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Automatic Word Decompounding for ASR
in a Morphologically Rich Language:

Application to Amharic
Thomas Pellegrini and Lori Lamel, Member, IEEE

Abstract—This paper investigates a data-driven word decom-
pounding algorithm for use in automatic speech recognition. An
existing algorithm, called “Morfessor,” has been enhanced in
order to address the problem of increased phonetic confusability
arising from word decompounding by incorporating phonetic
properties and some constraints on recognition units derived from
forced alignments experiments. Speech recognition experiments
have been carried out on a broadcast news task for the Amharic
language to validate the approach. The out of vocabulary (OOV)
word rates were reduced by 35% to 50% and a small reduction
in word error rate (WER) has been achieved. The algorithm is
relatively language independent and requires minimal adaptation
to be applied to other languages.

Index Terms—Automatic speech recognition (ASR), broadcast
news transcription, less-represented languages, lexical modeling,
morphologically rich languages (MRLs).

I. INTRODUCTION

I N the literature, languages such as Arabic, Finnish, Turkish,
and Estonian, are often referred to as “morphologically

rich languages” (MRLs). Other languages do not have a “poor”
morphology, this qualification emphasizes the highly pro-
ductive processes involved in word formation in MRLs. For
such languages, it is common to generate words by the com-
pounding of smaller units that are primarily lexical morphemes
(such as in German), or mostly grammatical morphemes (for
example, Semitic languages such as Arabic or Amharic), or
both (such as Turkish). These languages need very large lexi-
cons, containing several hundred thousand words, to achieve
good lexical coverage. Since state-of-the-art automatic speech
recognition (ASR) systems generally use fixed (also called
closed) lexicons, only the words in the recognition lexicon
can potentially be recognized. For MRLs, the rich morphology
implies a high number of unknown or out-of-vocabulary (OOV)
words, which typically produce 1.5 to 2 errors for each OOV
word [1]. This large lexical variety also poses a problem for
language modeling, where it can be difficult to have reliable
n-gram estimates for infrequent words. To address these issues,
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word decomposition has been investigated in a number of
studies for various languages such as German [2], [3], Turkish,
Finnish and Estonian [4], Vietnamese [5], and Dutch [6]. The
probabilistic word decomposition framework used in this study
is derived from the baseline version of the corpus-based word
decompounding algorithm “Morfessor” [7].

High OOV rates and poor language model estimation are
problems that also arise when developing technologies for less-
represented languages, for which little data are available in an
electronic form. Most of the world’s languages suffer from poor
representation on the web, which is being used more and more
as the primary source for collecting data (principally texts) for
building ASR systems [8]. This study reports on experiments
carried out with the Amharic language, the official language of
Ethiopia, which is both a less-represented language and a lan-
guage in which grammatical compounding is frequent [9]. For
morphologically rich languages and less-resourced languages,
the first issue to be addressed, is the high percentage of un-
seen words as typical OOV rates are higher than 7%. Previous
work reported improvements in ASR for Amharic broadcast
news data when using sub-word units: for a relative OOV reduc-
tion of 16%, a 10% relative reduction in word error rate (WER)
was achieved [10]. The sub-word units were identified with a
character-based maximum branching factor algorithm similar to
the one used in [2], and selected using a heuristic. In the same
study, it was shown that experiments allowing more decompo-
sitions led to increased insertion and deletion rates, and to an
overall degradation in performance (a 7% relative increase in
WER, with a 20% relative OOV reduction compared to the best
sub-word based system). A common observation in the litera-
ture is that small lexical units can often be less reliably decoded
than longer units, since these units are acoustically more sim-
ilar and therefore more confusion-prone [11]. One solution to
overcome the increased confusion, consists of using word-based
models to generate N-best lists or lattices, and a sub-word unit
language model, only in a final rescoring framework. Never-
theless, for several reasons it was chosen to investigate the use
of sub-word units in all stages of the decoder. First, Amharic
is a language that has a rather straightforward grapheme-to-
phoneme conversion, allowing pronunciations to be easily pro-
duced for sub-word units [12]. Second, the use of the same
lexical units in all steps of the decoding simplifies the global
process. Finally, we wanted to investigate new features that try
to incorporate ”oral” properties in the identification/selection of
the sub-word units, in an attempt to take account of some speci-
ficities of spoken language. One of these new properties is based
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on the distinctive features specific to the Amharic phonemes.
By giving a ”phonemic” distance between two lexical units,
word splits that result in the largest distances between sub-word
units can be favored. The distinctive features are based on very
general theoretical sound properties. According to Jakobson,
phonemes of a specific language are distinguishable with a small
set of articulatory and acoustico–perceptive features, called dis-
tinctive features, such as voiced-unvoiced property or the place
of articulation often corresponding to the point of constriction in
the vocal tract [13]. A problem is that splitting words can create
homophones or near-homophones, particularly if multiple pro-
nunciation variants are allowed for the lexical units. To over-
come this drawback, an additional constraint was introduced
to forbid word splits that could have the same pronunciation
variant. Results incorporating these properties for vowels were
reported in [14], showing an absolute WER reduction of 0.4%
relative to the word-based system. However, the experiments in
this previous work were carried out on a development corpus,
since no additional test corpus was available. In the present ar-
ticle, cross-validation has been used to test the approach. The
distinctive feature property has also been extended to the con-
sonants, while in previous work it was limited to the vowels.
Finally, complementary experiments with longer-span language
models (5-gram) are also reported.

The paper is organized as follows. The next section discusses
the key role of words in ASR and motivates the use of sub-word
units for MRLs. This is followed by an overview of the ASR
literature with sub-word units. Section IV describes the base-
line version of the corpus-based word decompounding algo-
rithm Morfessor, with the modifications made to incorporate
“oral properties.” Section V presents the experimental results
carried out on the Amharic corpus. Since morphological decom-
position results in the redefinition of words or lexical entries
used for ASR, each explored configuration implies renormal-
ization of the available texts and transcripts, as well as the re-
training of the language and acoustic models. All modifications
in the word decompounding algorithm are fully tested by mea-
suring ASR performance in terms of word error rates in com-
parison to the reference word-based system. Finally, some con-
clusions and perspectives are given.

II. REFERENCE UNITS FOR SPEECH RECOGNITION

Speech recognition consists of finding the best elementary
unit sequence , which is the hypothesis with the highest prob-
ability, given a speech signal :

. By and large, the most widely used

recognition unit is the “word,” where the definition of a word
may vary across languages and systems. Performance is usu-
ally measured by word error rate, which is the sum of all kinds
of word errors (insertions , substitutions , and dele-
tions ), normalized by the number of words in the
reference (manual transcription in general). The WER is for-
mulated as . Word errors are de-
termined by dynamically aligning the recognition hypothesis to
the reference transcription at a sentence level. We used the NIST

standard scoring tool “sclite,” available at http://www.nist.gov/
speech/tools.

In Linguistics, the concept of word is often described as com-
plex and problematic, with difficulties arising when word identi-
fication has to be done.1 In speech recognition, only words spec-
ified in a lexicon can be recognized. So some kind of word seg-
mentation and identification are necessary to build a recognition
lexicon, and it is typical to take a very pragmatic approach, iden-
tifying words in as simple a manner as possible. Even for lan-
guages written with a space or another separator between words,
there are normalization choices to make. In French for example,
the use of the apostrophe is very frequent, as for the definite
article . Words like oral can be considered as two words
and oral, or just one word since there is no space between the
two distinct words. In order to avoid increasing substantially the
lexicon size, the first possibility may be chosen, and all small
words may be separated from their as-
sociated nouns and considered as words. This choice reduces
lexical variation at the cost of introducing many words with a
single phone. Such normalization issues in French are discussed
in [16]. As explained in the Chapter “The use of lexica in Auto-
matic Speech Recognition,” by Adda-Decker and Lamel [17],
normalization choices for the apostrophe may be different in
French and in English. In English, apostrophes are not as fre-
quent as they are in French, and therefore they are typically not
considered to be word separators. Contractions like I’ll, you’ve,
or he’s and as well as compound words and multi-word se-
quences are often used as lexical entries for speech recognition
[18]–[20]. These normalization practices, derived from experi-
ence gained by specialists in speech recognition, may be dif-
ferent according to the experts that choose them, but they illus-
trate well the issues linked with word definition for ASR. The
specific choices may also differ depending on the language, task,
and application. Dialog systems and conversational speech rec-
ognizers have been reported to benefit from using compound
words in order to facilitate the use of pronunciation variants spe-
cific to conversational speech.

Some languages have no word separators, as it is the case
for various Asiatic languages such Chinese, Japanese, and Thai.
For these languages, segmentation algorithms are required for
pre-processing and/or postprocessing. In general, a reference
lexicon is used but very often, multiple word segmentations are
possible for the same sentence. Various automatic techniques
have been proposed to try to remove this ambiguity, the most
popular being the maximum match segmentation, which tries
to find the longest words to match the characters in a sentence.
In 2005, the “Second International Chinese Word Segmentation
Bakeoff” showed that despite performance gains in the word
segmentation task, the main issue is still the processing of the
OOV words [21]. In order to avoid this issue, the ASR perfor-
mance is typically measured at character level, with character
error rates (CERs) instead of word error rates [22], [23].

