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Abstract
This paper describes the application of the enhanced Morfes-
sor algorithm with phonetic features to Turkish. Previous re-
search on Turkish Automatic Speech Recognition (ASR) has
shown the superiority of sub-word units over words as lexical
items. Among the proposed sub-lexical approaches, the statis-
tical Morfessor algorithm is a popular choice due to its ease
of use and ASR performance. Here, baseline Morfessor algo-
rithm is enhanced with a basic phonetic knowledge of Turkish.
Phone-based distinctive features specific to Turkish and pho-
netic confusion constraints are incorporated into the Morfessor
algorithm. The ASR performance of the proposed modifica-
tions are evaluated using the Turkish Broadcast News transcrip-
tion system. The best performance, achieved with distinctive
features of the consonants, is 1.1% better than the baselineMor-
fessor algorithm. This decompounding configuration provides
the most compact model.

1. Introduction
Turkish, being an agglutinative language with rich morphol-
ogy, presents a challenge for ASR systems. The productive
morphology of Turkish yields many unique word forms. Due
to the computational limitations and in order to obtain robust
language model estimates, only a limited number of words,
usually the most common words in the ASR application do-
main, are used as the recognition vocabulary in state-of-the-art
ASR systems. This limited recognition vocabulary results in
high number of out-of-vocabulary (OOV) words, especially for
agglutinative and highly inflectional languages, such as Turk-
ish, Finnish, Estonian, Czech and Amharic. Even for vocab-
ulary sizes that would be considered as large for English, the
OOV rates for agglutinative and highly inflectional languages
are quite high. It was shown that with an optimized 60K lexi-
con the OOV rate is less than 1% for North American Business
news [1]. However, the OOV rates are 9.3% for Turkish with
a 50K vocabulary, 15% for Finnish with a 69K vocabulary [2],
10% for Estonian [3] and 8.3% for Czech [4], with 60K vocab-
ularies. As a rule of thumb, an OOV word brings up on average
1.5 recognition errors [5]. Therefore, high OOV rates directly
translate into high word error rates (WERs).

Using sub-lexical units in ASR is a common approach pro-
posed for agglutinative languages to handle the OOV problem
caused by using word vocabularies. In this approach, the recog-
nition lexicon is composed of sub-lexical units instead of words.
The sub-lexical units in the lexicon should be capable of cover-
ing most of the words of a language to address the OOV prob-
lem and is therefore should lead to an improvement in recog-

nition accuracy. Therefore, logical choices of word segments,
which are considered as “meaningful” in terms of ASR, can be
used as the sub-lexical units. The “meaningful” word segments
are the ones that carry enough acoustic information for discrim-
inating lexical items and that can be used as histories in predict-
ing the next units.

In agglutinative languages words are formed by concatena-
tion of stems and affixes. Therefore, grammatical units suchas,
stems, affixes or their groupings can be considered as natural
choices of sub-lexical units in ASR systems [6, 7, 8, 9, 10, 11].
They are obtained by using language dependent rule-based mor-
phological analyzers. The splitting of words into sub-words is
straightforward with morphological analyzers. However, mor-
phological analyzers may suffer from OOV problem due to
many proper names and foreign words that usually occur in
news texts, since a limited root vocabulary is compiled in the
morphological analyzers together with the morphotactic and
morphophonemic rules. For instance, a Turkish morphological
analyzer [12] with 54.3K roots can analyze 96.7% of the word
tokens and 52.2% of the word types in a text corpus of 212M
words with 2.2M unique words. Even though stems and affixes
are natural sub-lexical choices, the need for expert knowledge
of the language makes them inapplicable to languages lacking
of morphological tools.

In order to handle the drawbacks of grammatical sub-lexical
units, their statistical counterparts have been proposed [13, 14,
15]. Statistical sub-lexical units are morpheme-like units. They
are obtained with data driven approaches, usually in an unsuper-
vised manner, instead of morphological analyzers. The main
advantage of this model compared to grammatical models is
that it does not require an expert knowledge of the language.
Therefore, it can easily be applied to any language. However,
the splitting of words into sub-lexical units are not trivial in sta-
tistical segmentations. The statistical morpheme-like units are
not supposed to match with the exact grammatical morphemes,
however, they should yield the meaningful unit criteria. There-
fore, different algorithms are investigated to obtain reasonable
morpheme-like units with statistical techniques. These algo-
rithms only require a raw text corpus to learn the word segmen-
tations. However, a basic phonetic knowledge of the language
can be used to improve the segmentations [16, 17].

