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ABSTRACT
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Language modeling for conversational speech suffers from the
limited amount of available adequate training data. This paper de-
scribes a new approach that performs the estimation of the lan-
guage model probabilities in a continuous space, allowing by these
means smooth interpolation of unobservedn-grams. This contin-
uous space language model is used during the last decoding pass
of a state-of-the-art conversational telephone speech recognizer to
rescore word lattices. For this type of speech data, it achieves con-
sistent word error reductions of more than 0.4% compared to a
carefully tuned backoffn-gram language model.

1. INTRODUCTION

Conversational speech recognition is known to be a significantly
more difficult task than recognition of broadcast news (BN) data.
Based on the NIST speech recognition benchmarks [1], current
best BN transcription systems achieve word error rates around
15% in 10xRT while the word error rate for theDARPA conversa-
tional telephone speech recognition task is about 25% using much
more computational resources (100–300xRT). A large amount of
this difference can of course be attributed to the difficulties in
acoustic modeling, but language modeling of conversational speech
also faces problems that are much less frequent in BN data such as
unconstrained speaking style, frequent grammatical errors, hesita-
tions, start-overs, etc. In addition, language modeling for conver-
sational speech suffers from an extreme lack of adequate training
data since the main data source is audio transcriptions, in contrast
to the BN task for which other news sources are readily available.
If we consider for instance theDARPA SWB task, there are only
about 3M words of transcriptions corresponding to the 260h of
available transcribed acoustic training data. Unfortunately, col-
lecting large amounts of conversational LM data is very costly.
One possibility is to increase the amount of training data by se-
lecting conversational like sentences in BN material or by trans-
forming other sources to be more conversational-like, see for in-
stance [2, 3]. In this paper, we focus on a language modeling tech-
nique that makes better use of the limited amount of data than con-
ventional backoffn-gram models.

In standard backoffn-gram language models words are repre-
sented in a discrete space, the vocabulary. This prevents “true in-
terpolation” of the probabilities of unseenn-grams since a change
in this word space can result in an arbitrary change of then-gram
probability. The most prominent technique is to backoff to lower
ordern-grams and word class language models. Following [4],
we attack the estimation task in the continuous domain. The ba-

sic idea is to convert the word indices to a continuous represen-
tation and to use a probability estimator operating on this space.
Since the resulting distributions are smooth functions of the word
representation, better generalization to unknownn-grams can be
expected. Probability estimation and interpolation in a continuous
space is mathematically well understood and many powerful al-
gorithms are available that can perform meaningful interpolations
even when only a limited amount of training material is available.

A first evaluation of such an approach using a neural network
demonstrated that this technique could be incorporated into a con-
versational speech recognizer and reduce the word error rate [5].
However, the word error rate of the baseline system was rather
high and one may wonder if this new language model can still
achieve significant improvements once the system has been opti-
mized to the task. This paper describes the integration of an im-
proved neural LM in a baseline system that achieves state-of-the-
art performance (a word error of under 25% on the SWB NIST
Eval01 test set). The neural language model is used to rescore lat-
tices after two acoustic model adaptation passes instead of being
used to carry out a full decode as was reported previously. This
improved neural language model is compared to a state-of-the-art
backoff LM using modified Kneser-Ney smoothing.

The remainder of this paper is organized as follows. The next
section describes the architecture of the continuous space language
model. Section 3 summarizes the baseline speech recognizer and
Section 4 explains how the neural LM is incorporated in the sys-
tem. Comparative results are reported in Section 5 and the paper
concludes with a discussion and some possible extensions of the
approach.

2. CONNECTIONIST LM ARCHITECTURE

The architecture of the connectionist LM is shown in Figure 1.
A standard fully-connected multi-layer perceptron is used. The
inputs to the neural network are the indices of then−1 previous
words in the vocabularywj−n+1, ..., wj−2, wj−1 and the outputs
are the posterior probabilities ofall words of the vocabulary:

P (wj = i|wj−n+1, ..., wj−2, wj−1) ∀i ∈ [1, N ]

whereN is the size of the vocabulary. This can be contrasted to
standard language modeling where eachn-gram probability is cal-
culated independently. The input uses the so-called 1-of-n coding,
i.e., thei-th word of the vocabulary is coded by setting thei-th ele-
ment of the vector to 1 and all the other elements to 0. This coding
substantially simplifies the calculation of the projection layer since
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Fig. 1. Architecture of the connectionist language model.hj de-
notes the contextwj−n+1, ..., wj−1. P , H andN is the size of
projection, hidden and output layer respectively. When shortlists
are used the size of the output layer is much smaller then the size
of the vocabulary.

we only need to copy thei-th line of theN×P dimensional projec-
tion matrix, whereN is the size of the vocabulary andP the size of
the projection. At the hidden layer atanhnon-linearity is used and
the outputs are normalized using a softmax normalization to obtain
posterior probabilities: the value of thei-th output neuron corre-
sponds directly to the probabilityP (wj = i|hj), wherehj denotes
the word historywj−n+1, ..., wj−2, wj−1. Training is performed
with the back-propagation algorithm using cross-entropy as the er-
ror function. It can be shown that the neural network minimizes
the perplexity on the training data (see [5] for more details of the
architecture).