For morphologically rich languages, the definition and se-
lection of lexical units is a popular topic in ASR, since pro-
hibitive lexicon sizes would be required to achieve reasonable

1Linguists use other concepts, such as word-form, lexeme, and autonomous
syntagm [15], for example.
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TABLE I
OUT-OF-VOCABULARY RATE (OOV) COMPARISON FOR TWO RICH

MORPHOLOGY LANGUAGES (AMHARIC AND TURKISH), AND TWO LANGUAGES

THAT HAVE A “LESS RICH” MORPHOLOGY (ENGLISH AND FRENCH)

lexical coverage. One characteristic of such languages is the in-
crease in distinct word number (“word types”), as a function
of the total number of words of a corpus (“word tokens”). For
these languages, the increase is much faster than for other lan-
guages. The study reported in [24] for example, distinguishes
Finnish, Estonian, Turkish, and Arabic from English on that
point. Table I gives lexicon sizes and OOV rates of systems
developed at LIMSI for English and French, and for two mor-
phologically rich languages, Amharic and Turkish. Nowadays,
it is common practice to use lexicons comprised of at least 65k
words and most state-of-the-art recognition system developers
consider acceptable OOV rates to be under 1%. As shown in
Table I with 65k words the OOV rate for English is 0.6%, and
is on the order of 1.2% for French. Using a 200k word lexicon
can reduce the OOV rate to under 0.5% for French [25].

For Amharic and Turkish, much higher OOV rates are ob-
served, 6.5% and 6.9% respectively, with substantially larger
lexicons. This difference is mainly due to the rich morphology
of Amharic and Turkish, but is also accentuated by the lack of re-
sources compared to English and French. In [26], a 96.4 million
word text corpus is used to train language models for broadcast
news transcription in Turkish. If all observed word forms were
included in the lexicon, it would be comprised of 1.4M words,
a prohibitive size for speech recognition. Lexicon size reduc-
tion is quite interesting in that case, and decompounding words
into sub-word units can serve to decrease both the recognition
lexicon size and OOV rates. Some illustrations found in the lit-
erature are as follows.

• The German word Schulelternbeiratsmitglieder was de-
compounded into Schuleltern + beiratsmitglieder, then
into Schul + eltern + beirats + mitglieder, by using a
character-based maximum branching factor algorithm [2].

• The Turkish sentence Isteklerimizi elde ettik dedi has been
decompounded into Istekler+ imizi el+ de etti+ k de+ di,
by using the Morfessor algorithm, also used in this work
and presented in Section IV[27].

Recently, several sites have reported on morphological de-
composition for the Arabic language [28]–[30] where sub-word
units such as prefixes (Al, bAl, fAl, kAl, b, f, k, l, s, w ) are
used to decompound words. Rules are typically applied to re-
strict the decomposition of frequent words avoiding some pos-
sible confusions. These reported experiments were carried out
with state-of-the-art systems trained on very large corpora.

Some of the above-mentioned studies showed improvement
in recognition performance obtained by word decompounding.
The methods used in these studies were different, Section III
presents and discusses some of them, along with other studies

TABLE II
EXAMPLE OF DIFFERENT ORDERS (SYLLABLE NUCLEUS) ASSOCIATED

TO THE ’L’ CONSONANT, GIVEN IN AMHARIC SCRIPT AND OUR LATIN

TRANSLITERATION. THE ’�’ STANDS FOR A REDUCED VOWEL (SCHWA)

found in the literature. Here first is a brief introduction to the
Amharic language, which is used as a case study in this work.

Amharic was chosen as an example of a Semitic language,
language family to which Arabic belongs to. It is mainly spoken
in Ethiopia. After Arabic, it is the second most widely spoken
Semitic language in the world, with 22 million speakers [31].
Despite its “official working” language status, and its nation-
wide use, Amharic suffers from poor representation on the In-
ternet, and may be considered as a “less-represented” language,
for which only small quantities of written texts are available
[32]. For speech recognition, the lack of text resources makes
language model probability estimation difficult, and often im-
plies high out-of-vocabulary rates. In Amharic, these problems
are increased by its rich and complex morphology, which is in-
flectional and derivational [33]. One characteristic of languages
with a rich morphology is a high increase in the number of word
types as a function of the number of word tokens [34]. Refer-
ence [9, Table IV] compares the frequencies of word types in
Amharic and in English, showing that word type frequencies
are quite a bit lower for Amharic.

Amharic has 34 basic symbols, for which there are seven vo-
calizations (transliterated form): ,
referred to as the seven orders. The basic symbols are modified
in a number of different ways to indicate the different vocal-
izations. 85% of the syllables represent a CV sequence (C for
consonant and V for vowel), one symbol represents the com-
plex sound /ts/V and the remainder represent CwV sequences
(where w is a semi-consonant). In this study, Cw has been con-
sidered as a single phone. For practical reasons, the Amharic
script was transliterated into a set of Latin letters. Table II shows
an example of the syllable, that is transliterated by /lE/ corre-
sponding to the phonetic transcription , given with its seven
orders. The sixth-order syllable nucleus is a schwa, written as
“x.”

III. WORD DECOMPOUNDING FOR SPEECH RECOGNITION

The use of sub-word units in speech recognition is not new,
with studies dating from the mid 1990s, but it remains an active
research area. Most of the studies use “Top-Down” methods:
starting from full word forms, words are decompounded
into smaller units. Once sub-word units have been selected,
the studies differ on how the sub-word units are used in the
decoding. Sub-word units can be used at different levels of
modeling: acoustic modeling and/or language modeling, for
all the decoding, or just during lattice rescoring. Kirchhoff and
Sarikaya, who led the ISCA Workshop “Processing Morpho-
logically Rich Languages” during the Interspeech conference
in Antwerp, August 2007, distinguished three main approaches
that are briefly reviewed here [34].
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To better identify the pros and cons of the three methods, they
are presented in relation to the generic speech recognition for-
mulation as shown in (1). The likelihood of the signal

given the word sequence , is developed as the sum of the
pronunciation probabilities (pronunciation variants named )
associated to the word sequence . corresponds to a se-
quence of acoustic models (phones in general)

(1)

The first method consists of using sub-word units in all mod-
eling elements of the speech recognizer: acoustic models, lex-
icon, and language model. This is the approach taken in [3],
[35], for example, with application to German and French. If
the French word aller was decompounded into all- er, then with
this method, two acoustic models would be used, one for all-
and one for er. The advantage here is the economy of the pro-
nunciation lexicon, since in this case

. A limitation of this method is the high complexity of the
acoustic models, with a number of states that should depend on
the number of phones in each sub-unit.

The second method uses the sub-word units in the lexicon
and the language model in the decoding process. The recogni-
tion units may be a combination of words and sub-word units.
Acoustic units are not based on the sub-word units, but are
generally phones or phone-like units. Some studies using this
approach are for example [4], [24], [28], [29], [36]. With this
method, building a pronunciation lexicon (i.e., determining
for each ) is necessary and may pose difficulties for some
sub-word units. One solution would be to decompound words
into sub-word units for which pronunciations are known or easy
to determine. In the literature, languages for which this method
has been used have a simple grapheme-to-phoneme conversion.
This is globally the case for the Amharic language of interest
in this study. Another potential problem source is modeling the

term, in the sense that small units are known to increase
acoustic–phonetic confusions for the system, and their probabil-
ities are very similar. In the present work, special care
in sub-unit generation was taken in order to try to avoid the cre-
ation of units that were too small or too similar, with the use of
the new “oral” properties, presented in Section IV-C.

The third method uses sub-word units only in a rescoring
pass, i.e., a sub-word based language model is used to rescore
recognition hypotheses, generally structured as lattices or con-
sensus networks, generated by a word-based system. Examples
of this method can be found in [11], [27], [37]. Again concerning
(1), only is modified in comparison to a word-based
system. The advantage of this method is double: there is no in-
crease in acoustic–phonetic confusability since words are used
during the acoustic part of the decoding, and there is no problem
of finding pronunciations for sub-word units. Various strategies
can be adopted: simply decompounding words from the N-best
hypotheses and rescoring with a sub-unit based language model
(LM); combining scores achieved with a word based LM and

scores achieved with a sub-unit based LM [11]; or expanding
lattices or consensus networks by adding nodes and arcs with
words that begin with a same prefix for example [27].

Based on the literature studies, it is not possible to determine
which of the three approaches is the best, and the end choice is
likely to depend on a variety of factors and constraints. Since the
work presented here is for a language that has a straightforward
grapheme to phoneme conversion, the second approach, that
combines the use of sub-word units for language modeling in
all decoding steps with phone-based acoustic units, was chosen.
In Section IV, the word decompounding strategy, enhanced for
speech recognition purposes, is described.

