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Abstract

This paper reports on activites at LIMSI over the last few years directed at the transcription
of broadcast news data. We describe our development work in moving from laboratory read
speech data to real-world or ‘found’ speech data in preparation for the ARPA Nov96, Nov97
and Nov98 evaluations. Two main problems needed to be addressed to deal with the continuous
flow of inhomogenous data. These concern the varied acousticnature of the signal (signal qual-
ity, environmental and transmission noise, music) and different linguistic styles (prepared and
spontaneous speech on a wide range of topics, spoken by a large variety of speakers).

The problem of partitioning the continuous stream of data isaddressed using an iterative seg-
mentation and clustering algorithm with Gaussian mixtures. The speech recognizer makes use
of continuous density HMMs with Gaussian mixture for acoustic modeling and 4-gram statistics
estimated on large text corpora. Word recognition is performed in multiple passes, where initial
hypotheses are used for cluster-based acoustic model adaptation to improve word graph genera-
tion. The overall word transcription error of the LIMSI evaluation systems were 27.1% (Nov96,
partitioned test data), 18.3% (Nov97, unpartitioned data), 13.6% (Nov98, unpartitioned data) and
17.1% (Fall99, unpartitioned data with computation time under 10x real-time).

Cet article présente les travaux effectués au LIMSI pour le développement d’un système de
traitement automatique d’informations radio et télédiffusées. Partant d’un système de transcrip-
tion de textes lus, nous décrivons les adaptations qui ont ´eté nécessaires pour le traitement d’un
flux audio continu et de données dites “trouvées”. Ces développements ont été validés dans le
cadre des évaluations ARPA BN (Nov96, Nov97, Nov98 et Dec99). Les principales difficultés
posées par ce type de données sont liées à leur nature hétérogène, qu’il s’agisse de changements
de nature acoustique (environnement, communication, musique) ou de nature linguistique (styles
d’élocution, diversités des sujets et des locuteurs),.

La partitiondu flux continu est effectuée de manière itérative, par un algorithme de segmentation-
agglomération reposant sur des mélanges de Gaussiennes.Le système de reconnaissance utilise
des modèles de Markov cachés à densités continues pour la modélisation acoustique, et des statis-
tiques 4-grammes de mots estimées sur un grand corpus de textes et de parole transcrite pour
modèle de langage. La transcription en mots est obtenue en plusieurs passes de décodage, où les
hypothèses intermédiaires sont utilisées pour adapterles modèles acoustiques. Les taux d’erreur
obtenues avec différentes versions de ce système lors desévaluations ARPA sont 27,1% (Nov96
avec partition manuelle), 18,3% (Nov97), 13,6% (Nov98) et 17,1% (Dec99, moins de 10 fois le
temps réel).
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Dieser Artikel berichtet über die Tätigkeiten am LIMSI w¨ahrend der letzten Jahren mit dem
Ziel der Spracherkennung von Nachrichtensendungen. Wir beschreiben unsere Forschungsar-
beiten der Portierung von unter Laborbedingungen gelesenerSprache zu natürlicher freier Sprache
während der Vorbereitung der ARPA Nov96, Nov97 und Nov98 Evaluierungen. Zur Bearbeitung
des kontinuierlichen Stroms von inhomogenen Daten sind zwei grundlegende Probleme zu lösen.

Diese betreffen einerseits die unregelmässige akustische Natur des Signals (Signalqualität,
Hintergrund- undÜbertragungsrauschen, Musik, ...) und andererseits die unterschiedlichen lin-
guistischen Stile (vorbereitete oder spontane Sprache, eine große Themenvielfalt und viele unter-
schiedliche Sprecher).

Der kontinuierliche Audiostrom wird mit Hilfe eines iterativen Segmentierungs- und Klus-
terungsalgorithmus auf der Basis von Gauss Mischverteilungen partioniert. Das Spracherken-
nungssystem verwendet HMMs mit kontinuierlichen Gauss Mischverteilungen zur akustischen
Modellierung und 4-gram Statistiken, welche mit Hilfe großser Textsammlungen geschätzt wur-
den. Die Worterkennung erfolgt in mehreren Phasen, wobei dieWortgraphen nach und nach
mit Hilfe akustischer Modellanpassung verbessert werden.Die Wordfehlerrate von LIMSI’s
Spracherkennungssytemen beträgt 27,1% (Nov96, segmentierte Testdaten), 18,3% (Nov98, un-
segmentierte Testdaten) und 17,1% (Herbst 99, unsegmentierte Testdaten und Ausführungszeiten
von weniger als 10-facher Echtzeit).

Stichwörter: Spracherkennung, Nachrichtenübersetzung, Audio-Segmentierung, akustische
Modellierung, Spachmodellierung

1 Introduction

Over the last 5 years significant advances have been made in large vocabulary, continuous speech
recognition, which has been a focal area of research, serving as a test bed to evaluate models and
algorithms [5, 6, 45]. However, these tasks remain relatively artificial as they mainly make use of
laboratory read speech data. In this paper we report on moving toward real-world speech data in
order to build a system for transcribing radio and television broadcast news [6, 7, 8, 9]. While this
paper focuses on our work in developing a broadcast news transcription system for American English,
in the context of the LE-4 OLIVE project we have also developed systems for the French and German
languages.

Radio and television broadcast shows are challenging to transcribe as they contain signal seg-
ments of various acoustic and linguistic nature. The signalmay be of studio quality or have been
transmitted over a telephone or other noisy channel (ie., corrupted by additive noise and nonlinear
distorsions), or can contain speech over music or pure musicsegments. Gradual transitions between
segments occur when there is background music or noise with changing volume, and abrupt changes
are common when there is switching between speakers in different locations. The speech is produced
by a wide variety of speakers: news anchors and talk show hosts, reporters in remote locations, inter-
views with politicians and common people, unknown speakers, new dialects, non-native speakers, etc.
Speech from the same speaker may occur in different parts of the broadcast, and with different chan-
nel conditions. The linguistic style ranges from prepared speech to spontaneous speech. Acoustic
models trained on clean, read speech, such as the Wall StreetJournal (WSJ) corpus [35], are clearly
inadequate to process such inhomogeneous data.

Our research has been aimed at addressing two principle types of problems encountered in tran-
scribing broadcast news data: those related to the varied acoustic properties of the signal, and those
related to the linguistic properties of the speech. The firstproblem is resolved by partitioning the
data into homogenous segments, where each segment can then be classified as to the segment type.
Specific acoustic models can then be trained for the different acoustic conditions. The work on data
partitioning is described in Section 3. Issues in acoustic modeling are discussed in Section 4.

