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Abstract

This paper reports on activites at LIMSI over the last fewrgedirected at the transcription
of broadcast news data. We describe our development workowing from laboratory read
speech data to real-world or ‘found’ speech data in prejmardbr the ARPA Nov96, Nov97
and Nov98 evaluations. Two main problems needed to be agiti¢e deal with the continuous
flow of inhomogenous data. These concern the varied acouatire of the signal (signal qual-
ity, environmental and transmission noise, music) andedsffit linguistic styles (prepared and
spontaneous speech on a wide range of topics, spoken byeavtarigty of speakers).

The problem of partitioning the continuous stream of da&didressed using an iterative seg-
mentation and clustering algorithm with Gaussian mixturEise speech recognizer makes use
of continuous density HMMs with Gaussian mixture for acaustodeling and 4-gram statistics
estimated on large text corpora. Word recognition is penfegt in multiple passes, where initial
hypotheses are used for cluster-based acoustic modelatidaytio improve word graph genera-
tion. The overall word transcription error of the LIMSI euation systems were 27.1% (Nov96,
partitioned test data), 18.3% (Nov97, unpartitioned d&ta)6% (Nov98, unpartitioned data) and
17.1% (Fall99, unpartitioned data with computation timeemlOx real-time).

Cet article présente les travaux effectués au LIMSI pewdéveloppement d’'un systeme de
traitement automatique d’'informations radio et téladiees. Partant d'un systeme de transcrip-
tion de textes lus, nous décrivons les adaptations quet@nhécessaires pour le traitement d’un
flux audio continu et de données dites “trouvées”. Cesldppements ont été validés dans le
cadre des évaluations ARPA BN (Nov96, Nov97, Nov98 et Dic@@s principales difficultes
posées par ce type de données sont liees a leur nati@éregéne, qu'il s'agisse de changements
de nature acoustique (environnement, communication,quagiou de nature linguistique (styles
d’élocution, diversités des sujets et des locuteurs),.

La partition du flux continu est effectuée de manieresiti®e, par un algorithme de segmentation-
agglomération reposant sur des mélanges de Gaussidmmegsteme de reconnaissance utilise
des modeles de Markov cachés a densités continuespmadélisation acoustique, et des statis-
tiques 4-grammes de mots estimées sur un grand corpus s tfxde parole transcrite pour
modele de langage. La transcription en mots est obtenukisieprs passes de décodage, ou les
hypotheses intermédiaires sont utilisees pour addgtenodeles acoustiques. Les taux d’'erreur
obtenues avec difféerentes versions de ce systeme loévdasations ARPA sont 27,1% (Nov96
avec partition manuelle), 18,3% (Nov97), 13,6% (Nov98) &tll% (Dec99, moins de 10 fois le
temps réel).
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Dieser Artikel berichtet Uber die Tatigkeiten am LIMShiwend der letzten Jahren mit dem
Ziel der Spracherkennung von Nachrichtensendungen. V¥ichyeiben unsere Forschungsar-
beiten der Portierung von unter Laborbedingungen geleSprache zu natiirlicher freier Sprache
wahrend der Vorbereitung der ARPA Nov96, Nov97 und Nov98lEerungen. Zur Bearbeitung
des kontinuierlichen Stroms von inhomogenen Daten sind gwadlegende Probleme zu losen.

Diese betreffen einerseits die unregelmassige akustibigiur des Signals (Signalqualitat,
Hintergrund- undJbertragungsrauschen, Musik, ...) und andererseits dirsehiedlichen lin-
guistischen Stile (vorbereitete oder spontane Sprache,gbl3e Themenvielfalt und viele unter-
schiedliche Sprecher).

Der kontinuierliche Audiostrom wird mit Hilfe eines iteratn Segmentierungs- und Klus-
terungsalgorithmus auf der Basis von Gauss Mischvertgdarpartioniert. Das Spracherken-
nungssystem verwendet HMMs mit kontinuierlichen GausscMisrteilungen zur akustischen
Modellierung und 4-gram Statistiken, welche mit Hilfe gse Textsammlungen geschatzt wur-
den. Die Worterkennung erfolgt in mehreren Phasen, wobelMtiggraphen nach und nach
mit Hilfe akustischer Modellanpassung verbessert werdBie Wordfehlerrate von LIMSI’s
Spracherkennungssytemen betragt 27,1% (Nov96, segmenTiestdaten), 18,3% (Nov98, un-
segmentierte Testdaten) und 17,1% (Herbst 99, unsegnterfastdaten und Ausfuhrungszeiten
von weniger als 10-facher Echtzeit).

Stichworter: Spracherkennung, Nachrichteniibersetzung, Audio-Segeneng, akustische
Modellierung, Spachmodellierung

1 Introduction

Over the last 5 years significant advances have been madegeacabulary, continuous speech
recognition, which has been a focal area of research, geasna test bed to evaluate models and
algorithms [5, 6, 45]. However, these tasks remain relftiagtificial as they mainly make use of
laboratory read speech data. In this paper we report on rgaeward real-world speech data in
order to build a system for transcribing radio and telewidiwoadcast news [6, 7, 8, 9]. While this
paper focuses on our work in developing a broadcast newsdrigtion system for American English,
in the context of the LE-4 QVE project we have also developed systems for the French anda®er
languages.

Radio and television broadcast shows are challenging ts¢rébe as they contain signal seg-
ments of various acoustic and linguistic nature. The sigmay be of studio quality or have been
transmitted over a telephone or other noisy channel (ierupted by additive noise and nonlinear
distorsions), or can contain speech over music or pure naggjiments. Gradual transitions between
segments occur when there is background music or noise Wéhging volume, and abrupt changes
are common when there is switching between speakers inelifféocations. The speech is produced
by a wide variety of speakers: news anchors and talk shove hegtorters in remote locations, inter-
views with politicians and common people, unknown speakens dialects, non-native speakers, etc.
Speech from the same speaker may occur in different partedirbadcast, and with different chan-
nel conditions. The linguistic style ranges from preparpdexh to spontaneous speech. Acoustic
models trained on clean, read speech, such as the Wall Steetal (WSJ) corpus [35], are clearly
inadequate to process such inhomogeneous data.

Our research has been aimed at addressing two principls tfggroblems encountered in tran-
scribing broadcast news data: those related to the vari@astic properties of the signal, and those
related to the linguistic properties of the speech. The firsblem is resolved by partitioning the
data into homogenous segments, where each segment caretbtassified as to the segment type.
Specific acoustic models can then be trained for the diffeaeaustic conditions. The work on data
partitioning is described in Section 3. Issues in acoustidefing are discussed in Section 4.