This neural LM has a rather high complexity when it is used
to calculate the probabilityP (wj |hj) of only onen-gram. The
activities of the projection layer are obtained by a simple table
look-up and can be neglected in the complexity analysis. The cal-
culation of the hidden- and output-layer activities correspond to a
matrix/vector multiplication followed by the application of a non-
linear function. This gives the following number of floating point
operations (Flops):

((n− 1)P ×H) + H + (H ×N) + N

whereH the size of the hidden layer. SinceN is much larger than
H, the complexity is dominated by the calculation at the output
layer. For usual values ofn=3, N=42k,P=50 andH=300, about
13 MFlops are needed to calculate one LM probability, which is
computationally very expensive for full decoding. Note that due
to the softmax normalization, all of the output activities need to be
calculated even if only one probability is needed.

The proposed LM is used during the final decoding pass to
rescore lattices. It is easy to arrange that all the different LM prob-
abilities for the same context are requested sequentially. Using
caching techniques, the neural LM can calculate these additional
predictions for the same input context at no cost since they are al-
ready available at the output! In addition, many of the possible
n-gram probabilities are never requested when rescoring lattices
and it is not very reasonable to spend a lot of computation power
on words that appear very rarely. Therefore, we chose to limit
the output of the neural network to the 2000 most frequent words,
referred to as ashortlist in the following discussion.

The LM probabilities of words in the shortlist are calculated
by the network (̂PN ) and the LM probabilities of the remaining
words by a standard4-gram backoff LM (PB):

P (wj |hj) =

�
P̂N (wj |hj) · PS(hj) if wj ∈ shortlist
PB(wj |hj) else

with PS(hj) =
X

w∈shortlist(hj)

PB(w|hj)

In other words, one can say that the neural network redis-
tributes the probability mass of all the words in the shortlist.1 These
probability masses can be precalculated and easily stored in the
data structures of the standard4-gram LM. A standard backoff
technique is used if the probability mass for a requested input con-
text is not directly available. Limiting the output of the neural
network to the 2000 most frequent words, covers 75% of the re-
quested4-grams when calculating the perplexity of the Eval01 test
corpus and about 85% when rescoring the lattices. Using these
optimizations techniques lattices can be rescored in 1-2xRT, de-
pending on their size.

3. BASELINE SYSTEM

The LIMSI conversational speech recognizer is derived from our
broadcast news transcription system [3]. The word recognizer
uses continuous density HMMs with Gaussian mixture for acous-
tic modeling andn-gram statistics estimated on large text corpora
for language modeling. Each context-dependent phone model is
a tied-state left-to-right CD-HMM with Gaussian mixture obser-
vation densities where the tied states are obtained by means of a
decision tree. The acoustic feature vector has 39-components com-
prised of 12 cepstrum coefficients and the log energy, along with
the first and second order derivatives. Cepstral mean and vari-
ance normalization are carried out on each conversation side. The
acoustic models are trained on a total of about 230 hours of data
from the LDC SWB1, CHE and SWB-CELL corpora.

3.1. Language model training

The baseline language model is constructed as follows: Separate
backoffn-gram LMs were estimated on the following audio train-
ing corpora transcriptions: 2.7M words of the SWB1 LDC tran-
scriptions, 2.9M words of SWB1 ISIP transcriptions, 230k words
of SWB cellular training transcriptions, and 215k words of Call-
Home corpus transcriptions. Additional backoff LMs were built
using 240M words of commercially produced BN transcripts and
a subset of the BN training corpus similar in style to the Switch-
Board data (see [3] for details on the data selection method). The
4-gram backoff LMs were built using the modified version of
Kneser-Ney smoothing as implemented in the SRI LM toolkit [6].
The LM vocabulary contains 41670 words.