In order to address variability observed in the linguistic properties, we analyzed differences in
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read and spontaneous speech, with regard to lexical items, word and word sequence pronunciations,
and the frequencies and distribution of hesitations, fillerwords, and respiration noises. As a result of
this analysis, these phenonema were explicitly modeled in both the acoustic and language models as
described in [14]. The phone set was enlarged to explicitly model filler words and breath noise, re-
sulting in specific context-dependent acoustic models. Compound words were introduced as a means
of modeling reduced pronunciations for common word sequences. These aspects are discussed in
Section 5. In Section 7 the word decoder is described, with considerations for processing time. We
conclude with a discussion of issues in broadcast news transcription and highlight some of the lessons
we have learned in working on this problem.

2 Background

The broadcast news task has been used to assess and improve speech recognition technology since
Nov95, when a DARPA dry run evaluation was held using 10 hoursof MarketPlace data. Prior to
the next three evaluations, substantially more transcribed broadcast news acoustic training data and
textual data for language modeling have been made availablevia the Linguistic Data Consortium
(for more detail see the LDC contribution to this issue). In Nov96, about 50 hours of transcribed
data were available. These data came from 10 different sources: ABC (Nightline, World News Now,
World News Tonight), CNN (Early Prime, Headline News, PrimeNews, The World Today), CSPAN
Washington Journal, and NPR (All Things Considered, Marketplace). For the Nov97 evaluation, an
additional 50 hours of transcribed data from the same sources were made available. In 1998 the
amount of transcribed acoustic training data was doubled, resulting in a total of 200 hours of data
from (in addition to the above sources): CNN (Early Edition,Prime Time Live), and CSPAN Public
Policy. (For more details see the LDC paper in this issue.)

As mentioned above, broadcast data is comprised of acousticsegments of varied acoustic and
linguistic natures. The acoustic differences primarily concern the different recording channels (wide-
band/telephone) and recording environment (studio/on-site location, background music or noise).
Given the variety of acoustic and linguistic data types, a set of focus conditions [41] were identi-
fied by NIST so as to evaluate system performance under certain specified conditions.1

The test data for each year were chosen from multiple sources, including some not present in
the training material. The Nov96 test contained 106 minutesof data taken from four shows. The
Nov97 and Nov98 test consisted for about 3 hours of audio data, where portions were extracted from
broadcasts so as to focus on the F0 and F1 data types. (For moreinformation see the NIST paper in
this issue.)

For the Nov96 evaluation, we trained different acoustic model sets so as to address the different
focus conditions [14]. Wideband acoustic models were trained on about 100 hours (46k sentences)
from 355 speakers in the WSJ0/1 corpus and 50 hours of broadcast news data distributed by NIST. The
WSJCAM0 corpus was also used to train models for British English speakers, since some non-native
speakers of American English may more closely ressemble British speakers. For telephone speech
models, reduced bandwidth models were first trained on a bandlimited version the WSJ corpus. The
resulting models were then adapted using MAP estimation with 7k sentences of WSJ telephone speech
data taken primarily from the Macrophone corpus, and then adapted with the telephone portion of the
broadcast data. Type-specific acoustic models were trainedfor the different categories of data defined
for the Nov96 partitioned evaluation: high quality prepared speech, high quality spontaneous speech,1In the Nov96 evaluation there were two components, the “partitioned evaluation” (PE) and the “unpartitioned evalu-
ation” (UE). The PE condition was used to compare systems. Inlater evaluations the focus conditions have been used to
assess performance on the different data types. For more details, see the papers from NIST and LDC in this issue.
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telephone speech, speech over music, speech in noise, non-native speakers, and miscellaneous. For
the Nov96 partitioned evaluation the focus condition of each test segment was provided by NIST. In
the LIMSI Nov96 system the telephone decision was based on the output of the Gaussian segment
classifier, and all other attributes were taken from the provided segment annotation. Five acoustic
model sets were trained for broadcast quality speech (conditions F0 and F1), telephone quality speech
(condition F2), speech in the presence of music (condition F3), speech in the presence background
noise (condition F4), and non-native speech (condition F5). In total there were 20 model sets: 5
conditions� 2 genders� 2 decoding passes. Dealing with so many different model setswas relatively
difficult to manage, both for training and decoding. The performance differences were also quite
small: On the 1996 development data (2 hours taken from 6 shows), the word error rate resulting from
a second decoding pass with a trigram language model was 26.8% using the type-specific model sets
as compared to 27.1% with the two model sets [15]. When more transcribed data was made available,
more accurate acoustic models could be trained and it no longer seemed as “interesting” to use focus
condition-specific models. Additionally, in the transcriptions of the second set of 100 hours BN
acoustic data the background conditions were not annotated, so supervised training was not an option
for this part of the data. However, it is probably worth looking into using a set of background acoustic
conditions (speech in music, noisy speech) if accurate labels can be automatically obtained. When
transcriptions of additional acoustic training data were released by LDC, we once again investigated
various approaches to build acoustic models from the available read-speech and Hub4 training data.
Acoustic model development aimed to minimize the word errorrate on the eval96 test data. Since
these experiments showed no clear gain from using the WSJ data to initialize the acoustic models,
most of the development work was carried out using only the Hub4 data [17].

In addition to the acoustic training data, in subsequent years more textual data sources were
distributed via the LDC. In our Nov96 system the language model was trained on 161 million words
of newspaper texts (the 1995 Hub3 and Hub4 LM material), 132 million words of broadcast news
transcriptions (years 92 to 96), as well as 430 K words from the transcriptions of the 1995 and 1996
acoustic training data. In 1997, the same training texts sources were availble, with a total of 866 K
words in acoustic data transcriptions. In 1998, substantially more LM training texts were used: a
total of 203 M words of broadcast news transcripts (from LDC and PSMedia), 343 M words of NAB
newspaper texts and AP Wordstream texts, and 1.6 M words of transcriptions of the acoustic training
data.

While the LIMSI Nov’98 systems serves as basis for the remainder of this paper, reference is
made to earlier systems and recent progress when appropriate.

3 Data Partitioning

3.1 Need for partitioning

While it is evidently possible to transcribe the continuousstream of audio data without any prior seg-
mentation, partitioning offers several advantages over this straight-foward solution. First, in addition
to the transcription of what was said, other interesting information can be extracted such as the di-
vision into speaker turns and the speaker identities. Priorsegmentation can avoid problems caused
by linguistic discontinuity at speaker changes. By using acoustic models trained on particular acous-
tic conditions, overall performance can be significantly improved, particularly when cluster-based
adaptation is performed. Finally eliminating non-speech segments and dividing the data into shorter
segments (which can still be several minutes long), reducesthe computation time and simplifies de-
coding.

Various approaches have been proposed to partition the continuous stream of audio data. Most
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Figure 1: Partitioning algorithm.

of these approaches rely on a two step procedure, where the audio stream is first segmented in an
attempt to locate acoustic changes (associated with changes in speaker, background or environmental
condition, and channel condition) and then the resulting segments are clustered (usually using Gaus-
sian models). Each cluster is assumed to identify a speaker or more precisely, a speaker in a given
acoustic condition. The segmentation procedures can be classified into three approaches: those based
on phone decoding [25, 31, 42], distance-based segmentations [29, 40], and methods based on hy-
pothesis testing [12, 43]. Our partitioning approach, which is not based on such a two step procedure,
relies on an audio stream mixture model. Each component audio source, representing a speaker in
a particular background and channel condition, is in turn modeled by a mixture of Gaussians. The
segment boundaries and labels are jointly identified using the iterative procedure described below.