IV. INCORPORATING ASR-ORIENTED PROPERTIES IN

CORPUS-BASED WORD DECOMPOUNDING

Automatic word decompounding is investigated as a means
to help select recognition units in an almost language-indepen-
dent manner. In order to minimize the work needed to apply
the adopted approach to different languages, a data-driven
algorithm, requiring little linguistic knowledge, was explored.
Various unsupervised morphology analysis algorithms are open
source or easy to implement, such as Harris [38], Goldsmith
[39], and Morfessor [7]. The Morfessor algorithm was chosen
since it seemed to be a more general model than the others,
for example unlike Goldsmith, no assumption about the basic
structure of words is made. Furthermore, several recent studies
making use of Morfessor reported improvements for a variety
of languages, using either the second [4], [24], or the third [27]
approach described in the previous section. This work is an
extension of the Morfessor algorithm, as implemented in the
open source Perl program called “Morfessor 1.0,” available at
http://www.cis.hut.fi/projects/morpho/.

A. Baseline Morfessor 1.0 Algorithm

Morfessor is an iterative algorithm that given a corpus, pro-
poses word segmentations found with an optimization criterion.
The authors use the term of “morphemes” to name the sub-word
units proposed by Morfessor, but they also use the neologism
“morphs,” since the splits are not always true morphemes in a
linguistic sense. Finally, morphs can be either words or word
splits.

An overview of the basics of this algorithm is provided here,
for further information the reader is referred to [7]. The program
has two modes:

1) A “training” mode which creates a word segmentation
model given a lexicon with optional frequency counts.
Training uses a maximum a posteriori (MAP) criterion
based on several text properties, including word frequen-
cies and string probabilities.

2) A “decoding” mode in which a previously learnt decom-
position model can be used to decompound a new word
list. Each input word is decomposed into a sequence of
morphs that exist in the model. This search algorithm max-
imizes only the morph frequencies, and no retraining is
done. Words that are not in the model can be decomposed
into a sequence of known morphs.
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During model training, the algorithm tries to iteratively max-
imize the following estimate:

� ������

(2)
where is the maximum-likelihood estimate of the
corpus given a lexicon , based on the word frequencies, and

is the a priori probability of the lexicon , i.e., the prob-
ability of getting distinct morphs as shown
in (3). Properties used in the baseline version are morph fre-
quency, morph string, and morph length, respectively, denomi-
nated , , and in (3). For more details about
the computation of these terms, the reader is referred to [7]. Our
modifications, described in the following sections, affect the a
priori properties used as

(3)

As it is common practice for this type of algorithm, proba-
bilities are not multiplied as is, since they are often very small,
but the negative log probabilities are summed. Maximizing the
likelihood consists then in minimizing a sum of negative log
probabilities, which can be seen as minimizing a cost function.

The decoding part of Morfessor is different from the training
mode, since chosen morphs are those which minimize a cost
function based only on the morph frequencies, and no other
property.

In both modes, every word position is a potential candidate for
split, and the algorithm explores all word substrings. Words can
be split into various morphs, but words are not decompounded
if splitting does not reduce the cost function value.

B. Modified End-of-Word Probability

In the baseline Morfessor program, the character probabilities
are static constants, calculated only once during model initial-
ization, as the simple ratio of the number of occurrences of the
character divided by the total number of characters in the corpus.
These are independent of word position. To represent the word
boundary, a space character is added to each lexical entry. The
end-of-word probability is the probability of the space character,
and has the same value for all words and morphs in the corpus.

Inspired by Harris’ algorithm [38] and previous work on
German word decomposition [2], we propose replacing this
static probability by the probability defined in (4), to take
the string context into account. in (3)
is replaced by . The word beginning
symbol stands for the strings that begin a given word,
from length zero to the word length itself. The probability that
a word beginning WB is a morph, is defined as the ratio of the
number of distinct letters which can follow WB over
the total number of distinct letters . The division by is not
mandatory since it is a constant and thus does not influence the
cost minimization, but it was kept for coherence, since the other
quantities used in the algorithm are probabilities. This term is
inspired from Harris’ observation that this number decreases

naturally from the word start, and that if it increases at a given
point in the string, the sub-string up to this point might be a
morph, that can be followed by many different suffixes

(4)

This definition favors short morphs, which is potentially in-
teresting for languages where the word compounding genera-
tion process corresponds to the addition of prefixes and suffixes
that are grammatical morphemes such as pronouns, possessive
and demonstrative adjectives, prepositions, and postpositions.

C. Modified Algorithm for ASR

All the properties used in the Morfessor program are based
on written language and do not incorporate any “oral” proper-
ties that could be useful for ASR. Two modifications were in-
troduced to try incorporate such properties.

1) Distinctive Feature Motivated Property: This property
is an attempt to incorporate linguistic knowledge in the de-
compounding process. A phone-based feature was added to
the term of (2) and (3). This property aims to give an
estimation of the phonemic confusability between lexical units.
It is theoretical and relies on some distinctive features (DF)
of the phones used in the language of study. The DFs are
basically the same as those used in the decision tree that merges
contexts during acoustic model training (as described in the
experimental Section V-D). For a particular morph, the smaller
the feature value is, the greater the number of similar morphs
(in terms of DFs) there are in the lexicon. As for the other terms
of the Morfessor algorithm, it takes the form of a probability.

Equation (5) gives the definition for a morph . The DFs of
its vowels are compared to the DFs of the vowels of all the other
morphs that share the same consonantal root. The compared
vowels have the same position in the morphs being compared.
The same definition is used for consonants, however in that case,
the DFs of morphs that share the same ”vocal root” are com-
pared. For example, the two Amharic words with the phoneme
transcriptions of , share the same consonantal
root. Thus the vowel DFs are compared. Both words have the
same first vowel, which is ignored in the computation, other-
wise the feature would be zero. Only the vowel pair will
have a contribution. The other possible vowel pairs and
are not used since they involve vowels that have different word
positions. In an analogous manner, if two words share the same
“vocal root,” then DF differences in the consonants can be com-
puted.

Two distinct results, one for the vowels of morph and one
for its consonants can be computed. In the next sections, results
using only the vowel DFs, only the consonant DFs, and both
DFs (computed by summing their logarithms) will be given.

The following discussion explains how this feature is com-
puted for vowels, the extension to consonants being straightfor-
ward. Equations (5) and (6) are used to define how the differ-
ence in score of distinctive features for vowels is computed as
follows:

(5)
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TABLE III
DISTINCTIVE FEATURES OF THE AMHARIC VOWELS, USED WITH THE

ALGORITHM. REMARK: BASED ON THE VOWEL CONFUSIONS REPORTED IN A

PREVIOUS STUDY [10], FOR THIS STUDY THE /A/ IS CONSIDERED NON-TENSE

with

(6)

where is the number of morphs that share the same conso-
nantal root, is the number of DFs in which the th vowels
of morphs and differ (computed only if the vowels are
different), is the total number of vowels in morph , and
is the total number of distinct DFs. Note that while

, is not a probability since it does not sum to one. The
more distinct DFs two morphs have, the bigger the feature value
is, and the smaller the associated “cost” (negative logarithm of

) is. This feature thus aims to favor word decompositions
that give morphs which have distinct DFs compared to the other
morphs.

To evaluate , one can use standard DF tables found in
phonetics literature, for example in [40]. The distinctive features
used in this study concern vowels and consonants, and are given
for information in Table III for vowels only. Features for con-
sonants are similar ([41, p. 144]).

Finally, as shown in (7), has been incorporated in
as an additional term. Equation (7) is our modified version of the
original Morfessor formulation, given in (3). As for the
other three properties ( , , ), the property is con-
sidered to be independent from the other morph feature values
so that .

(7)

2) Phonemic Confusion Constraint: The DF property is
theoretical and therefore does not account for the phonological
variation observed in real world speech, such as in the choice
of vowel alternatives. In [12], syllabotactic alignments were
studied in order to determine the most frequent confusions at
the syllable level. For each syllable, the vowel that was most
often substituted by the aligner was determined. These confu-
sion pairs provide an additional means of reducing phonemic
confusion amongst units arising from the decompounding.

During the decompounding process, candidates for word
splitting that differ from other morphs by only one syllable are
compared. If the pair of syllables is among the most frequently
confused pairs found in the alignment study, the candidate is

TABLE IV
DECOMPOSITION OPTIONS COMPARED IN THIS STUDY

rejected (the split is refused). In the previous example with the
two words , if the algorithm already split the first
word into n wa , and if the split of the second word into

was found to lower the global function cost and thus
be a good decomposition, the Cc constraint would forbid this
decomposition if the syllable pair [wa] and was among the
confusion pairs resulting from the syllabotactic alignments.

The different options investigated with the decompounding
algorithm are summarized in Table IV. The configurations M,
MH, MHDFV, MHDFC, and MHDFCV are compared both with
and without the confusion constraint Cc.

V. EXPERIMENTAL STUDY

In this section, recognition experiments for the Amharic lan-
guage are reported using a corpus of broadcast news data.