Morfessor [14] is one of the popular unsupervised word
decompounding algorithms, applied to agglutinative languages.
Morfessor-based sub-lexical units gave promising accuracy im-
provements over the baseline word model for Finnish, Estonian
and Turkish ASR systems [2, 3, 18, 19, 20]. Incorporating pho-
netic features to the baseline Morfessor algorithm is proposed
in [16, 17] and accuracy improvements are obtained for a less



Not rounded Rounded
Open Close Open Close

Posteriors a,[a] ı,[W] o,[o] u,[u]
Anteriors e,[e] i,[ i] ö,[ø] ü,[y]

Table 1: Turkish vowels with their [IPA] symbols.

represented language, Amharic.
This paper is an application of the enhanced Morfessor al-

gorithm with phonetic features to Turkish. Our results demon-
strate the effectiveness of the phonetic features in decompound-
ing Turkish text for ASR. The paper is organized as follows:
The characteristics of Turkish is presented in Section 2. InSec-
tion 3 we introduce the acoustic and text data used in word
segmentations and in ASR experiments. We present the data-
driven word decompounding in Section 4. Section 5 explains
the Broadcast News transcription system and gives the results
for the decompounding algorithms. Finally, Section 6 con-
cludes the paper.

2. Characteristics of Turkish
Turkish is a member of Altaic family of languages. The main
characteristics of Turkish are the agglutinative morphology and
the vowel harmony. These features distinguish Turkish as
a challenging language for natural language processing and
speech recognition applications.

As a result of the agglutinative morphology, many new
words can be derived from a single stem by addition of sev-
eral suffixes. There are no prefixes in Turkish. Figure 1 shows
concatenated nominal and verbal inflections. The verbal inflec-
tion is more complex than the nominal one. Although there is
not a one to one correspondence between Turkish morphemes
and English words, we can say that one Turkish word may cor-
respond to a group of English words. This agglutinative nature
causes the vocabulary to expand significantly which is problem-
atic for speech recognition.

nominal inflection: ev-im-de-ki-ler-den
(among those in my house)
verbal inflection: yap-tır-ma-yabil-iyor-du-k
(It was possible that we did not make someone do it)

Figure 1: Norminal and verbal inflection examples for Turkish

Vowel harmony is another characteristic of Turkish. Ac-
cording to one of the vowel harmony rules, a stem ending with a
back/front vowel takes a suffix starting with a back/front vowel.
Vowel harmony is not a problem when word based models are
used for speech recognition. However if sub-words are used as
language modeling units, we need to take vowel harmony into
account since concatenation of sub-words may result in word-
like units with incorrect morphophonemics.

Turkish is almost a phonetic language. This property led us
to utilize graphemes instead of phonemes in acoustic modeling.
Turkish consists of 29 graphemes, 8 vowels and 21 consonants.
Tables 1 and 2 give respectively the vowel and consonant inven-
tories for Turkish. These properties will be used in deciding the
phonetic features for Turkish word decompounding.

3. Data description
The Turkish Broadcast News (BN) audio corpus is used in
acoustic modeling. This corpus has been collected at Boğaziçi
University since 2007. It contains BN recordings from a ra-

Labial b [b], p [p], f [ f], m [m], v [v]
Dental d [d], t [ t], s [s], z [z], n [n], l [ l], r [r]
Palatal c [dZ], ç [Ù], ş [S], j [ Z], y[ j]
Velar g [g], k [k], v [w]
Uvular h [h]

Table 2: Turkish consonants with their [IPA] symbols. The con-
sonant ğ is ignored in the table since it is used to lengthen the
previous vowel.

dio channel (VOA) and four different TV channels (CNN Türk,
NTV, TRT1 and TRT2). The annotation of the corpus includes
topic, speaker and background information according to Hub4
BN transcription guidelines. In this study, we use approxi-
mately 71 hours of speech from the corpus as the acoustic data.
This data is partitioned into disjoint training and test sets. Ta-
ble 3 gives the size of the audio corpus for acoustic model train-
ing and test. The reference transcriptions of the acoustic train-
ing data include 485K words.

Train Test Total
68h 36min 2h 30min 71h 06min

Table 3: Broadcast News training and test audio data.

For language modeling, the main corpus consists of 96.4M
words, coming from news papers, news wires, specialized ar-
ticles (medicine, technologies, etc.), and also some literature
texts. A subset of 11.6M words, calledBoğaziçiin this article,
has been used to train the word decompounding models. Table 4
gives the size of the texts used to train the language models and
the word decompounding models.