3.2 Audio Stream Mixture Model

The segmentation and labeling procedure introduced in [17,18] is shown in Figure 1. First, the
non-speech segments are detected (and rejected) using Gaussian mixture models (GMMs). These
GMMs, each with 64 Gaussians, serve to detect speech, pure-music and other (background). The
acoustic feature vector used for segmentation contains 38 parameters. It is the same as the recognition
feature vector except that it does not include the energy, although the delta energy parameters are
included. The GMMs were each trained on about 1h of acoustic data, extracted from the training
data after segmentation with the transcriptions. The speech model was trained on data of all types,
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with the exception of pure music segments and silence portions of segments transcribed as speech
over music. In order to detect speech in noisy conditions a second speech GMM was trained on the
F4 segments in the 1996 data set. These models are expected tomatch all speech segments. The
music model was trained only on portions of the data that werelabeled as pure music, so as to avoid
mistakenly detecting speech over music segments. The silence model was trained on the segments
labeled as silence during forced Viterbi alignment, after excluding silences in segments labeled as
containing speech in the presence of background music. All test segments labeled as music or silence
are removed prior to further processing.

A maximum likelihood segmentation/clustering iterative procedure is then applied to the speech
segments using GMMs and an agglomerative clustering algorithm. Given the sequence of cepstral
vectors corresponding to a show(x1; : : : ; xT ), the goal is to find the number of sources of homo-
geneous data and the places of source changes. The result of the procedure is a sequence of non-
overlaping segments(s1; : : : ; sN) with their associated segment cluster labels(c1; : : : ; cN), whereci 2 [1; K] andK � N is the number of segment clusters. Each segment cluster is assumed to
represent one speaker in a particular acoustic environment. In absence of any prior knowledge about
the stochastic process governing(K;N) and the segment lengths, we use as objective function a
penalized log-likelihood of the formNXi=1 log f(sij�ci)� �N � �K

wheref(�j�k) is the p.d.f. (with a fixed number of parameters) corresponding to the clusterk, and
where� > 0 and� > 0. The terms�N and�K, which can be seen as segment and cluster penalties,
correspond to the parameters of exponential prior distributions forN andK. It is easy to prove that
starting with overestimates ofN andK, alternate Viterbi reestimation and agglomerative clustering
gives a sequence of estimates of(K;N; �k) with non decreasing values of the objective function. In
the Viterbi step we reestimate(N; �k) so as to increase

Pi log f(sij�ci)��N (i.e. adding a segment
penalty� in the Viterbi search) whereas in the clustering step two or more clusters can be merged
as long as the resulting log-likelihood loss per merge is less than�.2 Since merging two models can
reduce the number of segments, the change in segment penaltyis taken into account during clustering.
This algorithm stops when no merge is possible. A constrainton the cluster size is used to ensure
that each cluster corresponds to at least 10s of speech. (Recall that the previously rejected non-speech
segments are not considered here.)

For single Gaussian models the merging criterion is easy to implement since the log-likelihood
loss can be directly computed from the sufficient statisticsof the corresponding segments [24, 28].
In the more general case of Gaussian mixtures, there are no sufficient statistics and there is no direct
solution to compute the resulting mixture and/or the log-likelihood loss. We can envision estimating
the new mixture from the data but this is a costly procedure. Another solution that we adopted for
this work is to modify the objective function, replacing thelikelihood function by the complete data
likelihood of the Gaussian mixtures and extending the maximum likelihood clustering method to the
Gaussian level. To estimate the log-likelihood loss for twoGaussian mixtures, we simply have to
compute the sum of the log-likelihood loss while clusteringthe Gaussians of the 2 mixtures (until we
get the desired number of Gaussians). We have used 8 mixture components per cluster, so to compute
the log-likelihood loss induced by merging two clusters agglomerative clustering is performed starting
with 16 Gaussians until 8 Gaussians are left.

The process is initialized using a simple segmentation algorithm based on the detection of spectral
change (similar to the first step used in the CMU’96 system [40]). The threshold is set so as to over-2This clustering criterion is closely related to the MDL or BIC criterion.
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Figure 2: Spectrograms illustrating results of data partitioning on sequences extracted from broad-
casts. The transcript gives automatically generated segment type: Speech, Music, or Noise. For the
speech segments the cluster labels specify the identified bandwidth (T=telephone-band/S=wideband)
and gender (M=male/F=female), as well as the number of the cluster.

generate segments, roughly 5 times as many segments as true speaker turns. Initially, the cluster set
consists of a cluster per segment. This is followed by Viterbi training of the set of GMMs (one 8-
component GMM per cluster). This procedure is controlled by3 parameters: the minimum cluster
size (10s), the maximum log-likelihood loss for a merge (�), and the segment boundary penalty (�).
When no more merges are possible, the segment boundaries arerefined using the last set of GMMs
and an additional relative energy-based boundary penalty,within a 1s interval. This is done to locate
the segment boundaries at silence portions, attempting to avoid cutting words (but sometimes this still
occurs).

Speaker-independent GMMs corresponding to wideband speech and telephone speech (each with
64 Gaussians) are then used to label telephone segments. This is followed by segment-based gender
identification, using 2 sets of GMMs with 64 Gaussians (one for each bandwidth). The result of the
partitioning process is a set of speech segments with cluster, gender and telephone/wideband labels
as illustrated in Figure 2.

3.3 Partitioning Results

In developing the partitioner we used the dev96 data set, andwe evaluated the frame level segmen-
tation error (similar to [25]) on the 4 half-hour shows in theeval96 test data using the manual seg-
mentation found in the reference transcriptions. The NIST transcriptions of the test data contain
segments that were not scored, since they contain overlapping or foreign speech, and occasionally
there are small gaps between consecutive transcribed segments. Since we considered that the parti-
tioner should also work correctly on these portions, we relabeled all excluded segments as speech,
music or other background.

Table 1(top) shows the segmentation frame error rate and speech/non-speech errors for the 4
shows. The average frame error is 3.7%, but is much higher forshow 1 than for the others. This is
due to a long and very noisy segment that was deleted. Averaged across shows the gender labeling has
a 1% frame error. In addition to these errors, there are 6.2% female speech frames deleted (largely due
to the same segment) and 1.7% of the male frames deleted. The bottom of Table 1 shows measures of
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Show 1 2 3 4 Avg
Frame Error 7.9 2.3 3.3 2.3 3.7
M/F Error 0.4 0.6 0.6 2.2 1.0

#spkrs/#clusters 7/10 13/17 15/21 20/21 -
ClusterPurity 99.5 93.2 96.9 94.9 95.9
Coverage 87.6 71.0 78.0 81.1 78.7

Table 1: Top: Speech/non-speech frame segmentation error (%), using NIST labels, where missing
and excluded segments were manually labeled as speech or non-speech. Bottom: Cluster purity and
best cluster coverage (%).