A. Amharic Corpus

Some recent studies, for example [9], [42], have addressed
speech recognition and speech processing for Amharic using
read speech. In the experiments reported here, a broadcast news
speech corpus is used. Compared to other languages for which
models and systems have been developed [43], the available
Amharic audio corpus is quite small. It is comprised of 37 h
of broadcast news data from two sources, Deutsche Welle (25 h
26 min) and Radio Medhin (11 h 45 min). The data were tran-
scribed by native Ethiopian speakers, and contain a total of 247k
words with 50k distinct lexemes. Two hours of data taken from
the latest shows of each source were reserved for development
and test. This data contains 14.2 k words, of which almost 15%
do not appear in the training portion. In a previous study [14],
results were reported on the same 2-h corpus that was used for
development purposes. This means that certain parameters, such
as the language model interpolation coefficients were optimized
on the data potentially introducing a bias. Since no additional
data are available, for the experiments reported in this paper,
the same 2-h corpus was divided into two distinct subsets, 80%
for development, and 20% for test (percentages based on the
number of words). Seven distinct dev/test configurations were
randomly selected, in order to do a classical cross-validation.
Table V gives the number of speakers and words in the different
subsets. Depending on the randomly selected files for dev/test,
the number of speakers is between 12 and 15 for the dev, 4 and
7 for test.

In addition to the transcriptions of the audio data, about 4.6
million words of newspaper and web texts have been used for
language model training. Over 340 k distinct words are found
in these texts.
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TABLE V
CHARACTERISTICS OF THE AUDIO CORPUS (NUMBER OF HOURS, SPEAKERS,

AND TOTAL NUMBER OF WORDS FOR TRAINING, DEV AND TEST)

TABLE VI
NUMBER OF MORPH TYPES IN THE LEXICONS WITH AND WITHOUT

“�” FOR DIFFERENT DECOMPOUNDING OPTIONS. (BL: WORD-BASED

SYSTEM, M: BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION

CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS, DFC:
DISTINCTIVE FEATURES FOR CONSONANTS, DFCV: DISTINCTIVE

FEATURES FOR VOWELS AND CONSONANTS)

B. Decompounding the Training Texts

When building a recognition lexicon from training texts, a fre-
quency cutoff is typically applied to get rid of misspelled words
and artifacts. In this study the cutoff is applied after decom-
position. It should be noted that given the CV structure of the
Amharic language, word splits are allowed only after a vowel.
First, a decompounding model is built for a reference lexicon,
and then this model is used to decompose all words in the corpus
without any frequency cutoff. A new reference lexicon is then
selected, applying a frequency cutoff: only morphs occurring at
least three times are included in the lexicon. The OOV rate may
decrease since OOV words may have been decompounded. The
number of lexical tokens in the training text corpus is also in-
creased with this method.

An initial 133 k word-based lexicon was selected. It was com-
prised of the 50 k distinct words in the acoustic training data
transcriptions and all words occurring at least three times in the
newspaper and web texts. The out-of-vocabulary rate of the de-
velopment corpus with this word list is almost 7%, which is
quite high compared to the OOV rates obtained for well-rep-
resented languages which are typically around 1%.

Table VI shows the number of morph types for the different
decompounding options listed in Table IV. Since a morph may
exist both as a word and as an affix, the explicit use of this in-
formation is investigated by adding a “+” sign to prefixes found
by the algorithm in order to simplify the work of recombining
morphs back into entire words in the ASR experiments. The dis-
tinctive feature option for consonants (DFC) gives the smallest
lexicon with about 66 k units, being about half the size of the
original lexicon. The Cc constraint increases lexicon size by
25%–30% relative to the same configuration without the con-
straint, except for the DFC option, for which the increase is

Fig. 1. Number of morph tokens in the training data as a function of the number
of phones for different decomposition options. (BL: word-based system, M:
baseline Morfessor, Cc: confusion constraint, DFCV: distinctive features for
vowels and consonants).

quite a bit larger (43%). This indicates that the use of DFC
splits many words into potentially confusable sub-word units.
Since the word and affix entries corresponding to the morph
will have the same pronunciations in the recognition lexicon,
the choice between forms is made by the language model. The
third column gives for information the number of types when
no explicit distinction is made between words and affixes (i.e.,
no “+” sign is added during decomposition). The difference be-
tween the second and the third columns is the number of morphs
that are also words.

Fig. 1 shows the number of tokens as a function of their length
in phones,2 for different decompounding options. The BL curve
(in black) is the baseline curve, with no decompounding. The
other curves, for which words were decompounded, show a no-
ticeable shift to smaller word lengths. Some decompounding op-
tions have been omitted to keep the figure readable, but these
curves are similar to ones shown. The curves with and without
the “Cc” option form two distinct groups. As expected, the “non
Cc” curves (drawn with “o” points) have substantially more
morph tokens with a length of 2 phones compared to the “Cc”
curves (drawn with “x” points), since more words are decom-
pounded without the constraint. Basically, the DF property for
consonants (DFC) introduces the largest number of small units,
and the M H DFCV curve have almost twice as many 2-phone
units than the other “non Cc” curves. As was written in the intro-
duction, small units are more error-prone than longer units (see
[10], [11]). Reducing their frequency with the phonetic “Cc”
constraint is thus promising, but of course results in a larger lex-
icon size and/or OOV rate.

C. Language Model and OOV Rates

The language models are Kneser–Ney smoothed four-gram
models, and result from the interpolation of two component
LMs: one estimated on the web/newspaper texts and the other
on the manual transcripts of the audio training data. The interpo-
lation coefficient was optimized for each LM by measuring the

2Recall that characters in Amharic correspond to a syllable, so all points are
multiples of 2 phones since the lengths are determined from a canonical pro-
nunciation.



IE
EE

 P
ro

of

W
eb

 V
er

sio
n

8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

TABLE VII
AVERAGED OOV RATES (%) ON THE TEST CORPUS. (BL: WORD-BASED

SYSTEM, M: BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION

CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS, DFC:
DISTINCTIVE FEATURES FOR CONSONANTS, DFCV: DISTINCTIVE

FEATURES FOR VOWELS AND CONSONANTS)

perplexity on the development transcripts. Different LMs were
built for each set of decompounding options, and for each devel-
opment/test subdivision. Since some of the words which are not
in the baseline vocabulary are decomposed, the OOV rates are
reduced. Table VII gives the mean token OOV rates averaged
across the seven different test subsets (each about 2.8 k words).
The relative reduction in OOV rate ranges from 35% to 50% de-
pending on the options.

D. ASR Experiments

This section reports recognition results obtained with systems
trained for each of the decomposition option configurations. The
baseline system is the word-based system. The speech recog-
nizers all have two decoding passes, with unsupervised acoustic
model adaptation (MLLR) after the first decoding pass [44].
The acoustic models are all tied-state triphone HMMs, cov-
ering both word-internal and cross-word contexts, with three
states per model and 32 Gaussians per state. State tying is based
on classical decision tree clustering, with backoff on diphones
and monophones. The set of questions concern the phone po-
sition, the distinctive features (and identities) of the phone and
the neighboring phones. Since different decompositions result
in different recognition units (and therefore different word po-
sitions), it was necessary to build specific acoustic models for
each set of options. In all cases both intra- and cross-recogni-
tion unit contexts are modeled. All acoustic model sets cover
about 10.5 k distinct contexts, with a total of about 8.5 k tied
states.

Table VIII gives the OOV and word error rates (WER) for
the different ASR systems, for the seven development/test
configurations, estimated after recombining prefixes (that end
with a “ ” sign) and roots back into full words. The means
of the WERs over the seven configurations are given in the
last column. The OOV rate for the word-based system ranges
from 5.6% to 8.7%, with an average of 6.8%, which is close
to that of the full development data set (6.9%) used in [14].
The largest OOV rate is for subset 3, and the smallest rates
are for subsets 2 and 5. The full-word baseline system has a
mean WER of 23.6%. The five systems M, MH and MHDFV,
MHDFC, MHDFCV, which do not use the confusion constraint
Cc, perform slightly less well than the baseline system. On
the contrary, the five Cc systems all give small gains. The

TABLE VIII
WORD ERROR RATES FOR THE DIFFERENT ASR SYSTEMS. (BL: WORD-BASED

SYSTEM, M: BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION

CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS, DFC: DISTINCTIVE

FEATURES FOR CONSONANTS, DFCV: DISTINCTIVE FEATURES FOR VOWELS

AND CONSONANTS). OOV RATES WITH THE INITIAL 133 K LEXICON

ARE ALSO GIVEN FOR EACH BATCH

confusion constraints between lexical units appears to be useful
for identifying recognition units when used in conjunction with
word decompounding. The worst performance is obtained by
the MHDFCV system, which is the algorithm that splits the
largest number of words. This result illustrates well the compro-
mise between OOV rate reduction and increased confusability
between lexical units when decompounding is used.