Source # Words
Language modeling Transcriptions 485K

Main corpus 96.4M
Word decompounding Boğaziçi 11.6M

Table 4: The number of word tokens in the text data used to
train the languages models and the word decompounding mod-
els.Boğaziçiis the subset of themain corpus.

4. Data-driven word decompounding
To tackle the very high OOV word rates arising in Turkish
LVCSR from its very rich morphology, word decompounding
is almost a mandatory pre-processing step.

The data-driven word decompounding Morfessor algorithm
[14] has extensively been used to decompound lexical units as
a prior step for Turkish LVCSR, as in [19, 20, 21]. In [17],
an enhanced version of this algorithm has been successfully
used for LVCSR for another morphologically rich language, the
Amharic Ethiopian official language. New properties incorpo-
rating “oral” cues showed 0.7% absolute accuracy improve-
ment on the word baseline, giving 23.6% WER for Amharic
BN transcription. These properties, briefly described hereafter,
have been adapted and tested for Turkish.

4.1. Modifications to the Morfessor Algorithm

Morfessor has two purposes: first, the training of a word
segmentation model given a lexicon with optional frequency
counts. Training uses a maximum a posteriori (MAP) criterion
based on several text properties, including word frequencies and



string probabilities. Second, a previously learnt decomposition
model can be used to decompound a new word list. New words,
i.e. words that are not in the model, can also be decomposed
into morphs that exist in the decompounding model. For further
information about Morfessor, please refer to [14].

All the properties used in the Morfessor program are based
on written language and do not incorporate any “oral” proper-
ties that could be useful for ASR. Two main modifications have
been made to enhance Morfessor: a phone-based feature, called
‘DF’ for distinctive features, and a constraint called ‘Cc’that
tries to prevent phonetic confusion among units arising from the
decompoundings, due to the smaller size of the morphs used as
lexical recognition units.

The DF property is language specific since its features de-
pend on the phones of the language. Vowel and consonant dis-
tinctive features for Turkish are generated by using the phonetic
inventories in Tables 1 and 2. For instance, the properties asso-
ciated with the vowel a[a] are open, not rounded and posterior.
The vowel o[o] differs from the vowel a[a] as being rounded. If
only these 3 properties are considered, the feature vector repre-
sentations of the vowels a[a] and o[o] will be [1 0 1] and [1 1
1] respectively. Being rounded or not rounded is the only dis-
tinctive feature between these vowels. The feature vector rep-
resentation of each consonant is generated in the same way as
the vowels using Table 2. The DF property is incorporated in
the Morfessor framework as an additional term in thea priori
probability estimate. For more information about the DF calcu-
lation, please see [17].

The ‘Cc’ option forbids word splits that would result in
confusion-prone morphs. Unlike the DF option, Cc is not incor-
porated in the probability computation, but it correspondsto a
yes/no decision to keep a morph candidate. Previous syllabotac-
tic alignments are used to identify syllable confusion pairs. The
constraint compares the word split candidates with the other
morphs in the lexicon, syllable by syllable. If a candidate differs
from another morph by only one syllable that has been found as
a confusion pair with this morph, then the split is forbidden.

The end-of-word probability has been also modified, to pro-
duce more word splits. This last modification over the baseline
is called ‘H’ since it is inspired by the Harris’ observationthat
this number decreases naturally from the word start [22], and
the work on German word decomposition [23].

Table 5 summarizes the different options investigated with
the decompounding algorithm.

Option Comment
BL Baseline word based system, no decompounding
M Baseline Morfessor 1.0
M H M + modified ’Harris’
M H DFV M H + distinctive features of vowels only
M H DFC M H + distinctive features of consonants only
Cc + confusion constraint

Table 5: Decomposition options compared in this study.

4.2. Decompounding the training texts

To get rid of misspelled words and artifacts, only the words oc-
curring at least three times were selected from the Boğazic¸i cor-
pus. This led to a 197K word lexicon for this corpus.

Only the Boğaziçi lexicon, 197K words, has been used to
generate the word decompounding models. The decompounded
lexicon was used as decompounding model to decompound all
the words of the transcriptions and the 96.4M word text corpus.