Test set (Word Error)
System Step Eval96 Eval97 Eval98
Step1 3gram manual 24.7 18.2 18.0

automatic 25.3 18.4 18.3
Step2 3gram manual 20.2 14.2 13.5

automatic 21.0 14.6 14.2

Table 2: Word error with manual/automatic segmentations using the Nov98 system for 3 data sets.

the cluster homogeneity. The first entry gives the total number of speakers and identified clusters per
file. In general there are more clusters than speakers, as a cluster can represent a speaker in a given
acoustic environment. The second measure is the cluster purity, defined as the percentage of frames in
the given cluster associated with the most represented speaker in the cluster. (A similar measure was
proposed in [12], but at the segment level.) The table shows the weighted average cluster purities for
the 4 shows. On average 96% of the data in a cluster comes from asingle speaker. When clusters are
impure, they tend to include speakers with similar acousticconditions. The “best cluster” coverage is
a measure of the dispersion of a given speaker’s data across clusters. We averaged the percentage of
data for each speaker in the cluster which has most of his/herdata. On average 80% of the speaker
data is going to the same cluster. In fact, the average value is a bit misleading as there is a large
variance in the best cluster coverage across speakers. For most speakers the cluster coverage is close
to 100%, i.e., a single cluster covers essentially all frames of their data. However, for a few speakers
(for whom there is a lot of data), the speaker is covered by twoor more clusters, each containing
comparable amounts of data.

We also investigate the effect of automatic vs manual partitioningon the recognizer performances.
Table 2 compares the word error rates with automatic and manual (NIST) partitions on three evalu-
ation data sets. The performance loss is about 1.5% relativeafter the first decoding step (ie. no
adaptation). It is higher (2.4%) on the eval96 data due to a long deleted segment in show 1. After
adaptation (step 2) the relative performance loss is about 4%, indicating that the clustering process is
inappropriately merging or splitting some of the speakers’data. It appears that clustering errors are
more detrimental to performance than segmentation ones.

4 Acoustic Modeling

The acoustic models were trained on all the available transcribed task-specific training data, amount-
ing to about 150 hours of audio data. We used the August 1997 and February 1998 releases of the
LDC transcriptions. Overlapping speech portions were detected in the transcriptions and removed
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from the training data. The phone set contains 48 units, including specific phone symbols used to
explicitly model silence, filler words and breath noises.3 The decision to model these with specific
phones was based on a desire to capture any possible acousticdifferences from similar phones in the
phone set and at the same time to avoid possible contamination of these other phone models.

The following PLP-like [26] acoustic parameterization hasbeen used in the LIMSI systems since
1996. The speech features consist of 39 cepstral parametersderived from a Mel frequency spec-
trum estimated on the 0-8kHz band (or 0-3.5kHz for telephonedata) every 10ms. For each 30ms
frame the Mel scale power spectrum is computed, and the cubicroot taken followed by an inverse
Fourier transform. LPC-based cepstrum coefficients are then computed. These cepstral coefficients
are normalized on a segment cluster basis using cepstral mean removal and variance normalization
(cf. figure 3). Each resulting cepstral coefficient for each cluster has a zero mean and unity variance.
The 39-component acoustic feature vector consists of 12 cepstrum coefficients and the log energy,
along with the first and second order derivatives. This feature vector has fewer parameters than the
48-component feature vector used previously [22], but has better performance on the Hub4 data (3%
relative gain).

The acoustic models are sets of tied-state word-position dependent triphones. Each phone model
is a tied-state left-to-right, 3-state CDHMM with Gaussianmixture observation densities (typically
32 components). The triphones are word-position dependentin the sense that different models are
used for word internal phones and word boundary phones. The word boundary phones are subse-
quently distinguised as word-initial, word-final, or both word-initial and final (monophone words).
The triphone contexts to be modeled are selected based on their frequencies in the training data. We
do not try to predict unseen triphones, but rather backoff bymerging contexts for infrequent triphone
contexts. First we try to merge phones with a common right context, then a common left context, and
finally the remaining data are merged into a context-independent model. With the Hub4 training data
over 28000 triphone contexts are modeled, resulting in a triphone coverage of over 99%.3The silence (or background noise) word model is special, as it can be inserted between any two words and does not
appear in the language model. In contrast, the filler word andbreath noise models are explicitly represented in the language
model.
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In our Nov96 system, position-dependent acoustic models were used in the first decoding pass
in order to reduce the search space and the decoding time, even though slightly better performance
was obtained with position-independent models [14]. However, in 1997 with twice as much acoustic
training data available we were able to model a larger numberof contexts, and a slight gain was
observed with position-dependent models on the Hub4 data [17].

HMM training requires an alignment between the audio signaland the phone models, which
usually relies on a perfect orthographic transcription of the speech data and a good phonetic lexicon.
Each speech segment is first Viterbi aligned to the orthographic transcription so as to produce a time-
aligned phone transcription. Since the reference transcriptions and the phonetic lexicon are not really
perfect, this alignment procedure may not succeed. In this case the error can be manually corrected,
or the segment can simply be discarded. (In practice, errorsare corrected when the training data is
limited, and segments are discarded when a lot of training data are available. As more data was made
available, we spent less time correcting errors.) Discarded segments are those for which there is no
complete Viterbi alignment due to beam-pruning or when someduration criteria are not respected
such as a maximum allowable phone duration. For example, a phone duration longer than 500ms is
likely to be indicative of an error, for phones other than silence or breath noise.

After alignment, HMM parameter estimation is done using theEM estimation procedure starting
with a single Gaussian per tied-state and splitting each Gaussian until the maximum number of Gaus-
sians per state (usually 32) is reached. To avoid problems due to data sparseness (which is unlikely
with state-tying) a Bayesian estimation procedure is used with a common prior for all Gaussians of
a given state and a minimum frame count (accumulated Gaussian probabilties for all frames) is also
required to keep a Gaussian. This alignment/reestimation procedure is iterated several times to refine
the acoustic models, usually increasing the number of parameters progressively.

Separate male and female models obtained with MAP estimation of SI seed models [23] are used
to more accurately model the speech data. Both wideband and telephone band models were estimated,
where the telephone band models are trained using a low pass filtered version of the data set. Each
model set contains about 11500 tied-states and a total of 330k Gaussians.

We have compared divisive decision tree clustering with agglomerative clustering for state-tying.
Both approaches can obtain comparable model sets, but we have found that divisive decision tree
clustering is particularly interesting when there are a very large number of states to cluster since it
is at the same time both faster and is more robust than a bottom-up greedy algorithm, and therefore
much easier to tune. The set of 184 questions used in our Nov’98 system concern the phone position,
the distinctive features (and identities) of the phone and the neighboring phones. The questions are
given in Table 3, and the most frequently used questions for the largest model set are given in Table 4.
One tree is constructed for each state of each phone. The treeis built so as to maximize the likelihood
of the training data using single Gaussian state models, penalized by the number of tied-states.

