtures per state it is 68.5% 
(oct89) to 70.0% (feb91). Therefore,  it is clear 
that high recognition accuracy can be achieved 
with simply the CI unit models provided each 
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acoustic HM/VI state is characterized with an 
enough number of Gaussian mixture components. 

lary, different syntax, etc.). Tests were run using 
HMMs with a maximum number of 64 and 256 
mixture components per state and the results are 
shown in Table 2. 

By comparing the results in Table 2 with those 
in Figures 5 and 6 it can be seen that the word 
accuracy falls from about 92% with TD units to 
about 83% with TI units for the WP case, and 
from about 69% with TD units to 56% with T1 
units for the NG case when using models with 
256 mixtures per state. Hence there is a signifi- 
cant loss of performance - even for the case of 47 
CI units. One reason for this loss of performance 
is due to possible differences in recording envi- 
ronments between the CMU data and the RM 
testing data recorded at Texas Instruments. The 
second reason for the loss of performance is due 
to the word context mismatch, as discussed previ- 
ously. Another reason for the loss of performance 
is the fact that it is considerably more difficult to 
define the linguistic content of the GE-1I)000 
sentence training set because of the generality of 
the sentences. Hence we used a set of isolated 
word pronunciations, of the words in the 10,000 
sentence training set. For many, if not most, of 
the sentences, this formal pronunciation is grossly 
inadequate. We did try to modify the word pro- 
nunciations based on rules appropriate for a 
speech synthesizer - but did not find any 
performance improvement for the recognition 
tests. 

5.3. Context-dependent, task-dependent units 

5.2 Context-independent, task-independent units 

The same set of 47 CI units were trained from 
the set of GE-10000 sentences which were totally 
unrelated to the RM task (i.e. different vocabu- 

Based on the D A R P A  RM training set we 
created several sets of subword units that were 
context-dependent. Each set contained right- 
and-left context units, right-context units, left- 
context units and context-independent units. The 

Table 2 
Word accuracies using CI/T1 units 

Number of mixtures Grammar 
per state 

Test set 

feb89 oct89 jun90 feb91 

Average 

64 WP 79.8 
256 WP 81.5 

64 NG 52.8 
256 NG 54.1 

80.3 87.7 82.0 82.5 
80.1 88.7 82.0 83.1 
51.3 61.6 53.2 54.7 
53.2 64.2 53.6 56.3 
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Table 3 
Word accuracies using CD/TD units 

C.-H. Lee et al. / Large vocabulary speech recognition 

Grammar Number of 
interword units 

Test set 

feb89 oct89 jun90 feb91 

Average 

WP 1769 
WP 2421 
NG 1769 
NG 2421 

96.3 95.8 95.6 96.5 96.0 
95.3 95.9 95.7 96.7 95.9 
81.6 79.3 80.4 81.1 80.6 
80.5 79.9 80.4 81.8 80.7 

criterion for including a CD unit was that it 
occurred sufficiently often in the training set so 
that enough data can be used to model the unit. 
We found, experimentally, that a particular unit 
should appear at least between 20 and 30 times in 
the training data in order  to be reliably modeled. 
We call this criterion the unit selection rule (Lee 
et al., 1990) and the occurrence count in the rule 
the unit selection threshold. We designed CD unit 
sets based both on intraword and interword units. 
We also constructed male and female models for 
each unit set using the segmental MAP algorithm 
(Gauvain and Lee, 1992a, 1992b). The results on 
the 4 test sets are shown in Table 3. 

The results in Table 3 should be compared 
with the results in Figures 5 and 6. It can be seen 
that word accuracies improve significantly using 
C D / T D  units when context-dependent units and 
interword units are used and gender dependency 
is also incorporated in modeling. Compared with 
the C I / T D  results, the gender-dependent  C D /  
TD model sets reduce the word error rate by 
about 50% for the WP case and by about 34% for 
the NG case. Detailed comparison of results ob- 
tained with intraword CI units and results ob- 
tained with intraword CD units, interword CD 
units and gender dependent  units can be found 

elsewhere (Lee et al., 1990; Gauvain and Lee, 
1992b). It is also noted that the two sets of units 
in Table 3 give virtually similar recognition re- 
sults. Since no smoothing is used in our modeling 
framework, the unit model reliability depends on 
getting enough observations for the particular 
unit. When the number of units increases, the 
number of training vectors for each unit reduces 
accordingly. There is a tradeoff between model 
reliability and unit coverage. This is still a re- 
search issue yet to be solved. 