A single backoff LM was built by merging these 6 models.
The interpolation coefficients were estimated with an EM proce-
dure. The resulting LM has 12M 2-grams, 26M 3-grams and 21M
4-grams. The perplexity on the Eval01 test data is 83.0 (the de-
compounded perplexity is 60.3). This interpolated model is our
baseline SWB 4-gram LM. The bigram and trigram components
of this LM are used in some of the early decoding passes.

1Note that the sum of the probabilities of the words in the shortlist for
a given context is normalized

P
w∈shortlist P̂N (w|hj) = 1.



Corpus ISIP LDC CH CELL interpol. w BN
backoff 115.7 113.7 189.2 151.2 83.0
neural 106.4 104.9 181.6 150.9 78.8

Table 1. Perplexities of the backoff and the neural 4-gram LM
estimated on different transcription sets (SWB ISIP, SWB LDC,
CallHome, and SWB Cellular).

The neural LM was only trained on the conversational speech
corpora since its purpose is to do good interpolations when only
little training data is available. Table 1 summarizes the perplexities
of the different language models. The neural LM achieves relative
perplexity reductions of up to 8% on all corpora. The perplexity
of these LMs interpolated with the BN LMs is shown in the last
column. The overall perplexity is 78.8 (58.0 decompounded).

3.2. Decoding

Decoding is carried out in 4 passes. In the first pass the speaker
gender is identified for each conversation side using Gaussian mix-
ture models, and a fast 3-gram decode is performed to generate
approximate transcriptions. These transcriptions are only used
to compute the VTLN warp factors for each conversation side.
All of the following passes make use of the VTLN-warped data.
Each subsequent decoding pass generates a 2-gram word lattice
per speaker turn which is expanded with the 4-gram baseline back-
off LM and converted into a confusion network with posterior
probabilities. The best hypothesis in the confusion network is used
in the next decoding pass for unsupervised MLLR adaptation [7]
of the acoustic models. Two regression classes (speech and non
speech) are used in the third pass, whereas 5 phonemic regression
classes (non speech, voiceless consonants, voiced consonants, and
two vowel classes) are used for the fourth pass. The baseline sys-
tem has a word error rate of 25.0% on the NIST Eval01 test set
(see pass 4 in Figure 2, top line).

In addition, two alternative sets of acoustic models were used
in a fifth decoding pass (including MLLR adaptation with 5 re-
gression classes): a model set based on MFCC features, and a
model set based on PLP features but with short-term cesptral nor-
malization (denoted PLP-S in Figure 2). The outputs correspond-
ing to these 3 sets of acoustic models are finally combined using
ROVER [8].

4. RESCORING LATTICES WITH THE NEURAL LM

In principle, the neural LM could completely replace the standard
backoff LM and be used throughout all decoding passes and in our
initial experiments a full decode with the neural LM was used [5].
To reduce the computational costs, an alternative solution is ap-
plied in this paper. First we generate lattices using the 2-gram
backoff LM as described above. These lattice are then expanded
with the baseline trigram and then pruned. Then the baseline back-
off or the neural 4-gram LM is used to expand and rescore theses
lattices. It is important to note that the neural LM never backs off
to lower ordern-grams since it can interpolate an LM probability
for any possible context. Table 2 summarizes the resulting differ-
ences in lattice size. The neural LM generates lattices which are
about 30% larger than the baseline LM. The use of a shortlist and
caching techniques with careful optimization [5] makes it possible
to rescore the lattices in less than 2xRT.

LM: 2-gram 3-gram 4-gram
backoff backoff backoff neural

#nodes 528 476 709 1005
#links 2628 990 1932 3067

Table 2. Average per speaker turn lattice statistics on the NIST
SWB Eval01 data. The expanded 3-gram lattices have been
pruned.

PLP MFCC PLP-S ROVER
ML acoustic models:
backoff LM 25.0% 24.9% 25.3% 24.2%
neural LM 24.5% 24.4% 25.0% 23.8%

MMI acoustic models:
backoff LM 24.0% 24.1% 23.9% 23.3%
neural LM 23.6% 23.7% 23.7% 23.0%

Table 3. Word error rates on SWB Eval01 test data using either
the baseline 4-gram backoff LM or the neural 4-gram LM.

Although the lattices have low oracle word error rate (below
5%), it is interesting to know what the word error rate would be if
a perfect LM was available to rescore the lattices. If the number is
close to the word error rate of the baseline system, it would not be
worth pursuing research on better language models, but rather on
improving the acoustic models. This perfect LM is not easy to get
since it is not reasonable to build a LM directly on the 56k words of
the Eval01 transcriptions. Therefore we first trained a neural LM
on the full Switchboard corpus. After convergence, training was
continued on the Eval01 data (using a small learning rate), doing
by these means supervised LM adaptation.