Unsupervised acoustic model adaptation (both means and variances) is performed for each cluster
using the MLLR technique [32] after each decoding pass. The mean vectors are adapted using a single
block-diagonal regression matrix (where a block is used foreach parameter stream, i.e. cepstrum,
delta-cepstrum and delta-delta cepstrum), and a diagonal matrix is used to adapt the variances. When
less than 12 seconds of adaptation data are available, only diagonal matrices are used for both the
means and the variances. A single regression matrix is used since we have never observed a gain
using multiple regression matrices for unsupervised adaptation.
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Position: state-position, word-begin, word-end, monophone
General classes:vowel, consonant, continuant, sonorant, voiced-consonant, voiceless, fricative, stri-
dent, stop, nasal, semivowel, aspirated, anterior, high, coronal, slack, rounded, tense, retroflex, syl-
labic, fillers
Vowel classes: high-vowel, low-vowel, rounded-vowel, tense-vowel, reduced, diphthong, front-
vowel, back-vowel, long-vowel, short-vowel, retroflex-vowel, diphthong-F2up, diphthong-F2down
Consonant classes:labial, dental, alveolar, palatal, velar, affricate
Individual Phones: b, d, g, p, t, k,�, Q, s,M, z,`, f, v, S, �, m, n,8, m. , n., l, l., r, w, y, h, i,*, e,�, æ,�, ^, �j , �w, o,=, =j , u,V, �, X, �, +, [filler], [breath], [silence]

Table 3: Questions used for decision tree clustering concern the phone position and class, the distinc-
tive features and the phone identity.

question % log likelihood gain question % log likelihood gain

vowel[+1] 6.3% phone-r[+1] 2.2%
sonorant[+1] 5.5% phone-H[+1] 2.1%
sonorant[-1] 3.8% strident[+1] 1.9%
front-vowel[+1] 3.6% phone-l 1.8%
semivowel[+1] 3.6% nasal[-1] 1.7%
voiced-consonant[+1] 3.1% vowel[-1] 1.6%
wordbody-pos[0] 2.5% high-vowel[+1] 1.5%
nasal[+1] 2.3% voiceless[-1] 1.5%
voiceless[+1] 2.2% phone-n[+1] 1.5%
wordbegin-pos[0] 2.2% phone-s[+1]1] 1.4%

Table 4: The most frequently used decision tree questions. The [+1] and [-1] indicate that the question
has been applied to the right or left context respectively, and [0] to the phone itself.
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5 Language modeling

Different approaches for language model training were explored and tested in the context of a com-
plete transcription system. Language model efficiency was investigated for the following aspects:
mixing of different training material (sources and epoch);approach for mixing (interpolation vs count
merging); and using class-based language models. The experimental results indicate that judicious
selection of the training source and epoch is important, andthat given sufficient broadcast news tran-
scriptions, newspaper and newswire texts are not necessary. The combined improvements in text
selection, interpolation, 4-gram and class-based LMs led to a 20% reduction in the perplexity of the
LM of the final pass (3-gram class interpolated with a word 4-gram) compared with the 3-gram LM
used in the LIMSI Nov’97 BN system.

5.1 Text normalization and wordlist selection

For transcription of American English Broadcast News shows, very large text corpora are available
for constructing language models. Three different sourcesof data were used:� NEWS: Over 700M words of news texts from various sources (newspapers and newswires from

1994 to 1998). These data, available through the LDC, consist of texts from the Los Angeles
Times, New York Times, Wall Street Journal, Washington Post, Reuters News Service, and
Associated Press WordStream.� BNA: 1.5M words of accurate broadcast news transcripts of the acoustic training data. Non
lexical items such as breath noise, hesitations, word fragments are transcribed.� BNC: 200M words of commercial transcripts of various broadcastshows (from 1992 to 1998).
These transcripts do not include extra-lexical events.

It should be noted that only a very small proportion of the LM data (about 2%) is truly represen-
tative of the real data to be transcribed.

The training texts were processed to clean errors inherent in the texts or arising from the prepro-
cessing tools, and transformed to be closer to the observed American speaking style. The cleaning
consisted primarily of correcting obvious mispellings (such asMILLLION , OFFICALS, LITTLEKNOWN ),
systematic bugs introduced by the text processing tools, and expanding abbreviations and acronyms
in a consistent manner. The texts were also transformed to becloser to the observed American read-
ing style using a set of rules and the corresponding probabilities derived from the alignment of the
WSJ0/WSJ1 prompt texts with the transcriptions of the acoustic data. Some example rules and their
probabilities are shown in Table 5. The cleaning of the training texts reduced perplexity on develop-
ment data in a better coverage for the 65k lexicon [22].

Filler words such as “uh” and “uhm” were mapped to a unique form. The training texts were
processed in order to add a proportion of breath markers (4%), and of filler words (0.5%) [14]. While
it would seem more elegant to incorporate these in the LM by interpolating LMs estimated on the
clean text (without noises) and on the transcripts (with noises), adding them to the clean texts via a
generation model resulted in a lower word error rate (� 2% relative). This result can be explained
by the observation that breath noise and filler words do not occur at random, but at specific places.
Adding them at such places in the clean texts is equivalent toadding a priori information about the
distribution of these phenomena in the transcripts.

The training texts were also processed to treat the most common 1000 acronyms as distinct lexical
entries [19] (as opposed to a sequence of individual letters) and to represent some frequent word
sequences subject to reduction as compound words [14].
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HUNDRED<nb> =) HUNDRED AND<nb> (0.50)
ONE EIGHTH =) AN EIGHTH (0.50)
CORPORATION =) CORP. (0.29)
INCORPORATED =) INC. (0.22)
ONE HUNDRED =) A HUNDRED (0.19)
MILLION DOLLARS =) MILLION (0.15)
BILLION DOLLARS =) BILLION (0.15)

Table 5: Some example transformation rules with probabilities.

Word Error rate Perplexity
4gram LM Eval96 Eval97 Eval98 Eval96 Eval97 Eval98
NEWS 22.7 15.8 15.3 291.8 246.3 257.4
BNC+BNA 20.3 14.3 13.8 175.7 175.6 181.6
BNC+BNA+NEWS 20.0 14.0 13.6 167.4 163.3 168.8

Table 6: Word error rate and perplexity for LMs constructed on different sources (NEWS: newspaper
& newswire, 340M words;BNA: accurate broadcast news transcripts, 1.5M words;BNC: commercial
broadcast news transcripts, 200M words) on 3 evaluation data sets.

The recognition vocabulary (or word list) contains 65,122 words, and includes all words occuring
a minimum of 15 times in theBNC (63,954 words) or at least twice in theBNA data (23,234 words).
The lexical coverage was 99.14%, 99.53% and 99.73% on the eval96, eval97 and eval98 test sets
respectively.