In order to address variability observed in the linguistiogerties, we analyzed differences in
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read and spontaneous speech, with regard to lexical iteorsl and word sequence pronunciations,
and the frequencies and distribution of hesitations, fillerds, and respiration noises. As a result of
this analysis, these phenonema were explicitly modeleaih the acoustic and language models as
described in [14]. The phone set was enlarged to explicitigdeh filler words and breath noise, re-
sulting in specific context-dependent acoustic models. inmd words were introduced as a means
of modeling reduced pronunciations for common word seqeend hese aspects are discussed in
Section 5. In Section 7 the word decoder is described, wittsicierations for processing time. We
conclude with a discussion of issues in broadcast newsdrigtion and highlight some of the lessons
we have learned in working on this problem.

2 Background

The broadcast news task has been used to assess and impFegh spcognition technology since
Nov95, when a DARPA dry run evaluation was held using 10 hodifglarketPlace data. Prior to
the next three evaluations, substantially more transdriiveadcast news acoustic training data and
textual data for language modeling have been made avaiadlthe Linguistic Data Consortium
(for more detail see the LDC contribution to this issue). lav86, about 50 hours of transcribed
data were available. These data came from 10 different esuABC (Nightline, World News Now,
World News Tonight), CNN (Early Prime, Headline News, Prifews, The World Today), CSPAN
Washington Journal, and NPR (All Things Considered, Mareee). For the Nov97 evaluation, an
additional 50 hours of transcribed data from the same ssure¥e made available. In 1998 the
amount of transcribed acoustic training data was doubksijlting in a total of 200 hours of data
from (in addition to the above sources): CNN (Early EditiBnime Time Live), and CSPAN Public
Policy. (For more details see the LDC paper in this issue.)

As mentioned above, broadcast data is comprised of acaaegjiments of varied acoustic and
linguistic natures. The acoustic differences primarilpcern the different recording channels (wide-
band/telephone) and recording environment (studio/tistcation, background music or noise).
Given the variety of acoustic and linguistic data types, tao§docus conditions [41] were identi-
fied by NIST so as to evaluate system performance under eepaicified conditions.

The test data for each year were chosen from multiple sounselsiding some not present in
the training material. The Nov96 test contained 106 minofedata taken from four shows. The
Nov97 and Nov98 test consisted for about 3 hours of audig ddtare portions were extracted from
broadcasts so as to focus on the FO and F1 data types. (Foimmmm@ation see the NIST paper in
thisissue.)

For the Nov96 evaluation, we trained different acoustic el@ets so as to address the different
focus conditions [14]. Wideband acoustic models were é@ion about 100 hours (46k sentences)
from 355 speakers in the WSJO0/1 corpus and 50 hours of bretudeas data distributed by NIST. The
WSJCAMO corpus was also used to train models for British Bhgipeakers, since some non-native
speakers of American English may more closely ressemblesBrspeakers. For telephone speech
models, reduced bandwidth models were first trained on alivaiteld version the WSJ corpus. The
resulting models were then adapted using MAP estimatidm Witsentences of WSJ telephone speech
data taken primarily from the Macrophone corpus, and theptati with the telephone portion of the
broadcast data. Type-specific acoustic models were tréaméke different categories of data defined
for the Nov96 partitioned evaluation: high quality prehspeech, high quality spontaneous speech,

!In the Nov96 evaluation there were two components, the ifmred evaluation” (PE) and the “unpartitioned evalu-
ation” (UE). The PE condition was used to compare systemiatém evaluations the focus conditions have been used to
assess performance on the different data types. For maxédsieee the papers from NIST and LDC in this issue.
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telephone speech, speech over music, speech in noise ativa-speakers, and miscellaneous. For
the Nov96 partitioned evaluation the focus condition ofretst segment was provided by NIST. In
the LIMSI Nov96 system the telephone decision was based ®woultput of the Gaussian segment
classifier, and all other attributes were taken from the jied segment annotation. Five acoustic
model sets were trained for broadcast quality speech (GondiF0 and F1), telephone quality speech
(condition F2), speech in the presence of music (conditi®y peech in the presence background
noise (condition F4), and non-native speech (condition AB)total there were 20 model sets: 5
conditionsx 2 genders< 2 decoding passes. Dealing with so many different modelszggelatively
difficult to manage, both for training and decoding. The perfance differences were also quite
small: On the 1996 development data (2 hours taken from 6 shdiwe word error rate resulting from
a second decoding pass with a trigram language model wa%a&Bg the type-specific model sets
as compared to 27.1% with the two model sets [15]. When marsstribed data was made available,
more accurate acoustic models could be trained and it neeloseemed as “interesting” to use focus
condition-specific models. Additionally, in the transdigms of the second set of 100 hours BN
acoustic data the background conditions were not anngtstesiipervised training was not an option
for this part of the data. However, it is probably worth looginto using a set of background acoustic
conditions (speech in music, noisy speech) if accuratddatasn be automatically obtained. When
transcriptions of additional acoustic training data weskeased by LDC, we once again investigated
various approaches to build acoustic models from the availeead-speech and Hub4 training data.
Acoustic model development aimed to minimize the word erabe on the eval96 test data. Since
these experiments showed no clear gain from using the W@&Jtdanitialize the acoustic models,
most of the development work was carried out using only thbe4tiata [17].

In addition to the acoustic training data, in subsequentsyezore textual data sources were
distributed via the LDC. In our Nov96 system the language ehags trained on 161 million words
of newspaper texts (the 1995 Hub3 and Hub4 LM material), 1B®omwords of broadcast news
transcriptions (years 92 to 96), as well as 430 K words froenttAnscriptions of the 1995 and 1996
acoustic training data. In 1997, the same training textscasuwere availble, with a total of 866 K
words in acoustic data transcriptions. In 1998, substiytiaore LM training texts were used: a
total of 203 M words of broadcast news transcripts (from LD@ &SMedia), 343 M words of NAB
newspaper texts and AP Wordstream texts, and 1.6 M wordaws$criptions of the acoustic training
data.

While the LIMSI Nov'98 systems serves as basis for the redwirof this paper, reference is
made to earlier systems and recent progress when appepriat

3 Data Partitioning

3.1 Need for partitioning

While it is evidently possible to transcribe the continustream of audio data without any prior seg-
mentation, partitioning offers several advantages ovierstraight-foward solution. First, in addition
to the transcription of what was said, other interestinginfation can be extracted such as the di-
vision into speaker turns and the speaker identities. Begmentation can avoid problems caused
by linguistic discontinuity at speaker changes. By usinguatic models trained on particular acous-
tic conditions, overall performance can be significantlypioved, particularly when cluster-based
adaptation is performed. Finally eliminating non-speesimnsents and dividing the data into shorter
segments (which can still be several minutes long), redti@esomputation time and simplifies de-
coding.

Various approaches have been proposed to partition théncants stream of audio data. Most
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Figure 1: Partitioning algorithm.

of these approaches rely on a two step procedure, where thie stueam is first segmented in an
attempt to locate acoustic changes (associated with ceangpeaker, background or environmental
condition, and channel condition) and then the resultiggrsmnts are clustered (usually using Gaus-
sian models). Each cluster is assumed to identify a speakapce precisely, a speaker in a given
acoustic condition. The segmentation procedures can bsifital into three approaches: those based
on phone decoding [25, 31, 42], distance-based segmemd®d, 40], and methods based on hy-
pothesis testing [12, 43]. Our partitioning approach, iahg&not based on such a two step procedure,
relies on an audio stream mixture model. Each componenbaalirce, representing a speaker in
a particular background and channel condition, is in turrdeted by a mixture of Gaussians. The
segment boundaries and labels are jointly identified ugiagterative procedure described below.

