LARGE VOCABULARY SPEECH RECOGNITION USING
SUBWORD UNITS

C. H.Lee, J. L Gauvain, R. Pieraccini and L. R, Rabiner

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT - Researchin large vocabulary speech recognition has been intensively carried out
worldwide, in the past several years, spurred on by advances in algorithms, architectures, and
hardware. Inthe United States, the DARPA community has focused efforts on studying several
systems including Resource Management, a 991 word task, ATIS (Air Travel Information
System), a task with an open vocabulary (in practice on the order of several thousand words)
and a natural language component, and Wall Street Journal, a task with a vocabulary on
the order of 20,000 words. Although we have learned a great deal about how to build and
efficiently implement large vocabulary speech recognition systems, there remain a whole range
of fundamental questions for which we have no definitive answers, For example we do not yet
know the best way to build and train the fundamental subword units from which word models
are created. We do not yet know the best way to impose language constraints on the recognizer
so as to utifize all available knowledge in the most computationally efficient manner. We do
not yet even understand the best way to implement a recognition system so as to maximize
the probability of recognizing the spoken string while minimizing the computation for string
comparison and searching through the recognition network. In this paper we review the basic
structure of a large vocabulary speech recognition system, discuss the considerations in the
choice of subword unit, method of training, integration of language model, and implementation
of overall system, and report on some recent results, obtained on at AT&T Bell Laboratories
and elsewhere, on the DARPA Resource Management Task.

1 INTRODUCTION

In the past few years a significant portion of the research in speech recognition has gone into studying the
problem of how to build and implement a large vocabulary, continuous speech recognition system. Much
of this effort has been stimulated by DARPA which has funded research on three recognition tasks (Lee,
1989 & Lee, et al., 1990); however there is worldwide interest in large vocabulary speech recognition
because of the potential applications to voice database access and management, voice dictation, and
- to language translation (Jelinek, 1985 & Roe, et al., 1992). Although some of the systems have been
trained to individual speakers (Jelinek, 1985 & Roe, et al., 1992), most current large vocabulary recognition
systems have the goal of performing speech recognition on fluent input (continuous speech) by any talker
(speaker independent systems).

The approach that is conventionally taken to large vocabutary speech recognition is fundamentally a sta-
tistical pattern recognition approach. The fundamental speech units use phonetic labels but are modeled
acoustically based on a lexical description of the words in the vocabulary. In general, no assumption is
made, a prioti, about the mapping between acoustic measurements and subword linguistic units such as
phonemes; such a mapping is entirely learned via a finite labeled training set of speech utterances. The
resulting speech units, which we call phone-like units or PLU's are essentially acoustic descriptions of
linguistically-based units as represented in the words occurring in the given training set. (We will return
to this important point later in this paper when we discuss creation of so-called vocabulary independent
subword units.)

A block diagram of the large vocabulary continuous speech recognition system developed at AT&T Bell
Laboratories is shown in Fig. 1. The system consists of three main modules, namely a feature analysis
(or spectral analysis) module, a word-level acoustic match module, and a sentence-level language match
module. The feature analysis module provides the acoustic feature vectors used to characterize the
spectral properties of the time varying speech signal. The word-level acoustic match module evaluates
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the similarity between the input feature vector sequence (corresponding to the input speech) and a set
of acoustic word models to determine what words were most likely spoken. The sentence-level match
module uses a language model (based on a set of syntactic and semantic rules) to determine the word
sequence for the most likely sentence.
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In the following sections we discuss each module of the baseline system of Fig. 1 in more detail. We
will attempt to explain what is understood about each module, and where active research is ongoing in
order to resolve differences of opinion as to the best way to implement the desired processing. Following
these discussions we present some recent results on performance of the DARPA Resource Management
System based on using so-called vocabulary independent units, and based on adaptive training methods.