The Harris modification seems useful since it produces
smaller lexicons than with Morfessor baseline, and the same
mean WER is obtained when using the Cc option (23% WER
for both MCC and MHCc systems). Concerning the DF option,
there is a 0.4% absolute WER reduction between the MHDFV,
MHDFC and MHDFCV systems and their corresponding
Cc version. The best performance is obtained with the DFV
and DFC motivated systems (MHDFVCc and MHDFCCc)
which achieves a 0.7% absolute improvement compared to
the baseline. Nevertheless, the WERs of the two systems vary
depending on the dev/test subdivision, which can surely be
attributed to the small size of the individual sets. It can be seen
that results on batch number 3 are different from the other
batches in that all the morph-based systems performed better
than the word-based system. This may be due to the higher OOV
rate of this subset (8.7%) with the baseline system. Significance
tests at word-level (MAPSSWE) have been conducted with the
“sc_stats” NIST tool, available at www.nist.gov/speech/tools.
In comparison with the word-based system, the system based
on the baseline Morfessor algorithm does not show any signi-
ficative difference for any of the batches, although it performs
slightly worse on all the test sets, with the exception of batch
3. The two best systems (MHDFVCc and MHDFCCc) show
significative differences in performance with the classical 95%
confidence threshold, only for batch number 3. For test sets 4,
5, and 6, the threshold is about 85%, and for the others, the
performance difference is not significative. This indicates that
the modifications seem more useful with test sets that present
the highest OOV rates.

By comparing the distinct types of errors, with the percent-
ages of insertions, deletions and substitutions, it appears that
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TABLE IX
COMPARISON OF THE WORD ERROR RATES (WER) FOR THE MHDFV AND MHDFVCC SYSTEMS WITH FINAL 5-GRAM LM RESCORING WITH THE WER OF THE

CORRESPONDING PREVIOUSLY USED SYSTEMS (4-GRAM LM). OOV RATES WITH WORD-BASED SYSTEMS AND PREVIOUS WERS OBTAINED WITH 4-GRAM

RESCORING ARE ALSO GIVEN. IMPROVEMENTS (WER REDUCTIONS) ARE SHOWN IN BLUE AND DEGRADATIONS (WER INCREASES) ARE SHOWN IN RED (M:
BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS)

all the morph-based systems have higher average deletion rates
than the baseline (2.2% for the BL system versus 2.8% for the
M system for example), but lower insertion rates (2.4% for the
BL system, 2.1% for the M system). Systems which do not use
the Cc constraint have higher substitution rates, suggesting that
the Cc constraint is doing what it was designed to do. Looking
at the decoder output, the systems (without Cc) do have a ten-
dency to insert small morphs. However this effect is lost after
recombining morphs into words. When the morphs are glued
together, the errors are counted as substitutions when compared
to the word based reference.

The two best systems (MHDFVCc and MHDFCCc) have
similar insertion plus deletion rates as the baseline, but the
substitution rate is a bit smaller (18.3% vs 19.0%). This im-
provement may be explained by the recognition of ex-OOV
words, as analyzed in the next paragraph.

It was mentioned earlier that word decompounding possibly
allows words that were OOV before decompounding to be rec-
ognized since sub-word units can be combined to form a word
that was not in the initial lexicon. Using batch number 1 for
analysis, the initial test OOV rate is 7.3% with 242 OOV to-
kens for a total of 3321 words. For all the sub-word based sys-
tems, about 80 of the OOV words are covered by the respec-
tive lexicon. Depending upon the system configuration 26 to 30
of these words were correctly recognized. For batch number 3,
which has the highest OOV rate (8.7%), the number of words
that are no longer OOV is larger (between 89 to 104 words
depending on the system options). More than a half of these
words were correctly recognized. For example, with the MH
system, 55 ex-OOV words are correctly recognized. There are
2708 words in the associated reference transcripts for this batch,
which would suggest that an absolute gain of 2.0% should have
been observed. However, as can be seen in Table VIII, the gain
is lower, only 0.8% absolute, therefore new errors, i.e., some
that were not produced by the word-based system, are intro-
duced by the use of the sub-word units, increasing the error rate
by 1.2% absolute. Additional errors may be due to ungrammat-
ical morph sequences, corresponding to the phenomenon called
“over-generation.” For batch number one for example, the M
system output 116 words that are not in the baseline word-based
lexicon. 27 of these words were correctly recognized, and cor-
respond to some ex-OOV words as explained above. The re-
maining 89 words are possibly the result of over-generation, al-
lowing an upper limit on the errors due to over-generation to be
estimated at 2.7%. For the MCc system, that creates less decom-
positions, this estimated upper limit is lower (1.9%). Looking at

some of these words, it is clear that these values overestimate the
number of introduced errors, since the great majority of these
words were already misrecognized with the baseline system.
Finally, considering the very permissive rules of Amharic or-
thography, only an Amharic expert can identify ungrammatical
morph sequences properly [45].

When sub-word units are used, the effective span of an
n-gram language model is reduced. Shorter units naturally
require longer n-grams. In [4] for example, speech recognition
experiments were carried out with 5-gram, 7-gram, and 8-gram
LMs for respectively Turkish, Finnish and Estonian. The results
reported previously in this section all used a 4-gram span for
the language models, which may favor the word-based system.
A complementary experiment with 5-gram LMs has been
conducted.

In this experiment, a rescoring with 5-gram LMs of the best
hypotheses is carried out, using the lattices generated by the pre-
viously used decoders (these lattices were generated by 4-gram
LMs). Results are reported for the MHDFV Cc system, that
had the best recognition performance, and with the MHDFV
system to evaluate the impact of the Cc option. Table IX gives
the absolute differences between WERs obtained with 5-gram
rescoring, in comparison to the previous WERs obtained with
4-gram rescoring, reminded in the table. The lattices used for
rescoring are identical, the only change is in the order of the
LMs. In the table, improvements are shown in blue and increases
in WER are shown in red. Globally, for both options, there are
more improvements than degradations in performance, but the
differences are quite small. The average improvement for the
MHDFV system is larger than for the corresponding system
with the Cc option (0.13% against 0.04% in mean), which seems
natural since there are more word decompositions without the
Cc constraint, and therefore more small morphs that can benefit
from a longer-span LM. However for both systems, the differ-
ences are very small, and further experiments with longer-span
LMs would be needed to draw firm conclusions.

VI. DISCUSSION

In this paper, sub-word units have been investigated to ad-
dress the issue of very large lexical variety found in morpholog-
ically-rich languages, for the task of automatic speech recogni-
tion of broadcast news data. An unsupervised data-driven word
decompounding algorithm, which extends the Morfessor algo-
rithm to better suit speech recognition, has been described. The
original and modified algorithms have been tested in recogni-
tion experiments, where OOV and WER reductions have been
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obtained on a morphologically rich and less-represented lan-
guage in which grammatical morphemes are glued to roots. For
some systems, gains in performance were achieved since words
that were out-of-vocabulary with respect to an initial word lex-
icon were able to be recognized by the morphologically decom-
pounded ones. Nevertheless, the use of small units, often re-
ferred to as “morphs,” introduces new errors due to an increased
confusability between lexical units. This article has attempted to
address both the problem of high OOV rates observed for mor-
phologically rich languages, and the problem of increased con-
fusability when using sub-word units as recognition units.

The “Morfessor” algorithm splits words into smaller units in
an iterative manner by maximizing a MAP estimate of a lex-
icon given a word list with frequency counts. The end-of-word
probability computation has been modified to allow more splits.
A new phonemic-based parameter motivated by distinctive fea-
tures (DF), was incorporated as well as phonemic confusion
constraints derived from previous experiments with automatic
alignment of audio data. Systems built with different combina-
tions of options were compared. The best systems all include
the confusion constraint, and the phonemic-based DF param-
eter for consonants or for vowels. For these systems, the lexicon
sizes are reduced by about 10%, along with a small absolute
gain in WER (0.7%) relative to the reference error (23.6%) of
the word-based system. Without the confusion constraints, all
systems had slightly worse performance than the baseline. This
result demonstrates the usefulness of the confusion constraints.
Without the constraint, small units (2 phones long) are very fre-
quent and somewhat error-prone. The differences in errors of the
word based and sub-word based systems were analyzed in order
to assess how successful the approach is recovering errors due
to words that were OOV for the word-based system. The recog-
nition of “ex-OOV” words gives around a 2% absolute gain, but
since new errors are introduced, the overall gain is smaller. Con-
trastive experiments with longer-span LMs (5-gram LMs) were
conducted, but showed very little improvement over the 4-gram
LMs used throughout this work.