3.2 Audio Stream Mixture Model

The segmentation and labeling procedure introduced in 187,is shown in Figure 1. First, the
non-speech segments are detected (and rejected) usingi@ausixture models (GMMs). These
GMMs, each with 64 Gaussians, serve to detect speech, pus&m@nd other (background). The
acoustic feature vector used for segmentation contains@8mneters. Itis the same as the recognition
feature vector except that it does not include the energlypagh the delta energy parameters are
included. The GMMs were each trained on about 1h of acoustia, cextracted from the training
data after segmentation with the transcriptions. The dpesudel was trained on data of all types,
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with the exception of pure music segments and silence pmtid segments transcribed as speech
over music. In order to detect speech in noisy conditionsarsg speech GMM was trained on the

F4 segments in the 1996 data set. These models are expectetdio all speech segments. The

music model was trained only on portions of the data that Wadreled as pure music, so as to avoid
mistakenly detecting speech over music segments. Thecsil@wdel was trained on the segments
labeled as silence during forced Viterbi alignment, aftezleding silences in segments labeled as
containing speech in the presence of background musicesgtlsegments labeled as music or silence
are removed prior to further processing.

A maximum likelihood segmentation/clustering iterativeqedure is then applied to the speech
segments using GMMs and an agglomerative clustering dkgori Given the sequence of cepstral
vectors corresponding to a shaw, ..., z7), the goal is to find the number of sources of homo-
geneous data and the places of source changes. The resldt pfdcedure is a sequence of non-
overlaping segment&sy, . . ., sy) with their associated segment cluster labels .. ., cy), where
¢ € [1,K]and K < N is the number of segment clusters. Each segment clustesisres! to
represent one speaker in a particular acoustic environnreabsence of any prior knowledge about
the stochastic process governiffy, N) and the segment lengths, we use as objective function a
penalized log-likelihood of the form

N
> log f(silAe,) — aN — 5K
=1

wheref(-|\;) is the p.d.f. (with a fixed number of parameters) correspogth the clustek, and
wherea > 0 andg > 0. The termsyN andjs K, which can be seen as segment and cluster penalties,
correspond to the parameters of exponential prior distidims for NV and K. It is easy to prove that
starting with overestimates df and K, alternate Viterbi reestimation and agglomerative cltiste
gives a sequence of estimateq &f, NV, A\x) with non decreasing values of the objective function. In
the Viterbi step we reestimateév, A;) so as to increasg ; log f(s;|\.,) — aN (i.e. adding a segment
penalty« in the Viterbi search) whereas in the clustering step two orarclusters can be merged
as long as the resulting log-likelihood loss per merge is than3.? Since merging two models can
reduce the number of segments, the change in segment pisrtaken into account during clustering.
This algorithm stops when no merge is possible. A const@mthe cluster size is used to ensure
that each cluster corresponds to at least 10s of speechal(fteat the previously rejected non-speech
segments are not considered here.)

For single Gaussian models the merging criterion is easynfeément since the log-likelihood
loss can be directly computed from the sufficient statisticke corresponding segments [24, 28].
In the more general case of Gaussian mixtures, there areffident statistics and there is no direct
solution to compute the resulting mixture and/or the Idglihood loss. We can envision estimating
the new mixture from the data but this is a costly proceduraother solution that we adopted for
this work is to modify the objective function, replacing tlikelihood function by the complete data
likelihood of the Gaussian mixtures and extending the maxinfikelihood clustering method to the
Gaussian level. To estimate the log-likelihood loss for td@ussian mixtures, we simply have to
compute the sum of the log-likelihood loss while clustetiing Gaussians of the 2 mixtures (until we
get the desired number of Gaussians). We have used 8 mixinmeanents per cluster, so to compute
the log-likelihood loss induced by merging two clusterslageerative clustering is performed starting
with 16 Gaussians until 8 Gaussians are left.

The process is initialized using a simple segmentatiorrdlgo based on the detection of spectral
change (similar to the first step used in the CMU’'96 systenf)[4lhe threshold is set so as to over-

2This clustering criterion is closely related to the MDL or@triterion.
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Figure 2: Spectrograms illustrating results of data parting on sequences extracted from broad-
casts. The transcript gives automatically generated segtype: Speech, Music, or Noise. For the
speech segments the cluster labels specify the identifiediAidth (T=telephone-band/S=wideband)
and gender (M=male/F=female), as well as the number of tnste.

generate segments, roughly 5 times as many segments ap&ales turns. Initially, the cluster set
consists of a cluster per segment. This is followed by Vité&dining of the set of GMMs (one 8-
component GMM per cluster). This procedure is controlledBhyarameters: the minimum cluster
size (10s), the maximum log-likelihood loss for a mergg @nd the segment boundary penalty. (
When no more merges are possible, the segment boundariesfiaeel using the last set of GMMs
and an additional relative energy-based boundary peniltyin a 1s interval. This is done to locate
the segment boundaries at silence portions, attemptingpid autting words (but sometimes this still
occurs).

Speaker-independent GMMs corresponding to wideband beettelephone speech (each with
64 Gaussians) are then used to label telephone segmenssis Thilowed by segment-based gender
identification, using 2 sets of GMMs with 64 Gaussians (omeefch bandwidth). The result of the
partitioning process is a set of speech segments with c¢jug#ader and telephone/wideband labels
as illustrated in Figure 2.

3.3 Partitioning Results

In developing the partitioner we used the dev96 data setwanevaluated the frame level segmen-
tation error (similar to [25]) on the 4 half-hour shows in tnal96 test data using the manual seg-
mentation found in the reference transcriptions. The NI&hgcriptions of the test data contain
segments that were not scored, since they contain overlgppiforeign speech, and occasionally
there are small gaps between consecutive transcribed ségn&ince we considered that the parti-
tioner should also work correctly on these portions, welreled all excluded segments as speech,
music or other background.

Table 1(top) shows the segmentation frame error rate andchfreon-speech errors for the 4
shows. The average frame error is 3.7%, but is much highestfow 1 than for the others. This is
due to along and very noisy segment that was deleted. Aveggess shows the gender labeling has
a 1% frame error. In addition to these errors, there are 6&t¥afe speech frames deleted (largely due
to the same segment) and 1.7% of the male frames deleted.oftoertof Table 1 shows measures of
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Show 1 2 3 4 Avg
Frame Error 7.9 2.3 3.3 2.3 3.7
M/F Error 0.4 0.6 0.6 2.2 1.0
#spkrg/#clusters  7/10  13/17 15/21 20/21 -
ClusterPurity 995 932 969 949 959
Coverage 876 710 780 811 787

Table 1: Top: Speech/non-speech frame segmentation éfjprucing NIST labels, where missing
and excluded segments were manually labeled as speech-@peech. Bottom: Cluster purity and
best cluster coverage (%).