5.4. Context-dependent, task-independent units 

Using the GE-10000 sentence training set, we 
again created several sets of subword units that 
were context dependent,  in a manner similar to 
that used for TD units. However, only intraword 
units were considered. A major problem associ- 
ated with creating C D / T I  units is that many of 
the units never occur in the RM task vocabulary. 
Hence, whenever training data is used to create a 
C D / T I  unit that is not used in the RM task, you 
essentially are reducing the size of the relevant 
training set. To alleviate this problem, partially, it 
is possible to post-process the set of C D / T I  units 
to remove all such units that do not occur in the 

Table 4 
Word accuracies using CD/TI units 

Grammar Number of Test set 
intraword units feb89 oct89 jun90 feb91 

Average 

WP 1030/modified 85.6 
WP 1418/original 85.4 
WP 1136/original 83.4 
NG 1418/original 60.0 
NG 1030/modified 60.0 
NG 1136/original 60.0 

85.5 90.7 88.0 87.5 
85.6 90.8 87.5 87.3 
83.8 91.3 87.1 86.9 
58.8 68.3 60.5 61.9 
58.3 68.4 59.9 61.7 
58.2 68.1 60.1 61.6 
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RM task, and to reassign those units to the 
"equivalent" C I / T I  unit. We called this set of 
reduced units the modified unit set. In this man- 
ner all the training data is used to create the 
C D / T I  units. 

Based on the same unit selection rule (Lee et 
al. 1990), using unit selection thresholds of 75 
and 100 occurrences of each unit were found to 
provide the best recognition performance for this 
task. Using a trait selection threshold of 75 gave a 
set of 1418 original units and 1030 modified units; 
a unit selection threshold of 100 gave a set of 
1136 units. The recognition performance,  on all 4 
test sets, using the C D / T I  units (both the origi- 
nal set and the modified set of units), is shown in 
Table 4. 

It can be seen from Table 4 that the difference 
in performance between C D / T I  units modified 
by task information and C D / T I  units without 
task information is essentially negligible, i.e. on 
the order of 0.2% for both the WP and N G  cases. 
It is also seen that the improvement  in perform- 
ance is about 4.4% (26% reduction in error rate) 
for the WP case, and 5.6% (13% reduction in 
error rate) for the NG case, as compared to the 

results using C I / T I  units in Table 2. Considering 
that no interword units were modeled and no 
gender-dependent  models were used the C D / T 1  
results shown in Table 4 are still reasonable when 
compared with the C D / T D  results shown in 
Table 3. 

6. Speaker-adaptive recognition 

Perhaps the ultimate way to create (train) sub- 
word units is to adapt  them both to the task and 
to the speaker. In cases where an individua[ 
speaker  is able to provide sufficient training, this 
type of subword unit learning is capable of pro- 
viding the highest performance scores. 

In order to incorporate speaker  adaptation 
you need both an initial set of models (seed 
models) and an adaptive learning algorithm which 
can incorporate prior knowledge (as embodied in 
both the initial models and in assumptions about 
the distributions of the model parameters  being 
adapted), and can perform parameter  smoothing 
and interpolation. The segmental MAP algorithm 
proposed by Gauvain and Lee (1992a) is an ideal 
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candidate for performing speaker adaptation. It 
was used on the RM task based on the separate 
training set of 600 sentences (about 30 minutes of 
training material) by each of 12 talkers in the 
speaker dependent  part of the RM database. The 
testing data used in the experiments discussed in 
this section is an independent test set of 25 
sentences by each of these 12 talkers. It was 
distributed for RM evaluation in February 1991. 
We refer to this set as the feb91-sd set. Six initial 
sets of seed models were used, including 
1. a single set of C I / T D  models with 47 subword 

units; 
2. a pair of C I / T D  models, one for male speak- 

ers and one for female speakers, each with 47 
subword units; 

3. a single set of C D / T D  models with 1769 sub- 
word units (both intraword and interword units 
were used); 

4. a pair of C D / T D  models, one for male speak- 
ers, and one for female speakers, each with 
1769 subword units; 

5. a single set of C I / T D  models with no boot- 
strapping, i.e. trained entirely on the speaker 
dependent  sentences; 

6. a single set of C I / T I  models with 47 subword 
units. 