The DF parameter is a phonetically motivated parameter, in-
troduced for vowels and for consonants. Further investigation
should be carried out to confirm the usefulness of this parameter.
In the current implementation, the different terms in the MAP
estimate are summed, however it may be useful to weight these
terms in order to optimize each contribution. Future plans are
to test the algorithm on another language similar to Amharic,
Arabic for instance, for which ample training data are avail-
able, as well as on a language in which the word compounding
generation process is even more important, such as German or
Turkish.
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Automatic Word Decompounding for ASR
in a Morphologically Rich Language:

Application to Amharic
Thomas Pellegrini and Lori Lamel, Member, IEEE

Abstract—This paper investigates a data-driven word decom-
pounding algorithm for use in automatic speech recognition. An
existing algorithm, called “Morfessor,” has been enhanced in
order to address the problem of increased phonetic confusability
arising from word decompounding by incorporating phonetic
properties and some constraints on recognition units derived from
forced alignments experiments. Speech recognition experiments
have been carried out on a broadcast news task for the Amharic
language to validate the approach. The out of vocabulary (OOV)
word rates were reduced by 35% to 50% and a small reduction
in word error rate (WER) has been achieved. The algorithm is
relatively language independent and requires minimal adaptation
to be applied to other languages.

Index Terms—Automatic speech recognition (ASR), broadcast
news transcription, less-represented languages, lexical modeling,
morphologically rich languages (MRLs).

I. INTRODUCTION

I N the literature, languages such as Arabic, Finnish, Turkish,
and Estonian, are often referred to as “morphologically

rich languages” (MRLs). Other languages do not have a “poor”
morphology, this qualification emphasizes the highly pro-
ductive processes involved in word formation in MRLs. For
such languages, it is common to generate words by the com-
pounding of smaller units that are primarily lexical morphemes
(such as in German), or mostly grammatical morphemes (for
example, Semitic languages such as Arabic or Amharic), or
both (such as Turkish). These languages need very large lexi-
cons, containing several hundred thousand words, to achieve
good lexical coverage. Since state-of-the-art automatic speech
recognition (ASR) systems generally use fixed (also called
closed) lexicons, only the words in the recognition lexicon
can potentially be recognized. For MRLs, the rich morphology
implies a high number of unknown or out-of-vocabulary (OOV)
words, which typically produce 1.5 to 2 errors for each OOV
word [1]. This large lexical variety also poses a problem for
language modeling, where it can be difficult to have reliable
n-gram estimates for infrequent words. To address these issues,
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word decomposition has been investigated in a number of
studies for various languages such as German [2], [3], Turkish,
Finnish and Estonian [4], Vietnamese [5], and Dutch [6]. The
probabilistic word decomposition framework used in this study
is derived from the baseline version of the corpus-based word
decompounding algorithm “Morfessor” [7].

High OOV rates and poor language model estimation are
problems that also arise when developing technologies for less-
represented languages, for which little data are available in an
electronic form. Most of the world’s languages suffer from poor
representation on the web, which is being used more and more
as the primary source for collecting data (principally texts) for
building ASR systems [8]. This study reports on experiments
carried out with the Amharic language, the official language of
Ethiopia, which is both a less-represented language and a lan-
guage in which grammatical compounding is frequent [9]. For
morphologically rich languages and less-resourced languages,
the first issue to be addressed, is the high percentage of un-
seen words as typical OOV rates are higher than 7%. Previous
work reported improvements in ASR for Amharic broadcast
news data when using sub-word units: for a relative OOV reduc-
tion of 16%, a 10% relative reduction in word error rate (WER)
was achieved [10]. The sub-word units were identified with a
character-based maximum branching factor algorithm similar to
the one used in [2], and selected using a heuristic. In the same
study, it was shown that experiments allowing more decompo-
sitions led to increased insertion and deletion rates, and to an
overall degradation in performance (a 7% relative increase in
WER, with a 20% relative OOV reduction compared to the best
sub-word based system). A common observation in the litera-
ture is that small lexical units can often be less reliably decoded
than longer units, since these units are acoustically more sim-
ilar and therefore more confusion-prone [11]. One solution to
overcome the increased confusion, consists of using word-based
models to generate N-best lists or lattices, and a sub-word unit
language model, only in a final rescoring framework. Never-
theless, for several reasons it was chosen to investigate the use
of sub-word units in all stages of the decoder. First, Amharic
is a language that has a rather straightforward grapheme-to-
phoneme conversion, allowing pronunciations to be easily pro-
duced for sub-word units [12]. Second, the use of the same
lexical units in all steps of the decoding simplifies the global
process. Finally, we wanted to investigate new features that try
to incorporate ”oral” properties in the identification/selection of
the sub-word units, in an attempt to take account of some speci-
ficities of spoken language. One of these new properties is based

1558-7916/$25.00 © 2009 IEEE
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on the distinctive features specific to the Amharic phonemes.
By giving a ”phonemic” distance between two lexical units,
word splits that result in the largest distances between sub-word
units can be favored. The distinctive features are based on very
general theoretical sound properties. According to Jakobson,
phonemes of a specific language are distinguishable with a small
set of articulatory and acoustico–perceptive features, called dis-
tinctive features, such as voiced-unvoiced property or the place
of articulation often corresponding to the point of constriction in
the vocal tract [13]. A problem is that splitting words can create
homophones or near-homophones, particularly if multiple pro-
nunciation variants are allowed for the lexical units. To over-
come this drawback, an additional constraint was introduced
to forbid word splits that could have the same pronunciation
variant. Results incorporating these properties for vowels were
reported in [14], showing an absolute WER reduction of 0.4%
relative to the word-based system. However, the experiments in
this previous work were carried out on a development corpus,
since no additional test corpus was available. In the present ar-
ticle, cross-validation has been used to test the approach. The
distinctive feature property has also been extended to the con-
sonants, while in previous work it was limited to the vowels.
Finally, complementary experiments with longer-span language
models (5-gram) are also reported.

The paper is organized as follows. The next section discusses
the key role of words in ASR and motivates the use of sub-word
units for MRLs. This is followed by an overview of the ASR
literature with sub-word units. Section IV describes the base-
line version of the corpus-based word decompounding algo-
rithm Morfessor, with the modifications made to incorporate
“oral properties.” Section V presents the experimental results
carried out on the Amharic corpus. Since morphological decom-
position results in the redefinition of words or lexical entries
used for ASR, each explored configuration implies renormal-
ization of the available texts and transcripts, as well as the re-
training of the language and acoustic models. All modifications
in the word decompounding algorithm are fully tested by mea-
suring ASR performance in terms of word error rates in com-
parison to the reference word-based system. Finally, some con-
clusions and perspectives are given.

II. REFERENCE UNITS FOR SPEECH RECOGNITION

Speech recognition consists of finding the best elementary
unit sequence , which is the hypothesis with the highest prob-
ability, given a speech signal :

. By and large, the most widely used

recognition unit is the “word,” where the definition of a word
may vary across languages and systems. Performance is usu-
ally measured by word error rate, which is the sum of all kinds
of word errors (insertions , substitutions , and dele-
tions ), normalized by the number of words in the
reference (manual transcription in general). The WER is for-
mulated as . Word errors are de-
termined by dynamically aligning the recognition hypothesis to
the reference transcription at a sentence level. We used the NIST

standard scoring tool “sclite,” available at http://www.nist.gov/
speech/tools.

In Linguistics, the concept of word is often described as com-
plex and problematic, with difficulties arising when word identi-
fication has to be done.1 In speech recognition, only words spec-
ified in a lexicon can be recognized. So some kind of word seg-
mentation and identification are necessary to build a recognition
lexicon, and it is typical to take a very pragmatic approach, iden-
tifying words in as simple a manner as possible. Even for lan-
guages written with a space or another separator between words,
there are normalization choices to make. In French for example,
the use of the apostrophe is very frequent, as for the definite
article . Words like oral can be considered as two words
and oral, or just one word since there is no space between the
two distinct words. In order to avoid increasing substantially the
lexicon size, the first possibility may be chosen, and all small
words may be separated from their as-
sociated nouns and considered as words. This choice reduces
lexical variation at the cost of introducing many words with a
single phone. Such normalization issues in French are discussed
in [16]. As explained in the Chapter “The use of lexica in Auto-
matic Speech Recognition,” by Adda-Decker and Lamel [17],
normalization choices for the apostrophe may be different in
French and in English. In English, apostrophes are not as fre-
quent as they are in French, and therefore they are typically not
considered to be word separators. Contractions like I’ll, you’ve,
or he’s and as well as compound words and multi-word se-
quences are often used as lexical entries for speech recognition
[18]–[20]. These normalization practices, derived from experi-
ence gained by specialists in speech recognition, may be dif-
ferent according to the experts that choose them, but they illus-
trate well the issues linked with word definition for ASR. The
specific choices may also differ depending on the language, task,
and application. Dialog systems and conversational speech rec-
ognizers have been reported to benefit from using compound
words in order to facilitate the use of pronunciation variants spe-
cific to conversational speech.

Some languages have no word separators, as it is the case
for various Asiatic languages such Chinese, Japanese, and Thai.
For these languages, segmentation algorithms are required for
pre-processing and/or postprocessing. In general, a reference
lexicon is used but very often, multiple word segmentations are
possible for the same sentence. Various automatic techniques
have been proposed to try to remove this ambiguity, the most
popular being the maximum match segmentation, which tries
to find the longest words to match the characters in a sentence.
In 2005, the “Second International Chinese Word Segmentation
Bakeoff” showed that despite performance gains in the word
segmentation task, the main issue is still the processing of the
OOV words [21]. In order to avoid this issue, the ASR perfor-
mance is typically measured at character level, with character
error rates (CERs) instead of word error rates [22], [23].