5.2 Combining data sources

One easy way to combine training material from different sources is to train ann-gram backoff LM
per source and to interpolate them. The interpolation weights can be directly estimated on some
development data with the EM algorithm. The resulting LM is amixture ofn-gram backoff LMs. An
alternative is to simply merge then-gram counts and train a singlen-gram backoff language model on
these counts. If some data sources are more representative than others for the task, then-gram counts
can be empirically weighted to minimize the perplexity on a set of development data. While this can
be effective, it has to be done by trial and error and cannot easily be optimized. In addition, weighting
then-gram counts can pose problems in properly estimating the backoff coefficients. Using the three
available data sources, we compared the two approaches on one hand by generating interpolated 4-
gram backoff LMs and on the other hand by merging then-gram counts with the manually optimized
weights. The results obtained with word graph rescoring show that on 3 eval sets the approach which
merged then-gram counts had a slightly higher word error rate (0.2% absolute) 15.73% compared to
15.46%.

Two strategies were explored to add cross sentence trigram counts in the trigram model [39]: add
the whole texts with and without sentences boundaries, and renormalize the counts; or add only the
cross sentence trigrams. Both strategies led to similar results in terms of perplexity and recognition
error. For the Nov’98 evaluation, the language models were constructed using the second approach.
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Selecting the appropriate LM training material evidently affects the resulting LM accuracies.
There is the sometimes conflicting need for sufficient amounts of text data to estimate LM parameters
and assuring that the data is representative of the task. Forinstance, in [17] it was reported that, for
the broadcast news transcription task, while the use of all the available newspaper data led to a small
decrease in perplexity, it also led to a small increase in therecognition error rate. Therefore, allNEWS

texts that did not lower the perplexity were eliminated.
To optimize the selection of texts for the LIMSI Nov’98 system, the newspaper and commercial

transcription sources were split into 5 non-overlapping time periods, based on proximity to the test
epoch (15oct96-14nov96). For each of these periods (jan94-sep95, oct95-jun96, jul96-feb97, mar97-
aug97, sep97-dec97) separate LMs were constructed for eachsource. The interpolation coefficient for
each component LM was optimized on the development data (containing shows recorded in oct96).
LMs with very low interpolation coefficients were eliminated. Subsets with comparable interpolation
coefficients (different sources or epochs) were merged in order to decrease the size of the resulting
LM. Only very small variations in perplexity were observed during this process, and the final opti-
mization resulted in interpolationof four 4-gram LMs, constructed on the following texts:BNC (200M
words, interpolation coefficient 0.56);BNA (1.5M words, interpolation coefficient 0.22);NEWS pe-
riod jan94-sep95 (200M words, interpolation coefficient 0.10); andNEWS period jul96-aug974 (141
Mwords, interpolation coefficient 0.12). It can be noted that the weight of theBNA LM is equal to the
weight of theNEWS LMs (0.22) even though the text is much smaller.

Some experiments were conducted in order to evaluate the influence of each source on the recog-
nition word error rate. 4-gram LMs were constructed using the following data sets:NEWS only, BNC

(0.75) +BNA (0.25),BNC (0.56) +BNA (0.22) +NEWS (0.22). The latter corresponds to the 4-gram
used in the ARPA’98 evaluation. Recognition results obtained via word graph rescoring using these
three LMs are summarized in Table 6 for the three eval data sets. The true differences between models
may be slightly larger since all results used the same word graph generated with theBNC+NEWS+BNA

LM. There is a large reduction both in perplexity and in word error rate when transcripts are used to
train the LM, as opposed toNEWS texts. Interpolating theNEWS LM with the transcription based
LM yields a small but consistent reduction in perplexity andword error. The combination of LMs
estimated on commercially produced transcriptsBNC and on accurate trancripts is quite performant.
However, if commercial transcripts are not available, newspaper sources are a reasonable source of
language model training data: although the LM constructed only on NEWS data has a perplexity 43%
higher thanBNC+BNA+NEWS, the recognition word error rate is only 11% higher.

6 Lexical Modeling

Lexical design entails selecting the vocabulary items and determining their pronunciation. The word
list selection was discussed in the previous section, in this section we address pronunciation model-
ing. Our experience is that systematic lexical design can improve the overall system performance.
The pronunciations are based on a 48 phone set (3 of them are used for silence, filler words, and
breath noises) and include standard pronunciations but do not explicitly represent allophones. In or-
der to better model the observed speaking styles in the Hub4 data, two phones were added to the
LIMSI WSJ phone set [30] so as to explicitly model filler wordsand breath noises [14] without con-
taminating the other phones. A phonemic representation is used as most allophonic variants can be
predicted by rules, and their use is optional. More importantly, there often is a continuum between
different allophones of a given phoneme and the decision as to which occurred in any given utter-
ance is subjective. By using a phonemic representation, no hard decision is imposed, and it is left to4All data from the same period as the eval98 test set (15/10/96-14/11/96) was excluded.
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WHAT DID YOU w�ftgdIdyu
w�ftgdIdy� w�ftgdI�� w[��]��

I DON’ T KNOW �jdonftgno�jd^no �jdno
DON’ T KNOW donftgno

d^no
LET ME l�tmi

l�mi
LET HIM l�thIm

l�tM l�m
I AM �jæm�j�m �jm
GOING TO goj8t[u�]

g[^c]n�
Figure 4: Some example compound words and their pronunciations. Original concatenated pronun-
ciation (1st line) and reduced forms (2nd line). Phones infg are optional, phones in [ ] are alternates.

the acoustic models to represent the observed variants in the training data. A pronunciation graph is
associated with each word so as to allow for alternate pronunciations which may depend upon the fol-
lowing word context. Frequently occuring inflected forms were verified to provide more systematic
pronunciations.

There are a variety of words for which frequent alternative pronunciation variants are observed,
and these variants are not due to allophonic differences. One common example is the suffix “IZATION ”
which can be pronounced with a diphthong (/�j /) or a schwa (/�/). Out of 7 occurences of the word
“ INDUSTRIALIZATION ” in the training data, 3 are pronounced with /�j / and 4 with /�/. Another
pronunciation variant is the palatalization of the /k/ in a /u/ context, such as in the word “coupon”
(/kup�n/ vs. /kyup�n/). Alternate pronunciations may also reflect different parts of speech (verb or
noun) as in words like “excuse, record”.

It is well known that in fluent speech, certain common word sequences can be subject to severe
reduction. One easy way to model such effects are to use compound words for frequent word se-
quences, which is a way of incorporating phonological ruleson a very limited basis. The example
spectrograms of sentences including the word sequence “what did you” shown in Figure 5 illustrate
the need for pronunciation variants for spontaneous speech. In the first spectrogram, the speaker said
all three words clearly and palatalized the /dy/ into a /�/. In the second, the speaker produced a flap
for the combined final /t/ in “what” and the initial /d/ in “did”. In the third example, the sequence was
reduced to /ŵ��/. The recognition lexicon contains entries for the most common 1000 acronyms
found in the training texts and compound words for about 300 frequent word sequences. Some exam-
ple compound words and their pronunciations are given in Table 4. The first line corresponds to the
original pronunciation formed by concatenation of the component words. The second line contains
reduced forms added for the compound word.