Test set (Word Error)

System Sep Eval96 Eval97 Eval98
Sepl 3grammanual 24.7 18.2 18.0

automatic  25.3 18.4 18.3
Sep2 3grammanual 20.2 14.2 13.5

automatic  21.0 14.6 14.2

Table 2: Word error with manual/automatic segmentatiomsguthe Nov98 system for 3 data sets.

the cluster homogeneity. The first entry gives the total nemnalb speakers and identified clusters per
file. In general there are more clusters than speakers, astectan represent a speaker in a given
acoustic environment. The second measure is the clustigy,mlefined as the percentage of frames in
the given cluster associated with the most representedspigethe cluster. (A similar measure was
proposed in [12], but at the segment level.) The table shbessveighted average cluster purities for
the 4 shows. On average 96% of the data in a cluster comes fedngke speaker. When clusters are
impure, they tend to include speakers with similar acowsiiitions. The “best cluster” coverage is
a measure of the dispersion of a given speaker’s data adiegers. We averaged the percentage of
data for each speaker in the cluster which has most of hisldiar. On average 80% of the speaker
data is going to the same cluster. In fact, the average valaebit misleading as there is a large
variance in the best cluster coverage across speakers.dsrspeakers the cluster coverage is close
to 100%, i.e., a single cluster covers essentially all frawfetheir data. However, for a few speakers
(for whom there is a lot of data), the speaker is covered by awmore clusters, each containing
comparable amounts of data.

We also investigate the effect of automatic vs manual pamiitg on the recognizer performances.
Table 2 compares the word error rates with automatic and alghUST) partitions on three evalu-
ation data sets. The performance loss is about 1.5% relatiee the first decoding step (ie. no
adaptation). It is higher (2.4%) on the eval96 data due tang teleted segment in show 1. After
adaptation (step 2) the relative performance loss is abduiddicating that the clustering process is
inappropriately merging or splitting some of the speakdega. It appears that clustering errors are
more detrimental to performance than segmentation ones.

4 Acoustic Modeling
The acoustic models were trained on all the available trémst task-specific training data, amount-

ing to about 150 hours of audio data. We used the August 198 Fahruary 1998 releases of the
LDC transcriptions. Overlapping speech portions were aetkin the transcriptions and removed
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from the training data. The phone set contains 48 unitsudiol specific phone symbols used to
explicitly model silence, filler words and breath noise$he decision to model these with specific
phones was based on a desire to capture any possible additfetiences from similar phones in the
phone set and at the same time to avoid possible contamiratibese other phone models.

The following PLP-like [26] acoustic parameterization l&en used in the LIMSI systems since
1996. The speech features consist of 39 cepstral parandgeved from a Mel frequency spec-
trum estimated on the 0-8kHz band (or 0-3.5kHz for telephdeta) every 10ms. For each 30ms
frame the Mel scale power spectrum is computed, and the cabidaken followed by an inverse
Fourier transform. LPC-based cepstrum coefficients ane toenputed. These cepstral coefficients
are normalized on a segment cluster basis using cepstral reezoval and variance normalization
(cf. figure 3). Each resulting cepstral coefficient for ealtlster has a zero mean and unity variance.
The 39-component acoustic feature vector consists of 12teap coefficients and the log energy,
along with the first and second order derivatives. This featector has fewer parameters than the
48-component feature vector used previously [22], but letiebperformance on the Hub4 data (3%
relative gain).

The acoustic models are sets of tied-state word-positipamigent triphones. Each phone model
is a tied-state left-to-right, 3-state CDHMM with Gaussmaixture observation densities (typically
32 components). The triphones are word-position deperidethe sense that different models are
used for word internal phones and word boundary phones. Tdrd oundary phones are subse-
quently distinguised as word-initial, word-final, or botlosd-initial and final (monophone words).
The triphone contexts to be modeled are selected based iofréagiencies in the training data. We
do not try to predict unseen triphones, but rather backofingyging contexts for infrequent triphone
contexts. First we try to merge phones with a common rightexnthen a common left context, and
finally the remaining data are merged into a context-inddpatmodel. With the Hub4 training data
over 28000 triphone contexts are modeled, resulting inpadme coverage of over 99%.

®The silence (or background noise) word model is special eari be inserted between any two words and does not
appear in the language model. In contrast, the filler wordtaedth noise models are explicitly represented in the laggu
model.
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In our Nov96 system, position-dependent acoustic modets weed in the first decoding pass
in order to reduce the search space and the decoding time tlewagh slightly better performance
was obtained with position-independent models [14]. Ha@uean 1997 with twice as much acoustic
training data available we were able to model a larger nunob@ontexts, and a slight gain was
observed with position-dependent models on the Hub4 d&ja [1

HMM training requires an alignment between the audio sigmal the phone models, which
usually relies on a perfect orthographic transcriptiontaf $peech data and a good phonetic lexicon.
Each speech segment is first Viterbi aligned to the orthdgeapanscription so as to produce a time-
aligned phone transcription. Since the reference trapgeris and the phonetic lexicon are not really
perfect, this alignment procedure may not succeed. In #se the error can be manually corrected,
or the segment can simply be discarded. (In practice, eex@<orrected when the training data is
limited, and segments are discarded when a lot of training al@ available. As more data was made
available, we spent less time correcting errors.) Dischskgments are those for which there is no
complete Viterbi alignment due to beam-pruning or when saolwm&tion criteria are not respected
such as a maximum allowable phone duration. For examplepagturation longer than 500ms is
likely to be indicative of an error, for phones other thaesde or breath noise.

After alignment, HMM parameter estimation is done usingHih&estimation procedure starting
with a single Gaussian per tied-state and splitting eacls§an until the maximum number of Gaus-
sians per state (usually 32) is reached. To avoid probleragaldata sparseness (which is unlikely
with state-tying) a Bayesian estimation procedure is usi ascommon prior for all Gaussians of
a given state and a minimum frame count (accumulated Gaugsdhabilties for all frames) is also
required to keep a Gaussian. This alignment/reestimatimeeplure is iterated several times to refine
the acoustic models, usually increasing the number of patens progressively.

Separate male and female models obtained with MAP estimafi§l seed models [23] are used
to more accurately model the speech data. Both widebancsehbne band models were estimated,
where the telephone band models are trained using a low fiessdiversion of the data set. Each
model set contains about 11500 tied-states and a total &f Ga0ssians.

We have compared divisive decision tree clustering witH@gerative clustering for state-tying.
Both approaches can obtain comparable model sets, but veefbamd that divisive decision tree
clustering is particularly interesting when there are aydarge number of states to cluster since it
is at the same time both faster and is more robust than a batpogreedy algorithm, and therefore
much easier to tune. The set of 184 questions used in our BeyStem concern the phone position,
the distinctive features (and identities) of the phone dredneighboring phones. The questions are
given in Table 3, and the most frequently used question$®largest model set are given in Table 4.
One tree is constructed for each state of each phone. This tvadt so as to maximize the likelihood
of the training data using single Gaussian state modelslzed by the number of tied-states.