For morphologically rich languages, the definition and se-
lection of lexical units is a popular topic in ASR, since pro-
hibitive lexicon sizes would be required to achieve reasonable

1Linguists use other concepts, such as word-form, lexeme, and autonomous
syntagm [15], for example.
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TABLE I
OUT-OF-VOCABULARY RATE (OOV) COMPARISON FOR TWO RICH

MORPHOLOGY LANGUAGES (AMHARIC AND TURKISH), AND TWO LANGUAGES

THAT HAVE A “LESS RICH” MORPHOLOGY (ENGLISH AND FRENCH)

lexical coverage. One characteristic of such languages is the in-
crease in distinct word number (“word types”), as a function
of the total number of words of a corpus (“word tokens”). For
these languages, the increase is much faster than for other lan-
guages. The study reported in [24] for example, distinguishes
Finnish, Estonian, Turkish, and Arabic from English on that
point. Table I gives lexicon sizes and OOV rates of systems
developed at LIMSI for English and French, and for two mor-
phologically rich languages, Amharic and Turkish. Nowadays,
it is common practice to use lexicons comprised of at least 65k
words and most state-of-the-art recognition system developers
consider acceptable OOV rates to be under 1%. As shown in
Table I with 65k words the OOV rate for English is 0.6%, and
is on the order of 1.2% for French. Using a 200k word lexicon
can reduce the OOV rate to under 0.5% for French [25].

For Amharic and Turkish, much higher OOV rates are ob-
served, 6.5% and 6.9% respectively, with substantially larger
lexicons. This difference is mainly due to the rich morphology
of Amharic and Turkish, but is also accentuated by the lack of re-
sources compared to English and French. In [26], a 96.4 million
word text corpus is used to train language models for broadcast
news transcription in Turkish. If all observed word forms were
included in the lexicon, it would be comprised of 1.4M words,
a prohibitive size for speech recognition. Lexicon size reduc-
tion is quite interesting in that case, and decompounding words
into sub-word units can serve to decrease both the recognition
lexicon size and OOV rates. Some illustrations found in the lit-
erature are as follows.

• The German word Schulelternbeiratsmitglieder was de-
compounded into Schuleltern + beiratsmitglieder, then
into Schul + eltern + beirats + mitglieder, by using a
character-based maximum branching factor algorithm [2].

• The Turkish sentence Isteklerimizi elde ettik dedi has been
decompounded into Istekler+ imizi el+ de etti+ k de+ di,
by using the Morfessor algorithm, also used in this work
and presented in Section IV[27].

Recently, several sites have reported on morphological de-
composition for the Arabic language [28]–[30] where sub-word
units such as prefixes (Al, bAl, fAl, kAl, b, f, k, l, s, w ) are
used to decompound words. Rules are typically applied to re-
strict the decomposition of frequent words avoiding some pos-
sible confusions. These reported experiments were carried out
with state-of-the-art systems trained on very large corpora.

Some of the above-mentioned studies showed improvement
in recognition performance obtained by word decompounding.
The methods used in these studies were different, Section III
presents and discusses some of them, along with other studies

TABLE II
EXAMPLE OF DIFFERENT ORDERS (SYLLABLE NUCLEUS) ASSOCIATED

TO THE ’L’ CONSONANT, GIVEN IN AMHARIC SCRIPT AND OUR LATIN

TRANSLITERATION. THE ’�’ STANDS FOR A REDUCED VOWEL (SCHWA)

found in the literature. Here first is a brief introduction to the
Amharic language, which is used as a case study in this work.

Amharic was chosen as an example of a Semitic language,
language family to which Arabic belongs to. It is mainly spoken
in Ethiopia. After Arabic, it is the second most widely spoken
Semitic language in the world, with 22 million speakers [31].
Despite its “official working” language status, and its nation-
wide use, Amharic suffers from poor representation on the In-
ternet, and may be considered as a “less-represented” language,
for which only small quantities of written texts are available
[32]. For speech recognition, the lack of text resources makes
language model probability estimation difficult, and often im-
plies high out-of-vocabulary rates. In Amharic, these problems
are increased by its rich and complex morphology, which is in-
flectional and derivational [33]. One characteristic of languages
with a rich morphology is a high increase in the number of word
types as a function of the number of word tokens [34]. Refer-
ence [9, Table IV] compares the frequencies of word types in
Amharic and in English, showing that word type frequencies
are quite a bit lower for Amharic.

Amharic has 34 basic symbols, for which there are seven vo-
calizations (transliterated form): ,
referred to as the seven orders. The basic symbols are modified
in a number of different ways to indicate the different vocal-
izations. 85% of the syllables represent a CV sequence (C for
consonant and V for vowel), one symbol represents the com-
plex sound /ts/V and the remainder represent CwV sequences
(where w is a semi-consonant). In this study, Cw has been con-
sidered as a single phone. For practical reasons, the Amharic
script was transliterated into a set of Latin letters. Table II shows
an example of the syllable, that is transliterated by /lE/ corre-
sponding to the phonetic transcription , given with its seven
orders. The sixth-order syllable nucleus is a schwa, written as
“x.”

III. WORD DECOMPOUNDING FOR SPEECH RECOGNITION

The use of sub-word units in speech recognition is not new,
with studies dating from the mid 1990s, but it remains an active
research area. Most of the studies use “Top-Down” methods:
starting from full word forms, words are decompounded
into smaller units. Once sub-word units have been selected,
the studies differ on how the sub-word units are used in the
decoding. Sub-word units can be used at different levels of
modeling: acoustic modeling and/or language modeling, for
all the decoding, or just during lattice rescoring. Kirchhoff and
Sarikaya, who led the ISCA Workshop “Processing Morpho-
logically Rich Languages” during the Interspeech conference
in Antwerp, August 2007, distinguished three main approaches
that are briefly reviewed here [34].
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To better identify the pros and cons of the three methods, they
are presented in relation to the generic speech recognition for-
mulation as shown in (1). The likelihood of the signal

given the word sequence , is developed as the sum of the
pronunciation probabilities (pronunciation variants named )
associated to the word sequence . corresponds to a se-
quence of acoustic models (phones in general)

(1)

The first method consists of using sub-word units in all mod-
eling elements of the speech recognizer: acoustic models, lex-
icon, and language model. This is the approach taken in [3],
[35], for example, with application to German and French. If
the French word aller was decompounded into all- er, then with
this method, two acoustic models would be used, one for all-
and one for er. The advantage here is the economy of the pro-
nunciation lexicon, since in this case

. A limitation of this method is the high complexity of the
acoustic models, with a number of states that should depend on
the number of phones in each sub-unit.

The second method uses the sub-word units in the lexicon
and the language model in the decoding process. The recogni-
tion units may be a combination of words and sub-word units.
Acoustic units are not based on the sub-word units, but are
generally phones or phone-like units. Some studies using this
approach are for example [4], [24], [28], [29], [36]. With this
method, building a pronunciation lexicon (i.e., determining
for each ) is necessary and may pose difficulties for some
sub-word units. One solution would be to decompound words
into sub-word units for which pronunciations are known or easy
to determine. In the literature, languages for which this method
has been used have a simple grapheme-to-phoneme conversion.
This is globally the case for the Amharic language of interest
in this study. Another potential problem source is modeling the

term, in the sense that small units are known to increase
acoustic–phonetic confusions for the system, and their probabil-
ities are very similar. In the present work, special care
in sub-unit generation was taken in order to try to avoid the cre-
ation of units that were too small or too similar, with the use of
the new “oral” properties, presented in Section IV-C.

The third method uses sub-word units only in a rescoring
pass, i.e., a sub-word based language model is used to rescore
recognition hypotheses, generally structured as lattices or con-
sensus networks, generated by a word-based system. Examples
of this method can be found in [11], [27], [37]. Again concerning
(1), only is modified in comparison to a word-based
system. The advantage of this method is double: there is no in-
crease in acoustic–phonetic confusability since words are used
during the acoustic part of the decoding, and there is no problem
of finding pronunciations for sub-word units. Various strategies
can be adopted: simply decompounding words from the N-best
hypotheses and rescoring with a sub-unit based language model
(LM); combining scores achieved with a word based LM and

scores achieved with a sub-unit based LM [11]; or expanding
lattices or consensus networks by adding nodes and arcs with
words that begin with a same prefix for example [27].

Based on the literature studies, it is not possible to determine
which of the three approaches is the best, and the end choice is
likely to depend on a variety of factors and constraints. Since the
work presented here is for a language that has a straightforward
grapheme to phoneme conversion, the second approach, that
combines the use of sub-word units for language modeling in
all decoding steps with phone-based acoustic units, was chosen.
In Section IV, the word decompounding strategy, enhanced for
speech recognition purposes, is described.