The pronunciations in our American English lexicon were created semi-automatically using a
pronunciation generation tool [30]. When an unknown word isencountered, affix rules are applied to
the entries in one or more lexicons in an attempt to derive a pronunciation. When multiple pronunci-
ations can be derived they are presented for selection, along with their source. Although the LIMSI
“Master” lexicon contains over 100k entries, when processing a new set of acoustic training data, we
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Figure 5: Spectrograms of the word sequences containing “what did”. “what did you see” (file
e960521a), “what did you wear” (file j960521d), “what did youthink of that” (file i960531).

generally need to add new words. These are often times propernames (which are difficult to generate
automatically) and word fragments, which need to be included in a training lexicon even though they
are not usually present in a recognition lexicon. When proper names appear in the training data, their
pronunciations are manually verified.

7 Word Decoding

One of the most important problems in implementing the decoder is the design of an efficient search
algorithm to deal with the huge search space, especially when using language models with a longer
span than two successive words, such as 3-grams and 4-grams.Many potential applications making
use of broadcast news transcriptions do not require on-lineprocessing. Batch processing offers a sub-
stantial advantage as all of the data for a given show can be used for unsupervised model adaptation,
resulting in significant improvement in recognition accuracy. Multiple pass decoders are well adapted
to broadcast news transcription, where a first decoding passcan be used to generate a word hypothesis
which is then used for model adaptation. While this approachhas been very successful for acoustic
model adaptation, to date attempts to adapt the language models have been less rewarding.

7.1 Baseline decoder

The two-step approach used in the LIMSI Nov’98 system transmits information between levels via
word graphs [21]. Due to memory constraints, each step may consist of one or more passes, each
using successively more refined models. All decoding passesuse cross-word CD triphone models.
In order to generate accurate word graphs, cluster-based model adaptation is carried out using an
initial hypothesis. It is clear that this type of adaptationcannot be used in a real-time system, but is
applicable to batch processing of data, which could occur immediately after the data is broadcast.

The word decoding procedure is shown in Figure 6. Prior to decoding, segments longer than
30s are chopped into smaller pieces so as to limit the memory required for the 3-gram and 4-gram
decoding passes [14]. To do so a bimodal distribution is estimated by fitting a mixture of 2 Gaussians
to the log-RMS power for all frames of the segment. This distribution is used to determine locations
which are likely to correspond to pauses, thus being reasonable places to cut the segment. Cuts are
made at the most probable pause 15s to 30s from the previous cut. Word recognition is performed in
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Initial Hypotheses
Generate 

with Partition Map

Figure 6: Word decoding.

three steps: 1) initial hypothesis generation, 2) word graph generation, 3) final hypothesis generation,
each with two passes.

Step 1: Initial Hypothesis GenerationThis step, carried out in two passes, generates initial
hypotheses which are used for cluster-based acoustic modeladaptation. The first pass of this step
generates a word graph using a small bigram backoff languagemodel and gender-specific sets of 5416
position-dependent triphones with about 11500 tied states. This is followed by a second decoding pass
with a larger set of acoustic models (27506 triphones with 11500 tied states) and a trigram language
model (about 8M trigrams and 15M bigrams) to generate the hypotheses. Band-limited acoustic
models are used for the telephone speech segments.

Step 2: Word Graph Generation Unsupervised acoustic model adaptation (both means and
variances) is performed for each segment cluster using the MLLR technique [32]. The mean vectors
are adaptated using a single block-diagonal regression matrix, and a diagonal matrix is used to adapt
the variances. Each segment is decoded first with a bigram language model and an adapted version of
small set of acoustic models, and then with a trigram language model (8M bigrams and 17M trigrams)
and adapted versions of the larger acoustic model set.

Step 3: Final Hypothesis GenerationThe final hypothesis is generated using a 4-gram interpo-
lated with a category trigram model with 270 automatically generated word classes [27]. The first
pass of this step uses the large set of acoustic models adapted with the hypotheses from Step 2, and
a 4-gram language model. This hypothesis is used to adapt theacoustic models prior to the final
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decoding step with the interpolated category trigram model.

Test set (Word Error)
System Eval96 Eval97 Eval98
Nov96 system 27.1*
Nov97 system 25.3 18.3
Nov98 system 19.8 13.9 13.6

Table 7: Summary of BN transcription word error rates. *Nov96 system used a manual partition.

Table 7 reports the word recognition results on the eval testsets from the last three years. All
of our system development was carried out using the eval96 data. The results shown in bold are
the official NIST scores obtained by the different systems. Only the Nov96 system used a manual
partition. In Nov97 our main development effort was devotedto moving from a partitioned evaluation
to the unpartitioned one. The Nov97 system did not use focus-condition specific acoustic models as
had been used in the Nov96 system. This system nevertheless achieved a performance improvement
of 6% on the eval96 test data. The Nov98 system has more accurate acoustic and language models,
and achieves a relative word error reduction of over 20% compared to the Nov97 system.

Table 8 gives the word error rates for the Nov98 system after each decoding step on the same three
eval sets. The first decoding step that is used to generate theinitial hypothesis runs in about 35xRT
and has a word error of 25% on the eval96 data, and 18% on the eval97 and eval98 sets. A word
error reduction of about 20% is obtained in the second decoding step which uses the adapted acoustic
models and runs in about 130xRT. Relatively small gains are obtained in the 4-gram decoding pass
(30xRT), even though these also include an extra acoustic model adaptation. The runs were done
on Silicon Graphics Origin200, R10K processor running at 180MHz and with 1Gb memory. These
processing times are only indicative as no effort was made tooptimize the computation means, other
than to fit within what was available.

7.2 10xRT decoder

In 1999 our goal was to achieve comparable performance with adecoding time of under 10x real-
time. To reach this goal, a 4-gram single pass dynamic network decoder was developed [16]. It is a
time-synchronous Viterbi decoder with dynamic expansion of LM state conditioned lexical trees [11,
34, 33] with acoustic and language model lookaheads. The decoder can handle position-dependent,
cross-word triphones and lexicons with contextual pronunciations. It makes use of various pruning
techniques to reduce the search space and computation time,including three HMM-state pruning

Test set (Word Error)
System Step Eval96 Eval97 Eval98
Step1 3-gram 25.30 18.44 18.31
Step2 3-gram 20.95 14.56 14.24
Step3 4-gram 20.23 14.26 13.66

4-gram class 19.79 13.92 13.56

Table 8: Word error rates after each decoding step with the Nov98 system.
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Pass AM LM Time Total time Werr
A 1 92k 3g 6.8xRT 6.8xRT 16.8%
B 1 350k 4g 10.8xRT 10.8xRT 15.9%

1 92k 3g 0.8xRT 24.7%
C 2 350k+mllr 4g 9.9xRT 10.7xRT 14.6%

1 92k 3g 0.8xRT 24.7%
D 2 350k+mllr 3g 6.1xRT 6.9xRT 15.4%
E 3 350k+mllr 4g 1.5xRT 8.4xRT 14.2%

Table 9: Comparison of decoding strategies on the NIST Hub4 eval98 set (partitioning and coding
times are not included).

beams and fast Gaussian likelihood computations. It can also generate word graphs and rescore them
with different acoustic and language models. Faster than real-time decoding can be obtained using
this decoder with a word error under 30%, running in less than100 Mb of memory on widely available
platforms such Pentium III or Alpha machines.