Details of the segmental MAP algorithm and 
issues related to speaker adaptation based on the 
segmental MAP algorithm are given in (Lee and 
Gauvain, 1992). The TD seed models were ob- 
tained with the RM SI-109 speaker independent 
training set and the TI seed model was obtained 
from the GE-10000 training set. For each of these 
models, adaptation (or initial learning in the case 
of the fifth model) was performed using 40, 80 
(models 4 and 5), 100 (models 1-3), 150 (models 
4 and 5), 300 (models 4 and 5) and 600 sentences. 
For each adapted model we measured word accu- 
racy on the independent test set and the results 
using the WP grammar are shown in Figure 7. It 
can be seen that for models 1, 2 and 5, where 47 
C I / T D  units were used, the adapted models all 
converged to a 96.5% word accuracy when all 600 
training sentences were used in the adaptation. 
Model 5, which did not use a bootstrap model, 
converged at the fastest rate and had word accu- 
racies significantly lower than models 1 and 2 
until all 600 training sentences were used. The 

Table 5 
Comparison of S I / S D / S A  word accuracies 

Training 0 40 100 600 
SD - 68.5 87.9 96.5 
SA (SI) 86.1 91.3 93.1 96.6 
SA ( M / F )  88.5 92.5 94.0 96.5 
SA (TI) 74.0 89.1 92.4 95.9 

differences in word accuracy resulting from single 
models and male / female  models were small, but 
not insignificant for short adaptation sets. 

The recognition results based on speaker inde- 
pendent  (SI), speaker dependent  (SD) and 
speaker adaptive (SA) CI models are compared 
in Table 5. Three  different t ra ining/adaptat ion 
sets, 40, 100 and 600 utterances, respectively, 
were tested. The case with no training data is 
labeled 0 in the first row of Table 5. No perform- 
ance result is reported for the SD case with no 
training data because obviously no SD model can 
be created in this case. The results given for SA 
models without any adaptation data are simply 
the results obtained with the seed models. 

The word accuracy for 40 utterances of SD 
training was 68.5% which is not acceptable for 
any reasonable application. The SI word accuracy 
(0 minutes of adaptation data) was 86.1%, com- 
parable to the SD results with 100 utterances of 
SD training. The SA models perform better than 
SD models when a relatively small amount of 
data was used for training or adaptation. When 
all the available training data were used, the SA 
and SD results were comparable, consistent with 
the MAP adaptation formulation where that the 
MAP and the MLE estimates are asymptotically 
similar (Gauvain and Lee, 1992a). With 40 utter- 
ances of adaptation data, the SA results gave a 
37% word error reduction over the SI results. It 
was also noted that a larger improvement was 
observed for the female speakers (51% word er- 
ror reduction) than for the male speakers (22% 
word error reduction). 

Speaker adaptation can also be performed 
starting from gender-dependent models (fourth 
row of Table 5). The word accuracy with no 
speaker adaptation was 88.5%. The accuracy rates 
were increased to 92.5% and 94.0% with 40 and 
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100 utterances of adaptation data, respectively. 
Comparing the third and the fourth rows in Table 
5 it can be seen that when only a small amount of 
adaptation data is used, the best results were 
obtained with gender-dependent  seed models. 
The word error reduction with 40 adaptation 
utterances was 35% compared to the no adapta- 
tion results with gender-dependent  models. 
Moreover,  the improvement  was 46% compared 
to the SI recognition results. 

The adaptation results shown in the last row 
were obtained with the GE-10000 TI  seed model. 
It can be seen that the results were inferior to 
those obtained with the SI-109 TD seed models. 
The difference in performance may arise from 
differences in the recording environments for the 
two databases as well as from different lexical 
representations for the words in the RM and the 
GE databases. The performance difference was 
the greatest when no adaptation data were used. 
Using more adaptation data reduced the differ- 
ence in performance.  Even though some perform- 
ance degradation was observed, the advantage of 
using a uniL'ersal acoustic model generated from a 
large speech database cannot be overlooked. It is 
unlikely that one can collect enough training ma- 
terial for every, conceivable recognition applica- 
tion so that the trained models can handle any 
speaker in any speaking environment.  A more 
attractive approach is to start with a universal 
acoustic model. For a given application, vocabu- 
lary learning is first performed to extract "rele-  
vant" subword units for the particular application 
vocabulary. Then a small number  of adaptation 
sentences is collected from the user and these 
data are used to construct speaker adaptive mod- 
els for the speaker in the particular environment 
for that specific application. By doing so, the 
acoustic mismatch problems between training and 
testing, including speaker mismatch, transducer 
mismatch and channel mismatch, can generally 
be minimized. Once an initial speaker adaptation 
model is obtained for a user, the model can be 
continuously adapted using sequential and on-line 
adaptation schemes. We believe that it is possible 
to construct a good universal acoustic model from 
a large pool of training data. How to design such 
a universal acoustic database is still an open 
research topic. 