2 THE BASELINE SPEECH RECOGNITION SYSTEM

2.1 Acoustic Analysis Module

The purpose of the acoustic analysis module is to parameterize the speech into a series of spectral vectors
thatcontain the relevant {for recognition) information about the sounds within the utterance. Although there
is no consensus as to what constitutes the optimal spectral analysis, there are generally several aspects of
the analysis that are common to most recognition systems. For example most systems use LPC spectral
analysis methods based on fixed sized frames, .g. every 10 msec an analysis of a fixed frame of 30 msec
of signal is performed. Typically the LPC analysis provides a set of cepstral coefficients for the frame.
Sometimes non-uniform frequency scales are used giving the so-called mel frequency cepstral coefficients
(Davis & Mermelstein, 1980). The rationale here is that since the human ear perceives frequencies on
a non-uniform scale, it would be desirable to represent the spectral information of sounds on the same
perceptual scale.

In the last few years the spectral feature set for each frame has been extended to include dynamic
information about the derivatives {first and second order) of the cepstral vector, as well as the static
information about the cepstrum (Furui, 1986 & Lee, et al, 1992). Also scalars representing frame
energy and its derivatives are often used as part of the representation for each frame. For the system
implemented at Bell Labs, each 30 msec of speech (8 kHz sampling rate) was analyzed 100 times per
second (10 msec shift) to give a spectral vector with 12 cepstral coefficients (on a uniform frequency scale),
12 first order cepstral derivatives, 12 second order cepstral derivatives, and first and second order log
energy derivatives. (Absolute log energy was not used directly because of its sensitivity to absolute level
in the the recording.) Hence a spectral vector with 38 components was created every 10 msec throughout
the signal.
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Number  Symbol Word Number Symbol Word  Number Symbol Word

1 h# silence 17 er bird 33 p pop

2 aa father 18 ey bait 34 r ved

3 ae bat 19 f fief 35 s sis

4 ah butt 20 g qgag 36 sh shoe
5 ao bought 21 hh nag 37 t ‘ot

s} aw bough 22 ih bt 38 th thief

7 ax again 23 ix roses 39 uh book
8 axr diner 24 iy beat 40 uw boot

9 ay bite 25 ih judge 41 v very
10 b hob 26 Kk kick 42 w wet

11 ch church 27 | \ed 43 y yet

12 d dad 28 m mom 44 z 200
13 dh they 29 n no 45 zh measure
14 eh bet 30 ng sing 46 dx butter
15 el botte 31 ow boat 47 nx center
16 en button 32 oy boy

Table 1. The 47 Context-Independent PLUs.

2.2 Word Level Match Module

The essence of the word level match module is the set of subword models and the lexicon, as seen in
Fig. 1. The subword models are the representation of the fundamental speech units used as the building
blocks for words, phrases, and sentences. Probably the most research in large vocabulary speech
recognition has gone into defining these subword units in a manner such that they can be easily trained
from finite training sets of speech material, such that they are robust to natural variations in accent, word
pronunciation, and test material, and such that they provide high recognition accuracy for the required
speech task. To date no one has defined the "ideal" set of subword units. However a great deal of thought
has gone into deciding what the real issues are in defining and using various alternatives for the subword
units.

Perhaps the simplest set of subword units, which are widely used, is the set of basic phonemes of the
language. Although there is no complete agreement as to what sounds are part of this basic set, Table 1
shows one representative set of 47 such phonemes with typical words in which the phonemes appear.
These basic units, when trained from real speech material, are called context-independent phone-like
units (CI-PLU) since the sounds are represented independent of the linguistic context in which they occur,
and since the spectral properties of the sounds are learned from a training set, rather than postulated on
the basis of the linguistic features of the units

In contrast to the 47 CI-PLU’s of Table 1, one could consider subword units which were context dependent
(CD). Thus, for example, a separate unit could exist for the sound /ae/ when preceded by /#/ and followed
by /t/ (as in fat), then for /ae/ when preceded by /b/ and followed by /t/ (as in bat). In theory there could be
as many as (47)3 CD-PLU's when considering all preceding and following sounds; in practice there are
on the order of 10,000 such possibilities, a number significantly less than the 100,000 count of (47)%, but
significantly more than the 47 CI-PLU’s of Table 1. Such CD-PLU’s have been extensively used for large
vocabulary speech recognition (Lee, 1989 & Morimoto, et al., 1990), but practical methods are generally
used to restrict the number of units to something on the order of 1000-2000 units.