Unsupervised acoustic model adaptation (both means araheas) is performed for each cluster
using the MLLR technique [32] after each decoding pass. Téamvectors are adapted using a single
block-diagonal regression matrix (where a block is usedefich parameter stream, i.e. cepstrum,
delta-cepstrum and delta-delta cepstrum), and a diagoataidnis used to adapt the variances. When
less than 12 seconds of adaptation data are available, adpmial matrices are used for both the
means and the variances. A single regression matrix is used s/e have never observed a gain
using multiple regression matrices for unsupervised ateypt.
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Position: state-position, word-begin, word-end, monophone

General classesvowel, consonant, continuant, sonorant, voiced-condpwmaiteless, fricative, stri-
dent, stop, nasal, semivowel, aspirated, anterior, highgral, slack, rounded, tense, retroflex, syl-
labic, fillers

Vowel classes: high-vowel, low-vowel, rounded-vowel, tense-vowel, redd, diphthong, front-
vowel, back-vowel, long-vowel, short-vowel, retroflexwel, diphthong-F2up, diphthong-F2down
Consonant classedabial, dental, alveolar, palatal, velar, affricate

Individual Phones: b, d, g, p, t, k&, 1, s, [, 2,3, f, v, 0,0, m, n,y, m,n, I, I, r, w, y, h,i,1, e,e, &,

a, A, a7, a”,0,0,97,U,8,9, X, 3 1, [filler], [breath], [silence]

Table 3: Questions used for decision tree clustering coniter phone position and class, the distinc-
tive features and the phone identity.

guestion % log likelihood gain \ guestion % log likelihood gain
vowel[+1] 6.3% phone-r[+1] 2.2%
sonorant[+1] 5.5% phone-H[+1] 2.1%
sonorant[-1] 3.8% strident[+1] 1.9%
front-vowel[+1] 3.6% phone-| 1.8%
semivowel[+1] 3.6% nasall-1] 1.7%
voiced-consonant[+1] 3.1% vowel[-1] 1.6%
wordbody-pos|0] 2.5% high-vowel[+1] 1.5%
nasal[+1] 2.3% voiceless[-1] 1.5%
voiceless[+1] 2.2% phone-n[+1] 1.5%
wordbegin-pos[0] 2.2% phone-s[+1]1] 1.4%

Table 4: The most frequently used decision tree questioms [#1] and [-1] indicate that the question
has been applied to the right or left context respectivelg, [8] to the phone itself.
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5 Language modeling

Different approaches for language model training were@ga and tested in the context of a com-
plete transcription system. Language model efficiency weasstigated for the following aspects:
mixing of different training material (sources and epo@pproach for mixing (interpolation vs count
merging); and using class-based language models. Theiequetal results indicate that judicious
selection of the training source and epoch is importantthatgiven sufficient broadcast news tran-
scriptions, newspaper and newswire texts are not neces3#&g combined improvements in text
selection, interpolation, 4-gram and class-based LMsdexi20% reduction in the perplexity of the
LM of the final pass (3-gram class interpolated with a worddrg) compared with the 3-gram LM
used in the LIMSI Nov'97 BN system.

5.1 Text normalization and wordlist selection

For transcription of American English Broadcast News showesy large text corpora are available
for constructing language models. Three different sovofekmta were used:

e NEWS. Over 700M words of news texts from various sources (newsgsagnd newswires from
1994 to 1998). These data, available through the LDC, cbaktgxts from the Los Angeles
Times, New York Times, Wall Street Journal, Washington PBsguters News Service, and
Associated Press WordStream.

e BNA: 1.5M words of accurate broadcast news transcripts of thesic training data. Non
lexical items such as breath noise, hesitations, word feasnare transcribed.

e BNC: 200M words of commercial transcripts of various broadshstws (from 1992 to 1998).
These transcripts do not include extra-lexical events.

It should be noted that only a very small proportion of the LMal(about 2%) is truly represen-
tative of the real data to be transcribed.

The training texts were processed to clean errors inhenethigi texts or arising from the prepro-
cessing tools, and transformed to be closer to the obsermegridan speaking style. The cleaning
consisted primarily of correcting obvious mispellingsgS@sMILLLION , OFFICALS, LITTLEKNOWN ),
systematic bugs introduced by the text processing tootseapanding abbreviations and acronyms
in a consistent manner. The texts were also transformed ttolser to the observed American read-
ing style using a set of rules and the corresponding proibi@siderived from the alignment of the
WSJO/WSJ1 prompt texts with the transcriptions of the atodsita. Some example rules and their
probabilities are shown in Table 5. The cleaning of the trajriexts reduced perplexity on develop-
ment data in a better coverage for the 65k lexicon [22].

Filler words such as “uh” and “uhm” were mapped to a uniquenfoiThe training texts were
processed in order to add a proportion of breath markers,(d#@) of filler words (0.5%) [14]. While
it would seem more elegant to incorporate these in the LM bgrpolating LMs estimated on the
clean text (without noises) and on the transcripts (withsas), adding them to the clean texts via a
generation model resulted in a lower word error rated% relative). This result can be explained
by the observation that breath noise and filler words do notioat random, but at specific places.
Adding them at such places in the clean texts is equivaleatiting a priori information about the
distribution of these phenomena in the transcripts.

The training texts were also processed to treat the most @ami®00 acronyms as distinct lexical
entries [19] (as opposed to a sequence of individual Igteemd to represent some frequent word
sequences subject to reduction as compound words [14].
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HUNDRED <nb> HUNDRED AND <nb> (0.50)
ONE EIGHTH AN EIGHTH (0.50)
CORPORATION CORP (0.29)
INCORPORATED INC. (0.22)

ONE HUNDRED
MILLION DOLLARS
BILLION DOLLARS

A HUNDRED (0.19)
MILLION (0.15)
BILLION (0.15)

PEEEu el

Table 5: Some example transformation rules with probaédit

Word Error rate Perplexity
4gramLM Eval96 Eval97 Eval98 | Eval96 Eval97 Eval98
NEWS 22.7 15.8 153 | 291.8 246.3 2574
BNC+BNA 20.3 14.3 13.8 | 175.7 175.6 181.6
BNC+BNA+NEWS | 20.0 14.0 13.6 | 1674 163.3 168.8

Table 6: Word error rate and perplexity for LMs constructeddifferent sourcesSNEWS: newspaper
& newswire, 340M wordsBNA: accurate broadcast news transcripts, 1.5M wads;: commercial
broadcast news transcripts, 200M words) on 3 evaluatiosn sk,

The recognition vocabulary (or word list) contains 65,12#ds, and includes all words occuring
a minimum of 15 times in thenc (63,954 words) or at least twice in tiB&iA data (23,234 words).
The lexical coverage was 99.14%, 99.53% and 99.73% on tH8Gwveval97 and eval98 test sets
respectively.