The second column of Table 6 gives the number of words
or morphs for each system. The baseline, word model without
decompounding, gives 1.6M distinct words (also called word
types). After decomposition, the lexicons with the Cc constraint
yield around 150K words, which corresponds to a 10.7 factor
reduction. The ‘Cc’ constraint limits the number of decomposi-
tions, so that the lexicon sizes are bigger with this option.The
other option sets, with no Cc, have smaller word lists, around
115K units. Finally, the M H TDC set gave the smallest lexi-
con, with only 49.5K units.

5. ASR experiments
ASR experiments are performed for each decompounding
model using the Turkish BN transcription system [20]. The
acoustic and language models used in the ASR system are the
same with the ones in [10]. The sub-word-based language mod-
els are specific for each option set. The same set of phone-based
acoustic model is used for all the experiments.

5.1. Experimental Setup

For the acoustic models, we used Broadcast News data with
acoustic signals and their transcriptions. Acoustic models are
speaker-independent. They are adapted to each TV/Radio chan-
nel using supervised MAP adaptation on the training data, giv-
ing us the channel adapted acoustic models. We use decision-
tree state clustered cross-word triphone models with approxi-
mately 7500 HMM states. Since Turkish is almost a phonetic
language, graphemes were utilized instead of phonemes. Each
state of the speaker independent HMMs has a GMM with 11
mixture components. The HTK [24] frontend was used to get
the MFCC based acoustic features. The training and decoding
tasks were performed using the AT&T tools [25]

Language models with interpolated Kneser-Ney smooth-
ing as well as entropy based pruning [26] were built using the
SRILM toolkit [27]. In order to reduce the effect of pruning
on the recognition accuracy, the first-pass lattice outputswere
re-scored with unpruned language models. Language models
built with themain corpusand the referencetranscriptionswere
linearly interpolated to reduce the effect of out-of-domain data.
The optimized interpolation coefficient for the transcription lan-
guage model is 0.4 for all the systems. In order to facilitate
converting sub-word sequences into word sequences, the word
boundaries are marked with a special symbol (#). The ratio
of the sub-word tokens to the word tokens including the word
boundary symbol is given in Table 6. The ratios are greater than
2 since word boundary tags (#), which are used to recombine
morphs together, are counted in the number of words. The ratios
over 2 suggest higher order n-gram language models for sub-
word-based modeling.3-gram language models gave the best
performance for the baseline word model. Therefore,5-gram
language models were built for the sub-word based systems to
have a comparable span with words.

The lexicon size for all the systems has been limited to the
50K most frequent units due to computational limitations. For
the baseline word model, the OOV rate is 9.3%, which is very
high compared to the common OOV values, less than 1%, for
languages like English or French. With the sub-word unit lexi-
cons, the OOV rate is considered to be “0%”, since all the words
in the test data can be generated by any combination of the sub-
words in the 50K lexicon.

In the sub-word-based models, the word corpora was pre-
processed to generate the sub-word units. First, word boundary



Options # word or morph types # Morphs / # Words AUL (in types) AUL (in tokens) WER(%)
BL 1.6M 2.0 10.3 6.4 39.6
M 115.6K 2.04 8.0 5.6 36.6
M Cc 152.7K 2.02 8.0 5.7 37.3
M H 115.1K 2.04 8.0 5.6 36.6
M H Cc 151.5K 2.02 8.0 5.7 37.3
M H TDV Cc 153.0K 2.02 8.0 5.7 37.4
M H TDC 49.5K 2.24 6.2 4.2 34.8
M H TDC Cc 103.7K 2.11 7.8 5.3 35.3

M∗ 45.8K 2.4 6.7 4.5 35.9

Table 6: Number of lexical units (# word or morph types), # Morphs / # Words ratio, Average Unit Length (AUL) in types and tokens,
and Word Error Rates (WER), for the different option configurations. M∗ is also the baseline Morfessor model, however, obtained with
different parameter settings.

symbols were inserted between words. Second, words in the
corpora were decomposed into sub-words with the Viterbi al-
gorithm using the previously learnt models. Then,5-gram lan-
guage models were built with the most frequent 50K sub-word
units and the sub-word corpora. After decoding the test dataand
rescoring the lattice output with unpruned language models, the
sub-words between consecutive word boundary symbols were
concatenated to obtain word-like units. WER performance was
evaluated by comparing the word-like units with the reference
transcriptions of the test data.