The second basic component of the word-level match module is the lexicon which provides a linguistic
description of the words in the task vocabulary in terms of the basic set of subword units. Among the issues
in the creation of a suitable word lexicon is the base (or standard) pronunciation of each word and the
number of alternative pronunciations provided for each word. The base pronunciation is the equivalent, in
some sense, of a pronunciation guide to the word; the number of alternative pronunciations is a measure of
word variability across different regional accents and talker populations. Although there have been some
very interesting experiments based on multiple word pronunciation lexicons (Weintraub, et al., 1989), most
large vocabulary speech recognition systems rely on a lexicon with only a single pronunciation provided
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for each word. This “canonic” representation of each word must be consistent with the subword units;
hence its form changes as different sets of CD or Cl subword units are used. Also, for function words like
“‘the”, “and”, 10", etc., it is well known that there is no “canonic” or standard pronunciation. Hence a single
representation for such function words will invariantly lead to some problems with recognition.

The word model composition component of the word-level match module is simply the process of retrieving
the word pronunciation from the lexicon, and then concatenating appropriate subword units to create
individual word models which are then matched against the spectral vectors of the input speech signal. In
order to understand how such matching takes place, we must first discuss how subword units are modeied
and how the models are trained from finite training sets of speech.

2.2.1 Subword Unit Models

A key to the success of modern speech recognition systems is the use of statistical modeling techniques
(e.g. hidden Markov models — HMM's) to represent the basic subword units (Rabiner, 1989). Although
many variants exist, perhaps the simplest way subword units are modeled is as a left-to-right HMM, of the
type shown in Fig. 2. Each unit is represented by a simple first-order, left-to-right HMM having N states,
51,82, ..., Sn, with only self and torward transitions. :

;S‘ P 53 e o — =
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Figure 2. HMM representation of subword model.

Within each state of the model there is an observation density which specifies the likelihood (probability)
of a spectral vector from the speech signal occurring within the model state. This observation density
can either be a discrete density (implying the use of a common codebook to discretize the input spectrai
vector), or a continuous density (or even what is called a semi-continuous density (Huang, et al., 1990)
which is a codebook of continuous densities whose weights are chosen according to the model state).
Although continuous density modeling usually provides the highest performance recognition systems, it
requires the most computation to implement. The performance obtained with discrete or semi-continuous
densities is often comparable to or only slightly lower than that obtained with continuous densities; often
at significantly reduced computation rates.

For continuous density modeling the Bell Labs system uses both an observation probability density function
(for each state) represented by a weighted sum of M muitivariate Gaussian density functions with a

+ diagonal covariance matrix, and an energy histogram representing the log probability of observing a frame
with a given log-energy. No duration information is used. All subword unit models have three states except
the model for silence which has only one state. Furthermore no transition probabilities are used; forward
and self transitions from a state are assumed equally flikely.

2.2.2 Training of Subword Unit Models

Training of subword unit models consists of estimating the HMM parameters from a labeled training set
of continuous speech utterances where ali of the relevant subword units are known to oceur “sufficiently”
often. The training problem is another key aspect of the system, as the way in which training is performed
affects greatly the overall recognition system performance.

The first issue of note is the size of the training set. The optimai training set size is infinity — i.e. the
more training material that is used, the higher the reliability of the resulting speech models. Since infinite
size training sets are impossible to obtain (and computationally unmanageable), we must use a finite size
training set. This immediately implies that some subword units will occur much less often than others (at
least in any natural recording this will be the case). Hence we immediately see a tradeoff between using
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fewer subword units (where we get better coverage of individual units, but poor resolution as to linguistic
context), and more subword units (where we get poor coverage of the infrequently occurring units, but
improved resolution of linguistic context).

A second issue is the choice of training material. For a given amount of training material, the best coverage
is obtained when the statistics of occurrence of the training set units match those of the recognition task;
i.e. the training set sentences should come from the same linguistic material as the recognition task (i.e.
same vocabulary, same language model). However, in such a case, the universality of the resulting speech
models is poor; i.e. the same models may perform poorly on a totally different recognition task because
of poor coverage of subword units for the new task. Hence the concept of "task dependent” training,
which maximizes performance for a given task, versus “task independent” training, which maximizes
performance for any task. Most systems use task dependent training - we will present results on both
types of training in this paper.