The resulting LM has a perplexity of 22.2 on Eval01 data and
lattice rescoring gives an word error rate of 16.6%. This means that
there is room for advances in language modeling, but that signifi-
cant improvements in acoustic modeling are also needed in order
to reduce the word error rate to under 10%.

In the following section we first report results when using the
neural LM to rescore only the final lattices after the five class
acoustic model adaptation. On the other hand, one may argue
that the best possible hypothesis should be used to perform un-
supervised MLLR adaptation. Therefore it may be reasonable to
already use the neural LM to rescore the lattices obtained by the
2nd and 3rd pass respectively in order to obtain better hypothesis
for the adaptation passes.

5. RECOGNITION RESULTS

Table 3 summarizes the word error rates for the three different sets
of acoustic models (with ML and MMI training) and their Rover
combination when using the baseline backoff LM or the neural
network LM based approach in the last decoding pass. Results are
given on the NIST SWB Eval01 test set (6h of audio data) used as
development data.

Although the neural language model only achieved a rather
modest perplexity reduction (cf. Table 1), the word error rates de-
creased by 0.5% with the baseline ML PLP acoustic models (from
25.0% to 24.5%). This is in contrast to many reported works in
the literature where new language models achieve large perplexity
reductions, that unfortunately do not lead to word error improve-
ments. We are also using MMI training in order to improve the
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Fig. 2. Comparison of different decoding strategies (Eval01, MMI
acoustic models). pass 3 & 4: MLLR using the hypothesis after
rescoring with 4-gram backoff LM; pass 3b & 4b: MLLR using
the hypothesis after rescoring with the neural LM. The numbers
at the right side of each pass give the word error rates with the
backoff and the neural LM respectively.

PLP MFCC PLP-S ROVER
backoff LM 27.3% 27.2% 26.9% 26.3%
neural LM 26.9% 26.9% 26.6% 25.9%

Table 4. Word error rates on eval02 for three MMI systems using
different front-ends for the baseline and neural LMs.

acoustic models. Using the more accurate MMI acoustic models
does not change the gain provided by using the neural language
model as we obtain basically the same word error reduction of
0.4%. Note that a 0.4% word error reduction is not easy to obtain
at this error level. This gain is basically the same as that achieved
in the fourth decoding pass which requires ten times more compu-
tation (20xRT).

The improvement obtained by the neural LM is also main-
tained when the outputs for the three front-ends (PLP, MFCC,
PLP-S) are combined with the ROVER algorithm [8] as shown
in the last column of Table 3.

One can question if it is advantageous to use the neural LM
to rescore the lattices of all passes or to apply it only in the last
step. As can been seen in Figure 2 the neural LM also achieves
comparable word error reductions when used to rescore the 2nd
and 3rd pass. It turned also out that the final word error was identi-
cal (23.6%, following passes 3b and 4b) when the neural LM was
used to rescore lattices in all passes instead of only in the last one.
The backoff LM is seen to also have a lower word error in pass 4b
since it takes advantage of the neural network rescoring in passes
2 and 3b.

We have also tried to perform only one MLLR adaptation pass
using 5 regression classes (pass 4’, Figure 2). This achieves a
slightly higher word error rate of 23.8%, but without the 20xRT
cost of the last adaptation pass.

Finally, Table 4 gives the results on the NIST SWB eval02
test set that was not used during development. The gain of the
continuous space LM is very comparable to that observed on the
development data.

6. DISCUSSION AND SUMMARY

We have described experiments with a neural language model that
is well suited when only a small amount of LM training data is
available. This makes it very interesting for conversational speech
recognition. The approach seeks to achieve better estimation of
the LM probabilities by performing the estimation in a continuous
space, allowing by these means “smooth interpolations.”

The neural network language model has been extensively tested
by rescoring the lattices of a conversational speech recognizer.
Despite only small gains in perplexity with respect to a carefully
tuned backoff LM, the neural LM achieved consistent word error
improvements of over 0.4%. This word error reduction is main-
tained when the overall system is improved, e.g. unsupervised
acoustic model adaptation, better acoustic modeling using MMIE
or system combination.

The presented approach uses a neural network to project the
words onto a continuous space and to estimate the LM probabil-
ities. We are currently working on other probability estimators
that operate on the continuous space. Promising candidates are for
instance Gaussian mixture densities or RBF networks. Another in-
teresting direction is to train an error corrective LM. This could be
done by using a training criterion that seeks to minimize the word
error after rescoring training data lattices.
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