The word accuracies for models 3 and 4, where 
C D / T D  units were used, were significantly higher 
than those obtained using only C I / T D  units. 
Again both models converged to a 98.5% word 
accuracy when all 600 training sentences were 
used for adaptation. Also the adapted models, 
based on using separate m a l e / f e m a l e  models, 
gave bet ter  performance than the adapted mod- 
els based on a single set of gender- independent  
models until about 300 training sentences were 
used for adaptation. 

7. Summary 

In this paper  we have described one of the 
Bell Labs systems for large vocabulary continuous 
speech recognition, and discussed the key issues 
in design and implementat ion of the system. We 
have shown that the choice and method of train- 
ing of the basic subword units is critical, and that 
a wide range of options exist. We have only 
presented results comparing the use of CI and 
CD units based on their frequencies of occur- 
rence in the training data. We have also studied 
two methods of parameter  estimation, namely the 
maximum likelihood and maximum a posteriori 
methods. Each choice of subword units, in combi- 
nation with each method of parameler  estima- 
tion, has distinct advantages and disadvantages; 
hence there is no " ideal"  or "opt imal"  set of 
units, but instead one must consider a wide range 
of possibilities. 

We have explored different ways of incorporat- 
ing context and task dependency in acoustic mod- 
eling. It is concluded that the recognition accu- 
racy of a task can be increased when context 
dependency is properly incorporated to reduce 
the acoustic variability of the speech units to be 
modeled. We have found that context-dependent 
units provide bet ter  recognition performance than 
context-independent units. We have also shown 
that interword units take into account cross-word 
coarticulation and therefore provide more accu- 
rate modeling of speech units than intraword 
units in fluently spoken continuous speech. Simi- 
larly, the acoustic variability of speech units can 
further be reduced when gender dependency is 
considered in the design of acoustic models for 
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Table 6 
Word accuracies (%) summary for CI/CD and TD/TI units 

Grammar CI/TD CI/TI CD/TD CD/TI 

WP 91.7 83.1 96.0 87.3 
NG 69.3 56.3 80.6 61.9 

the set of speech units. Gender-dependent  mod- 
els usually give better performance than that ob- 
tained with gender-independent models at a 
slightly higher computational cost. We have also 
shown that, for a given task, speech unit models 
trained based on task-dependent training data 
always outperform models trained with task-inde- 
pendent training data. A comparison of the per- 
formance for speaker independent recognition of 
the Resource Management task is shown in Table 
6. The word accuracies given are based on testing 
1380 utterances from 34 new speakers not con- 
tained in the training set. 

Most of the results presented in this study are 
obtained with the Resource Management task 
using the WP and NG covering grammars. We 
have also experimented with the perplexity 9 full 
grammar by performing speech recognition first 
with a covering grammar then followed by a se- 
mantic post-processor (Pieraccini and Lee, 1991) 
to correct obvious word errors. By incorporating 
the simple set of semantic and syntactic rules for 
the RM task in this two-pass recognition, we have 
achieved over 99% word accuracy and 92% string 
accuracy on a random subset of 300 testing utter- 
ances. In addition to the RM task, many other 
subword-based studies have also been carried out. 
For example, we have applied the same subword- 
based approach to the problem of connected digit 
recognition and obtained very high performance 
on the TI connected digit database (Gauvain and 
Lee, 1992c). We have implemented the ATIS 
speech understanding task and good performance 
has been obtained (Pieraccini et al., 1992) for 
recognition of spontaneously spoken utterances. 
Finally, the same subword-based approach has 
also been applied to speaker verification to en- 
hance flexibility of verification systems (Rosen- 
berg et al., 1990). 

The problems of large vocabulary continuous 
speech recognition are far from solved. Key is- 
sues include the need to eliminate specification 

of a finite task vocabulary, and a rigid task syntax. 
As a result, modern systems attempt to use natu- 
ral language front ends with essentially unlimited 
vocabulary and syntax. This type of system im- 
plies an entirely different system implementation 
with a completely new set of problems associated 
with unknown words, non-grammatical construc- 
tions, extraneous speech, etc. On top of this, the 
"traditional" problems associated with noisy envi- 
ronments, speaker variability, transmission system 
variability, etc. remain, along with the need to 
improve the acoustic front end signal processing, 
and to provide efficient search strategies for large 
applications. 
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