5.2 Combining data sources

One easy way to combine training material from differentrses is to train am-gram backoff LM
per source and to interpolate them. The interpolation wsighn be directly estimated on some
development data with the EM algorithm. The resulting LM miature ofn-gram backoff LMs. An
alternative is to simply merge thegram counts and train a singlegram backoff language model on
these counts. If some data sources are more representativethers for the task, thegram counts
can be empirically weighted to minimize the perplexity oreaaf development data. While this can
be effective, it has to be done by trial and error and canrsityelae optimized. In addition, weighting
then-gram counts can pose problems in properly estimating thkdfbcoefficients. Using the three
available data sources, we compared the two approacheseohaml by generating interpolated 4-
gram backoff LMs and on the other hand by mergingthgram counts with the manually optimized
weights. The results obtained with word graph rescoringwstiat on 3 eval sets the approach which
merged the:-gram counts had a slightly higher word error rate (0.2% alied15.73% compared to
15.46%.

Two strategies were explored to add cross sentence trigoamts in the trigram model [39]: add
the whole texts with and without sentences boundaries, amormalize the counts; or add only the
cross sentence trigrams. Both strategies led to similaltes terms of perplexity and recognition
error. For the Nov’'98 evaluation, the language models werstucted using the second approach.
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Selecting the appropriate LM training material evidentfieets the resulting LM accuracies.
There is the sometimes conflicting need for sufficient am®ohtext data to estimate LM parameters
and assuring that the data is representative of the taskinktnce, in [17] it was reported that, for
the broadcast news transcription task, while the use ohalbiailable newspaper data led to a small
decrease in perplexity, it also led to a small increase imebegnition error rate. Therefore, alEws
texts that did not lower the perplexity were eliminated.

To optimize the selection of texts for the LIMSI Nov'98 sysiethe newspaper and commercial
transcription sources were split into 5 non-overlappimgetiperiods, based on proximity to the test
epoch (150ct96-14nov96). For each of these periods (jaep25, oct95-jun96, jul96-feb97, mar97-
aug97, sep97-dec97) separate LMs were constructed foseaicbe. The interpolation coefficient for
each component LM was optimized on the development datddicomg shows recorded in oct96).
LMs with very low interpolation coefficients were elimindteSubsets with comparable interpolation
coefficients (different sources or epochs) were mergeddermto decrease the size of the resulting
LM. Only very small variations in perplexity were observegritig this process, and the final opti-
mization resulted in interpolation of four 4-gram LMs, ctmgted on the following texteNc (200M
words, interpolation coefficient 0.563NA (1.5M words, interpolation coefficient 0.22Ygws pe-
riod jan94-sep95 (200M words, interpolation coefficieritd); andNEws period jul96-aug9¥ (141
Mwords, interpolation coefficient 0.12). It can be noted tha weight of thesNA LM is equal to the
weight of theNEws LMs (0.22) even though the text is much smaller.

Some experiments were conducted in order to evaluate theede of each source on the recog-
nition word error rate. 4-gram LMs were constructed usirgftillowing data setsNews only, BNC
(0.75) +BNA (0.25),BNC (0.56) +BNA (0.22) +NEWS (0.22). The latter corresponds to the 4-gram
used in the ARPA98 evaluation. Recognition results olgdinia word graph rescoring using these
three LMs are summarized in Table 6 for the three eval dasa $ée true differences between models
may be slightly larger since all results used the same waplygenerated with trENC+NEWSHBNA
LM. There is a large reduction both in perplexity and in wortberate when transcripts are used to
train the LM, as opposed EWS texts. Interpolating thetews LM with the transcription based
LM yields a small but consistent reduction in perplexity amdrd error. The combination of LMs
estimated on commercially produced transcrgni€ and on accurate trancripts is quite performant.
However, if commercial transcripts are not available, reayper sources are a reasonable source of
language model training data: although the LM constructdg on NEWsS data has a perplexity 43%
higher tharBNC+BNA+NEWS, the recognition word error rate is only 11% higher.

6 Lexical Modeling

Lexical design entails selecting the vocabulary items atdrthining their pronunciation. The word
list selection was discussed in the previous section, gdaction we address pronunciation model-
ing. Our experience is that systematic lexical design cgorane the overall system performance.
The pronunciations are based on a 48 phone set (3 of them edefaissilence, filler words, and
breath noises) and include standard pronunciations bubtexplicitly represent allophones. In or-
der to better model the observed speaking styles in the Habel dwo phones were added to the
LIMSI WSJ phone set [30] so as to explicitly model filler wortsd breath noises [14] without con-
taminating the other phones. A phonemic representatiosasl as most allophonic variants can be
predicted by rules, and their use is optional. More impdiyathere often is a continuum between
different allophones of a given phoneme and the decisiow agich occurred in any given utter-
ance is subjective. By using a phonemic representationarsbdrecision is imposed, and it is left to

* All data from the same period as the eval98 test set (15/1D49651/96) was excluded.
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WHAT _DID_YOU wa{t}dldyu
wa{t}dldyo wa{t}dldso wao]dzo
|_DON’ T_KNOW a’don{t}no
a/dAno a’dno
DON’ T_LKNOW don{t}no
dAno
LET_ME letmi
lemi
LET_HIM lethim
letM lem
I_AM a’/aem
aom a’m
GOING_TO go|ntfuo]
glnclne

Figure 4: Some example compound words and their pronunasitiOriginal concatenated pronun-
ciation (1st line) and reduced forms (2nd line). Phonel}iare optional, phones in [ ] are alternates.

the acoustic models to represent the observed variantg ittaiming data. A pronunciation graph is
associated with each word so as to allow for alternate proiations which may depend upon the fol-
lowing word context. Frequently occuring inflected formsreveerified to provide more systematic
pronunciations.

There are a variety of words for which frequent alternativenuinciation variants are observed,
and these variants are not due to allophonic differences.cdOmmon example is the suffizATION”
which can be pronounced with a diphthong/ () or a schwa @/). Out of 7 occurences of the word
“INDUSTRIALIZATION” in the training data, 3 are pronounced witi¥ / and 4 with 4/. Another
pronunciation variant is the palatalization of the /k/ inua ¢ontext, such as in the word “coupon”
(/kupan/ vs. /kyupin/). Alternate pronunciations may also reflect differenttpaf speech (verb or
noun) as in words like “excuse, record”.

It is well known that in fluent speech, certain common wordusgges can be subject to severe
reduction. One easy way to model such effects are to use aomdpaords for frequent word se-
qguences, which is a way of incorporating phonological rdesa very limited basis. The example
spectrograms of sentences including the word sequencet ‘tlithgou” shown in Figure 5 illustrate
the need for pronunciation variants for spontaneous spéeche first spectrogram, the speaker said
all three words clearly and palatalized the /dy/ intatgd./In the second, the speaker produced a flap
for the combined final /t/ in “what” and the initial /d/ in “didIn the third example, the sequence was
reduced to /wdza/. The recognition lexicon contains entries for the most own 1000 acronyms
found in the training texts and compound words for about 38quent word sequences. Some exam-
ple compound words and their pronunciations are given ineTdb The first line corresponds to the
original pronunciation formed by concatenation of the comgnt words. The second line contains
reduced forms added for the compound word.