Finally, an alternative to using a farge training set is to use some initial set of subword unit models and adapt
them over time (with new training material, possibly derived from actual test utterances) to the speaker
or environment. Such methods of adaptive training are reasonable for new speakers, vocabularies or
environments, and will be shown later to be an effective way of bootstrapping a good set of specific
models from a more general set of models.

2.3 Sentence Level Match Module

The sentence level match module uses the constraints imposed by a grammar (a set of syntactic rules
on which words are allowed in given contexts) and a set of semantic rules (which eliminate meaningless
sentences) to determine the optimal sentence in the language ~ i.e. the best word sequence, consistent
with the grammar and the semantics, that matches the input speech. Although there have been proposed
a number of different forms for the grammar (e.g. formal grammar, N-gram word probabilities, word
pair, etc.), we assume a simple grammar that can be represented as a finite state network (FSN). In this
manner it is relatively straightforward to implement the grammar directly with the word-level match module.
In particular, for the DARPA RM task (991 words), we have used either a word-pair {(WP) grammar, which
specifies explicitly, for each word in the vocabulary, which words are allowed to follow that word, or a
no-grammar (NG) grammar, in which we assume that every word can follow every other word in the
vocabulary. The perplexities (average word branching factor) of these two grammars is 60 for the WP
case and 991 for the NG case The implementations of these grammars as FSN's is shown in Figs. 3 and
4. For the WP case we exploit the fact that only a subset of the vocabulary occurs as the first word in a
sentence (condition B for beginning words), and only a subset of the vocabulary occurs as the last word in
a sentence (condition £ for ending words); hence we can partition the vocabulary into 4 non-overlapping
sets of words, namely:

{BE)} = setof words which can either begin or end
asentence, |BL| = 117

{BE} = setof words which can begin but which cannot end
a sentence, |B£| = 64

{BE} = setof words which cannot begin but can end
a sentence, |31} = 488

{BE} = setof words which cannot begin or end

a sentence, |11} = 322

The resulting FSN of Fig. 3 has 995 real arcs and 18 null arcs. To account for silence between words
(which is optional) each word arc bundle (nodes 1 to 4) is expanded to individual words followed by optional
silence, as shown at the bottom of Fig. 3. Hence the overall FSN allows recognition of sentences of the
form:

S (silence) - {BE, BE} — (silence) — ({1V}). . .({1V'}) - (silence) — { B, 31} — (silence)

where {W} is any word which is allowed to follow the previous word and includes optional silence.
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The FSN for the NG case, as shown in Fig. 4, is considerably simpler than the FSN for the WP case. The
sentences allowed by this grammar are of the form:

S (sitence) — ({11})...({I1'}) ~ (sitence)

where {WW'} is now any word in the task vocabulary.
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Figure 3. Network representation of WP syntax.

The grammar FSN's of Figs. 3 and 4 have the property that they can produce any valid sentence in the task
language. Unfortunately they also have the property that they can produce a large number of sentences
which are not valid in the task language, e.g. the sentence S : “and” "and” “and” is valid for the NG network
but not for the RM task. The overcoverage (ratio of sentences generated by the FSN to sentences valid
in the task language) of the FSN's is often extremely large and this is a negative feature of using these
simple networks as the grammar network. On the other hand, using a full grammar (i.e. no overcoverage)
is generally prohibitive from a computational point of view.
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Figure 4. Network representation of NG syntax.

One way to compensate for the overcoverage of the FSN grammar implementations is to use a semantic
processor to detect and correct invalid sentences. In a sense the semantic processor exploits the fact that.
the syntax used in recognition has a great deal of overcoverage, i.e. it allows meaningless sentences to
be passed to the semantic module. The semantic processor can use the actual task perplexity (generally
much lower than the perplexity of the syntax) to convert the recognized output to a semantically valid string
(Pieraccini & Lee, 1992).

In theory, the semantic processor should be able to communicate back to the recognizer to request a
new string whenever the resulting string from the syntactic FSN is deemed invalid. In practice, one of
two simple strategies can be used; either the recognizer can generate a list of the best N sentences
(N = 500 — 1000) that the semantic processor can search until a semantically valid string is found, or it
can assume that the best (recognized) string is semantically “close” to the correct string, and therefore
process it appropriately to determine a semantically valid approximation.
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