5.2. Experimental Results

The last column of Table 6 presents the performances for all
the systems in terms of WER. The best system is the M H TDC
which yields a 4.8% absolute WER reduction over the word
baseline. This decompounding configuration, modified ‘Har-
ris’ and distinctive features of consonants, provided the most
compact model with the smallest lexicon. All the sub-word
unit based systems achieved WER reductions over the word-
based system, but the Cc constraint that limits the number of
morphs yielded smaller WER reductions. The best results were
achieved without the ‘Cc’ option, i.e. with the systems thatpre-
sented the smallest lexicons.

The success of the M H TDC model can lead up to the con-
clusion that models resulting in smaller sub-word lexiconsout-
perform the models with higher lexicon sizes. In our recogni-
tion experiments, because of limiting the recognition vocabu-
lary to 50K, lexicon size may have an effect on the accuracy.
In order to investigate whether smaller vocabulary size is the
only reason of the best model’s success, we changed the param-
eters of the baseline Morfessor algorithm and rerun it to obtain
a smaller vocabulary. This model is labeled as M∗ in Table 6
and it resulted in 45.8K sub-word types. M H TDC model is
absolutely 1.1% better than the M∗ model. This result clearly
shows the effect of incorporating distinctive features of con-
sonants into the Morfessor model in decompounding Turkish
words.

In [17], the best performance for Amharic was obtained
with the ‘Cc’ option and worse performances were obtained
with the models resulting in smaller lexicon sizes. These results
are in contradiction with the ones in this paper. This contradic-
tion may arise due to the differences in the experimental setups
between Amharic and Turkish. First, the vocabulary sizes for all
models were set to 50K for Turkish experiments due to the com-
putational limitations, whereas, all the sub-words were utilized
as the lexical items in Ahmaric experiments. Sub-word lexicons
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Figure 2: WER as a function of the (#morphs /#words) ratio

with 50K units gave full coverage over the test data, mostly due
to the shorter length sub-word units frequently occurring in the
corpus, as a result being the lexical items. The fourth and the
fifth columns of Table 6 clearly shows how the average unit
length (AUL) changes when calculated over types and tokens
for the units in the lexicon. Therefore, limiting the vocabulary
size for sub-words may favor the models having smaller number
of sub-word types after decomposition. Second, handling ofthe
morph recombination into full words are different in the setups.
In Turkish, a word boundary tag, (#), is used. This method
has the advantage to not distinguish morphs and words, for the
morphs that are both affix and single word. In the Amharic ex-
periments, a ‘+’ sign was added to the prefixes, so that some
confusions between both forms of a single morph could arise.
Another explanation of the contradiction, could be the differ-
ence in the baseline OOV rates. The OOV rate is higher in
the Turkish experiments than in the Amharic ones, respectively
9.6% and 6.8%. Thus the lexical coverage for Turkish benefits
more from numerous word decompositions.

There is an interesting apparent relationship between the
WER and the ratio of the number of morphs to the number of
words. Table 6 and Figure 2 illustrate this relation. The best
system M H TDC shows the biggest ratio, after M∗, with a 2.24
value. This system is also the one with the lowest AUL. In
our experiments, 2.24 can be the optimal morph to word ratio
resulting in the most compact model.



6. Conclusion and future work
In this paper, the performance of the data-driven Morfessor
algorithm modified with phonetic features is investigated for
Turkish. All the sub-word experiments perform better than
the reference word baseline and show the superiority of sub-
word units in modeling Turkish language. For the enhancement,
phonetic features specific to Turkish are incorporated intothe
Morfessor model. The distinctive features of the consonants
achieves the best performance, absolutely 1.1% better thanthe
original algorithm.

Vowel distinctive features are also incorporated into the
Morfessor model, however, their performance is even worse
than the original one. Our hypothesis for the performance
degradation caused by the vowel DF is that the number of vowel
features are less than the number of consonant features. There-
fore, DF parameter plays a crucial role in consonants and splits
more words than the vowel features do.

Future directions of our research will include a key question
raised by the observation of the relationship between the WERs
and the unit ratios. Is there a way of selecting the best perform-
ing model without running ASR experiments? If there are any
related parameters with the WER, decompounding algorithms
can be modified to produce sub-words that will optimize the
WER.

7. Acknowledgements
The authors would like to thank Sabanci and ODTU univer-
sities for the Turkish text data and AT&T Labs – Research
for the software. This research is supported in part by Turk-
ish State Planning Organization (DPT) under the project num-
ber DPT2007K120610, The Scientific and Technological Re-
search Council of Turkey (TUBITAK) under the project num-
bers 108E113, 105E102 and 107E261 and Boğaziçi University
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