The pronunciations in our American English lexicon wereatee semi-automatically using a
pronunciation generation tool [30]. When an unknown worerisountered, affix rules are applied to
the entries in one or more lexicons in an attempt to derivebaymciation. When multiple pronunci-
ations can be derived they are presented for selectiongaidth their source. Although the LIMSI
“Master” lexicon contains over 100k entries, when proaegsi new set of acoustic training data, we
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Figure 5: Spectrograms of the word sequences containingtwlid”. “what did you see” (file
€960521a), “what did you wear” (file j960521d), “what did yihink of that” (file i960531).

generally need to add new words. These are often times pngpees (which are difficult to generate

automatically) and word fragments, which need to be indludea training lexicon even though they

are not usually present in a recognition lexicon. When propenes appear in the training data, their
pronunciations are manually verified.

7 Word Decoding

One of the most important problems in implementing the decalthe design of an efficient search
algorithm to deal with the huge search space, especiallynwiking language models with a longer
span than two successive words, such as 3-grams and 4-gkéemg. potential applications making
use of broadcast news transcriptions do not require onplioeessing. Batch processing offers a sub-
stantial advantage as all of the data for a given show candxfos unsupervised model adaptation,
resulting in significant improvement in recognition acaytaMultiple pass decoders are well adapted
to broadcast news transcription, where a first decodinggasbe used to generate a word hypothesis
which is then used for model adaptation. While this apprdehbeen very successful for acoustic
model adaptation, to date attempts to adapt the languagelsioalve been less rewarding.

7.1 Baseline decoder

The two-step approach used in the LIMSI Nov’'98 system tratssimformation between levels via
word graphs [21]. Due to memory constraints, each step magisbof one or more passes, each
using successively more refined models. All decoding passesross-word CD triphone models.
In order to generate accurate word graphs, cluster-basekkinaalaptation is carried out using an
initial hypothesis. It is clear that this type of adaptat@@mnot be used in a real-time system, but is
applicable to batch processing of data, which could occunédiately after the data is broadcast.
The word decoding procedure is shown in Figure 6. Prior toodety, segments longer than
30s are chopped into smaller pieces so as to limit the menemyired for the 3-gram and 4-gram
decoding passes [14]. To do so a bimodal distribution isret8d by fitting a mixture of 2 Gaussians
to the log-RMS power for all frames of the segment. This distion is used to determine locations
which are likely to correspond to pauses, thus being reddemmaces to cut the segment. Cuts are
made at the most probable pause 15s to 30s from the previoud/oud recognition is performed in
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Figure 6: Word decoding.

three steps: 1) initial hypothesis generation, 2) word lggneration, 3) final hypothesis generation,
each with two passes.

Step 1: Initial Hypothesis Generation This step, carried out in two passes, generates initial
hypotheses which are used for cluster-based acoustic nadidgttation. The first pass of this step
generates a word graph using a small bigram backoff languagel and gender-specific sets of 5416
position-dependenttriphones with about 11500 tied stdieis is followed by a second decoding pass
with a larger set of acoustic models (27506 triphones withODltied states) and a trigram language
model (about 8M trigrams and 15M bigrams) to generate theotingses. Band-limited acoustic
models are used for the telephone speech segments.

Step 2: Word Graph Generation Unsupervised acoustic model adaptation (both means and
variances) is performed for each segment cluster using theRvtechnique [32]. The mean vectors
are adaptated using a single block-diagonal regressionxnaind a diagonal matrix is used to adapt
the variances. Each segment is decoded first with a bigraguaye model and an adapted version of
small set of acoustic models, and then with a trigram languagdel (8M bigrams and 17M trigrams)
and adapted versions of the larger acoustic model set.

Step 3: Final Hypothesis GeneratiorThe final hypothesis is generated using a 4-gram interpo-
lated with a category trigram model with 270 automaticalgngrated word classes [27]. The first
pass of this step uses the large set of acoustic models ddajstethe hypotheses from Step 2, and
a 4-gram language model. This hypothesis is used to adapicthestic models prior to the final
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decoding step with the interpolated category trigram model

Test set (Word Error)
System Eval96 Eval97 Eval98
Nov96 system  27.1*
Nov97 system  25.3 18.3
Nov98 system  19.8 139 136

Table 7: Summary of BN transcription word error rates. *N6wystem used a manual partition.

Table 7 reports the word recognition results on the evaldets from the last three years. All
of our system development was carried out using the eval® dBhe results shown in bold are
the official NIST scores obtained by the different systemaly@he Nov96 system used a manual
partition. In Nov97 our main development effort was devdtechoving from a partitioned evaluation
to the unpartitioned one. The Nov97 system did not use faomstition specific acoustic models as
had been used in the Nov96 system. This system nevertheleieyed a performance improvement
of 6% on the eval96 test data. The Nov98 system has more @ae@gaustic and language models,
and achieves a relative word error reduction of over 20% amegbto the Nov97 system.

Table 8 gives the word error rates for the Nov98 system afieh&ecoding step on the same three
eval sets. The first decoding step that is used to generatnitta¢ hypothesis runs in about 35xRT
and has a word error of 25% on the eval96 data, and 18% on th@/7eaad eval98 sets. A word
error reduction of about 20% is obtained in the second degpstiep which uses the adapted acoustic
models and runs in about 130xRT. Relatively small gains btained in the 4-gram decoding pass
(30xRT), even though these also include an extra acoustdehadaptation. The runs were done
on Silicon Graphics Origin200, R10K processor running &MNBlz and with 1Gb memory. These
processing times are only indicative as no effort was maadgptionize the computation means, other
than to fit within what was available.

7.2 10xRT decoder

In 1999 our goal was to achieve comparable performance witbcading time of under 10x real-
time. To reach this goal, a 4-gram single pass dynamic n&tdecoder was developed [16]. Itis a
time-synchronous Viterbi decoder with dynamic expansiblo\d state conditioned lexical trees [11,
34, 33] with acoustic and language model lookaheads. Thedéecan handle position-dependent,
cross-word triphones and lexicons with contextual promatrens. It makes use of various pruning
techniques to reduce the search space and computationitioheding three HMM-state pruning

Test set (Word Error)

System Sep Eval96 Eval97 Eval98

Sepl 3-gram 2530 1844 1831
Sep2 3-gram 2095 1456 14.24
Sep34-gram 20.23 1426 13.66

4-gramclass 19.79 13.92 13.56

Table 8: Word error rates after each decoding step with theOR@ystem.
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Pass AM LM Time Total time  Werr
A 1 92k 3g 6.8xRT 6.8XxRT 16.8%
B 1 350k 4g 10.8xRT 10.8xRT 15.9%
1 92k 3g O0.8xRT 24.7%
C 2 350k+mllr 4g 9.9xRT 10.7xRT 14.6%
1 92k 3g O0.8xRT 24.7%
D 2 350k+mllr 3g 6.1xRT 6.9xRT 15.4%
E 3 350k+mllr 4g 1.5xRT 8.4xRT 14.2%

Table 9: Comparison of decoding strategies on the NIST Hwdb8 set (partitioning and coding
times are not included).

beams and fast Gaussian likelihood computations. It cangeeerate word graphs and rescore them
with different acoustic and language models. Faster thaktimme decoding can be obtained using
this decoder with a word error under 30%, running in less tt@mMb of memory on widely available
platforms such Pentium Il or Alpha machines.