The decoder by itself does not solve the problem of reducing the recognition time as proper
models have to be used in order to optimize the recognizer accuracy at a given decoding speed. In
general, better models have more parameters, and thereforerequire more computation. However,
since the models are more accurate, it is often possible to use a tighter pruning level (thus reducing
the computational load) without any loss in accuracy. Thus,limitationson the available computational
resources can significantly affect the design of the acoustic and language models. For each operating
point, the right balance between model complexity and pruning level had to be found.

Table 9 gives the computation time and word error rates for various decoding strategies, using the
Hub4 eval98. The pruning thresholds have been set so as to match the computing time of the most
interesting setups. Each entry specifies the acoustic and language models used in the pass and the
computation time. All passes perform a full decode, except the last decoding pass (labelled E) which
is a word graph rescoring using a graph generated in the second 3-gram pass. These results clearly
demonstrate the advantage of using a multiple pass decodingapproach. Comparing the setups A (1
pass, 6.8xRT, 16.8%) and D (2 passes, 6.9xRT, 15.4%), the extra computation time needed for the
first decode and the MLLR adaptation in D is largely compensated by the reduction in word error rate.
Using adapted acoustic models allows us to use a tighter pruning threshold and have the same overall
computing time but with a significantly lower word error rate. Also by comparing the setups C (2
passes, 10.7xRT, 14.6%) and E (3 passes, 8.4xRT, 14.2%) the advantage of using an extra decoding
pass with the 4-gram LM and the 2nd pass hypotheses for the MLLR adaptation can be seen.

For reference, the official result on the eval98 test set using our Nov98 system was 13.6%, with a
decoding time around 200xRT [20]. Using only the first decoding pass, unrestricted BN data can be
decoded in less than 1.4xRT (including partitioning) with aword error rate around 30%. The same
decoding strategy has been successively applied to the BN transcription in other languages (French,
German and Mandarin) with comparable word error rates.

8 Perspectives and Conclusions

In this paper we have summarized our recent activities aimedat transcribing radio and television
broadcasts. Most of this work has been carried out for the American English language in the context
of developing systems for the annual DARPA benchmark tests.This framework has provided the
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training materials (transcribed audio and textual corporafor training acoustic and language models),
test data and a common evaluation framework. In the context of the LE-4 OLIVE project the LIMSI
transcription system has been ported to the French and German languages, which has required a large
investment in data collection.

Partitioning and transcribing television and radio broadcasts are necessary steps to enable auto-
mated processing of the vast amounts of audio and video data produced on a daily basis. The data
partitioning algorithm makes use of Gaussian mixture models and an iterative segmentation and clus-
tering procedure. The resulting segments are labeled according to gender and bandwidth. Many of
the errors occur at the boundary between segments, and can involve silence segments which can be
considered as with speech or non-speech without influencingtranscription performance. Based on
our experience, it appears that current word recognition performance is not critically dependent upon
the partitioning accuracy.

Acoustic training on broadcast data is significantly more complicated than on read speech corpora
like the Wall Street Journal corpus. Even when divided into speaker turns, segments can be quite long
- several minutes in duration. Aligning even a perfect transcription with the signal can be difficult,
and any minor problem may cause the alignment to fail [36]. Splitting long segments at silences is a
possible solution, but requires manual intervention.

Explicitly modeling the NIST focus conditions is probably not worth the additional effort and
complexity in training and decoding. However, the focus conditions are quite interesting as a factor
for error analysis. In addition, some of the distinctions are clearly unrealistic to automatically detect,
such as the distinctionbetween read and spontaneousbroadcast quality speech, or reliable detection of
non-native speech. The wideband / telephone-band distinction can be made with reasonable accuracy,
and using narrow-band models improves the relative performance on telephone data by about 10%.

Given the large amount of acoustic training data available for American English, it is possible
to properly model many different triphone contexts with a very high coverage of over 99%. Tied-
state acoustic models are efficient for reducing the number of parameters to be estimated. Different
approaches for state-tying were investigated. Although comparable model sets were obtained using
bottom-up agglomorative clustering and top-down decisiontree clustering, the latter approach is much
faster and thus shortens the development cycle.

Cepstral mean normalization and acoustic model adaptationare important techniques given the
non-homogeneous nature of broadcast data. Both of these arecluster-based for the test data, allowing
a better estimate of the speaker characteristics and acoustic environment.

The generation of word graphs with adapted acoustic models using an initial hypothesis obtained
in a rapid decoding pass is essential for obtaining word graphs with low word error rates. Unsuper-
vised HMM adaptation is performed prior to each decoding pass using the hypothesized transcription
of the previous pass. This strategy leads to a significant reduction in word error rate.

Concerning language model development, the contributionsof the various text sources were eval-
uated. It was determined that the transcriptions of broadcast data (both detailed acoustic and commer-
cial transcripts) are by far the most important sources, andthat newspaper and newswire texts are not
very helpful should other closer sources such as commercialtranscripts be available. Another poten-
tial source of related texts are closed captions, which havebeen explored in the context of the OLIVE

project. However our initial experience is that the closed captions used a stylized language which
is relatively limited compared to the true transcripts, andthus are less appropriate than commercial
transcripts. We have also experimented with different approaches to combining data from different
sources, based on count merging and LM interpolation. Interpolation is a very powerful approach
allowing optimal combination of component LMs estimated ondifferent text sources.

The overall word transcription error of the Nov98 unpartitioned evaluation test data (3 hours) was
13.6%. Although substantial performance improvements have been obtained, there is still plenty of
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room for improvement of the underlying speech recognition technology. On unrestricted broadcast
news shows, such as the 1996 dev and eval data, the word error rate is still about 20% (even though
the NIST scoring program has removed overlapping speech).

With the rapid expansion of different media sources for information dissemination, there is a
pressing need for automatic processing of the audio data stream. A variety of near-term applica-
tions are possible such as audio data mining, selective dissemination of information, media monitor-
ing services [1], disclosure of the information content [4]and content-based indexation for digital
libraries [3]. Although substantial performance improvements have been obtained over the last 4
years, there is still a need to improve the underlying speechrecognition technology so as to increase
the recognition accuracy and reduce the required processing time [2].
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