The decoder by itself does not solve the problem of redudnggrécognition time as proper
models have to be used in order to optimize the recognizerracg at a given decoding speed. In
general, better models have more parameters, and thenefguére more computation. However,
since the models are more accurate, it is often possibleg@ughter pruning level (thus reducing
the computational load) without any loss in accuracy. Thostations on the available computational
resources can significantly affect the design of the acoasiil language models. For each operating
point, the right balance between model complexity and prgitével had to be found.

Table 9 gives the computation time and word error rates faoua decoding strategies, using the
Hub4 eval98. The pruning thresholds have been set so as th riie computing time of the most
interesting setups. Each entry specifies the acoustic agdidaye models used in the pass and the
computation time. All passes perform a full decode, exdeptast decoding pass (labelled E) which
is a word graph rescoring using a graph generated in the degnam pass. These results clearly
demonstrate the advantage of using a multiple pass decagimgach. Comparing the setups A (1
pass, 6.8xRT, 16.8%) and D (2 passes, 6.9xRT, 15.4%), the extputation time needed for the
first decode and the MLLR adaptation in D is largely compestsay the reduction in word error rate.
Using adapted acoustic models allows us to use a tighteimguhreshold and have the same overall
computing time but with a significantly lower word error ratdlso by comparing the setups C (2
passes, 10.7xRT, 14.6%) and E (3 passes, 8.4xRT, 14.2%jvaatage of using an extra decoding
pass with the 4-gram LM and the 2nd pass hypotheses for theRvlidaptation can be seen.

For reference, the official result on the eval98 test setgisur Nov98 system was 13.6%, with a
decoding time around 200xRT [20]. Using only the first deogdbass, unrestricted BN data can be
decoded in less than 1.4xRT (including partitioning) wittvard error rate around 30%. The same
decoding strategy has been successively applied to thed@iddription in other languages (French,
German and Mandarin) with comparable word error rates.

8 Perspectives and Conclusions
In this paper we have summarized our recent activities aiateganscribing radio and television

broadcasts. Most of this work has been carried out for the ke English language in the context
of developing systems for the annual DARPA benchmark teftgs framework has provided the
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training materials (transcribed audio and textual corgordraining acoustic and language models),
test data and a common evaluation framework. In the confekieoLE-4 QLIVE project the LIMSI
transcription system has been ported to the French and Gdamguages, which has required a large
investment in data collection.

Partitioning and transcribing television and radio braeis are necessary steps to enable auto-
mated processing of the vast amounts of audio and video datilu@ed on a daily basis. The data
partitioning algorithm makes use of Gaussian mixture medal an iterative segmentation and clus-
tering procedure. The resulting segments are labeled dicgpto gender and bandwidth. Many of
the errors occur at the boundary between segments, andawmedrsilence segments which can be
considered as with speech or non-speech without influertcamgcription performance. Based on
our experience, it appears that current word recognitigfop@ance is not critically dependent upon
the partitioning accuracy.

Acoustic training on broadcast data is significantly momapticated than on read speech corpora
like the Wall Street Journal corpus. Even when divided iqteeker turns, segments can be quite long
- several minutes in duration. Aligning even a perfect tcapgion with the signal can be difficult,
and any minor problem may cause the alignment to fail [36]itt8) long segments at silences is a
possible solution, but requires manual intervention.

Explicitly modeling the NIST focus conditions is probablgtrworth the additional effort and
complexity in training and decoding. However, the focusdibans are quite interesting as a factor
for error analysis. In addition, some of the distinctiors elearly unrealistic to automatically detect,
such as the distinction between read and spontaneous basiap@lity speech, or reliable detection of
non-native speech. The wideband/ telephone-band distincan be made with reasonable accuracy,
and using narrow-band models improves the relative peidioga on telephone data by about 10%.

Given the large amount of acoustic training data availabteAimerican English, it is possible
to properly model many different triphone contexts with ayvieigh coverage of over 99%. Tied-
state acoustic models are efficient for reducing the numbpa@meters to be estimated. Different
approaches for state-tying were investigated. Althoughpmarable model sets were obtained using
bottom-up agglomorative clustering and top-down decisiea clustering, the latter approach is much
faster and thus shortens the development cycle.

Cepstral mean normalization and acoustic model adaptat®mmportant techniques given the
non-homogeneous nature of broadcast data. Both of thes&uater-based for the test data, allowing
a better estimate of the speaker characteristics and aceunsironment.

The generation of word graphs with adapted acoustic mod#tgan initial hypothesis obtained
in a rapid decoding pass is essential for obtaining wordlggapith low word error rates. Unsuper-
vised HMM adaptation is performed prior to each decoding pes$ng the hypothesized transcription
of the previous pass. This strategy leads to a significantatézh in word error rate.

Concerning language model development, the contributbtiee various text sources were eval-
uated. It was determined that the transcriptions of brosiditzta (both detailed acoustic and commer-
cial transcripts) are by far the most important sources,thatinewspaper and newswire texts are not
very helpful should other closer sources such as commedraia$cripts be available. Another poten-
tial source of related texts are closed captions, which baes explored in the context of the OE
project. However our initial experience is that the closegtons used a stylized language which
is relatively limited compared to the true transcripts, &mds are less appropriate than commercial
transcripts. We have also experimented with different apphes to combining data from different
sources, based on count merging and LM interpolation. ptetion is a very powerful approach
allowing optimal combination of component LMs estimatedidferent text sources.

The overall word transcription error of the Nov98 unpadited evaluation test data (3 hours) was
13.6%. Although substantial performance improvement imen obtained, there is still plenty of
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room for improvement of the underlying speech recogniteehhology. On unrestricted broadcast
news shows, such as the 1996 dev and eval data, the word &edsstill about 20% (even though
the NIST scoring program has removed overlapping speech).

With the rapid expansion of different media sources for infation dissemination, there is a
pressing need for automatic processing of the audio dagarstr A variety of near-term applica-
tions are possible such as audio data mining, selectivemissition of information, media monitor-
ing services [1], disclosure of the information content §id content-based indexation for digital
libraries [3]. Although substantial performance improwents have been obtained over the last 4
years, there is still a need to improve the underlying speecbgnition technology so as to increase
the recognition accuracy and reduce the required proagsisie [2].
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