IV. INCORPORATING ASR-ORIENTED PROPERTIES IN

CORPUS-BASED WORD DECOMPOUNDING

Automatic word decompounding is investigated as a means
to help select recognition units in an almost language-indepen-
dent manner. In order to minimize the work needed to apply
the adopted approach to different languages, a data-driven
algorithm, requiring little linguistic knowledge, was explored.
Various unsupervised morphology analysis algorithms are open
source or easy to implement, such as Harris [38], Goldsmith
[39], and Morfessor [7]. The Morfessor algorithm was chosen
since it seemed to be a more general model than the others,
for example unlike Goldsmith, no assumption about the basic
structure of words is made. Furthermore, several recent studies
making use of Morfessor reported improvements for a variety
of languages, using either the second [4], [24], or the third [27]
approach described in the previous section. This work is an
extension of the Morfessor algorithm, as implemented in the
open source Perl program called “Morfessor 1.0,” available at
http://www.cis.hut.fi/projects/morpho/.

A. Baseline Morfessor 1.0 Algorithm

Morfessor is an iterative algorithm that given a corpus, pro-
poses word segmentations found with an optimization criterion.
The authors use the term of “morphemes” to name the sub-word
units proposed by Morfessor, but they also use the neologism
“morphs,” since the splits are not always true morphemes in a
linguistic sense. Finally, morphs can be either words or word
splits.

An overview of the basics of this algorithm is provided here,
for further information the reader is referred to [7]. The program
has two modes:

1) A “training” mode which creates a word segmentation
model given a lexicon with optional frequency counts.
Training uses a maximum a posteriori (MAP) criterion
based on several text properties, including word frequen-
cies and string probabilities.

2) A “decoding” mode in which a previously learnt decom-
position model can be used to decompound a new word
list. Each input word is decomposed into a sequence of
morphs that exist in the model. This search algorithm max-
imizes only the morph frequencies, and no retraining is
done. Words that are not in the model can be decomposed
into a sequence of known morphs.
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During model training, the algorithm tries to iteratively max-
imize the following estimate:

� ������

(2)
where is the maximum-likelihood estimate of the
corpus given a lexicon , based on the word frequencies, and

is the a priori probability of the lexicon , i.e., the prob-
ability of getting distinct morphs as shown
in (3). Properties used in the baseline version are morph fre-
quency, morph string, and morph length, respectively, denomi-
nated , , and in (3). For more details about
the computation of these terms, the reader is referred to [7]. Our
modifications, described in the following sections, affect the a
priori properties used as

(3)

As it is common practice for this type of algorithm, proba-
bilities are not multiplied as is, since they are often very small,
but the negative log probabilities are summed. Maximizing the
likelihood consists then in minimizing a sum of negative log
probabilities, which can be seen as minimizing a cost function.

The decoding part of Morfessor is different from the training
mode, since chosen morphs are those which minimize a cost
function based only on the morph frequencies, and no other
property.

In both modes, every word position is a potential candidate for
split, and the algorithm explores all word substrings. Words can
be split into various morphs, but words are not decompounded
if splitting does not reduce the cost function value.

B. Modified End-of-Word Probability

In the baseline Morfessor program, the character probabilities
are static constants, calculated only once during model initial-
ization, as the simple ratio of the number of occurrences of the
character divided by the total number of characters in the corpus.
These are independent of word position. To represent the word
boundary, a space character is added to each lexical entry. The
end-of-word probability is the probability of the space character,
and has the same value for all words and morphs in the corpus.

Inspired by Harris’ algorithm [38] and previous work on
German word decomposition [2], we propose replacing this
static probability by the probability defined in (4), to take
the string context into account. in (3)
is replaced by . The word beginning
symbol stands for the strings that begin a given word,
from length zero to the word length itself. The probability that
a word beginning WB is a morph, is defined as the ratio of the
number of distinct letters which can follow WB over
the total number of distinct letters . The division by is not
mandatory since it is a constant and thus does not influence the
cost minimization, but it was kept for coherence, since the other
quantities used in the algorithm are probabilities. This term is
inspired from Harris’ observation that this number decreases

naturally from the word start, and that if it increases at a given
point in the string, the sub-string up to this point might be a
morph, that can be followed by many different suffixes

(4)

This definition favors short morphs, which is potentially in-
teresting for languages where the word compounding genera-
tion process corresponds to the addition of prefixes and suffixes
that are grammatical morphemes such as pronouns, possessive
and demonstrative adjectives, prepositions, and postpositions.

C. Modified Algorithm for ASR

All the properties used in the Morfessor program are based
on written language and do not incorporate any “oral” proper-
ties that could be useful for ASR. Two modifications were in-
troduced to try incorporate such properties.

1) Distinctive Feature Motivated Property: This property
is an attempt to incorporate linguistic knowledge in the de-
compounding process. A phone-based feature was added to
the term of (2) and (3). This property aims to give an
estimation of the phonemic confusability between lexical units.
It is theoretical and relies on some distinctive features (DF)
of the phones used in the language of study. The DFs are
basically the same as those used in the decision tree that merges
contexts during acoustic model training (as described in the
experimental Section V-D). For a particular morph, the smaller
the feature value is, the greater the number of similar morphs
(in terms of DFs) there are in the lexicon. As for the other terms
of the Morfessor algorithm, it takes the form of a probability.

Equation (5) gives the definition for a morph . The DFs of
its vowels are compared to the DFs of the vowels of all the other
morphs that share the same consonantal root. The compared
vowels have the same position in the morphs being compared.
The same definition is used for consonants, however in that case,
the DFs of morphs that share the same ”vocal root” are com-
pared. For example, the two Amharic words with the phoneme
transcriptions of , share the same consonantal
root. Thus the vowel DFs are compared. Both words have the
same first vowel, which is ignored in the computation, other-
wise the feature would be zero. Only the vowel pair will
have a contribution. The other possible vowel pairs and
are not used since they involve vowels that have different word
positions. In an analogous manner, if two words share the same
“vocal root,” then DF differences in the consonants can be com-
puted.

Two distinct results, one for the vowels of morph and one
for its consonants can be computed. In the next sections, results
using only the vowel DFs, only the consonant DFs, and both
DFs (computed by summing their logarithms) will be given.

The following discussion explains how this feature is com-
puted for vowels, the extension to consonants being straightfor-
ward. Equations (5) and (6) are used to define how the differ-
ence in score of distinctive features for vowels is computed as
follows:

(5)
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TABLE III
DISTINCTIVE FEATURES OF THE AMHARIC VOWELS, USED WITH THE

ALGORITHM. REMARK: BASED ON THE VOWEL CONFUSIONS REPORTED IN A

PREVIOUS STUDY [10], FOR THIS STUDY THE /A/ IS CONSIDERED NON-TENSE

with

(6)

where is the number of morphs that share the same conso-
nantal root, is the number of DFs in which the th vowels
of morphs and differ (computed only if the vowels are
different), is the total number of vowels in morph , and
is the total number of distinct DFs. Note that while

, is not a probability since it does not sum to one. The
more distinct DFs two morphs have, the bigger the feature value
is, and the smaller the associated “cost” (negative logarithm of

) is. This feature thus aims to favor word decompositions
that give morphs which have distinct DFs compared to the other
morphs.

To evaluate , one can use standard DF tables found in
phonetics literature, for example in [40]. The distinctive features
used in this study concern vowels and consonants, and are given
for information in Table III for vowels only. Features for con-
sonants are similar ([41, p. 144]).

Finally, as shown in (7), has been incorporated in
as an additional term. Equation (7) is our modified version of the
original Morfessor formulation, given in (3). As for the
other three properties ( , , ), the property is con-
sidered to be independent from the other morph feature values
so that .

(7)

2) Phonemic Confusion Constraint: The DF property is
theoretical and therefore does not account for the phonological
variation observed in real world speech, such as in the choice
of vowel alternatives. In [12], syllabotactic alignments were
studied in order to determine the most frequent confusions at
the syllable level. For each syllable, the vowel that was most
often substituted by the aligner was determined. These confu-
sion pairs provide an additional means of reducing phonemic
confusion amongst units arising from the decompounding.

During the decompounding process, candidates for word
splitting that differ from other morphs by only one syllable are
compared. If the pair of syllables is among the most frequently
confused pairs found in the alignment study, the candidate is

TABLE IV
DECOMPOSITION OPTIONS COMPARED IN THIS STUDY

rejected (the split is refused). In the previous example with the
two words , if the algorithm already split the first
word into n wa , and if the split of the second word into

was found to lower the global function cost and thus
be a good decomposition, the Cc constraint would forbid this
decomposition if the syllable pair [wa] and was among the
confusion pairs resulting from the syllabotactic alignments.

The different options investigated with the decompounding
algorithm are summarized in Table IV. The configurations M,
MH, MHDFV, MHDFC, and MHDFCV are compared both with
and without the confusion constraint Cc.

V. EXPERIMENTAL STUDY

In this section, recognition experiments for the Amharic lan-
guage are reported using a corpus of broadcast news data.

A. Amharic Corpus

Some recent studies, for example [9], [42], have addressed
speech recognition and speech processing for Amharic using
read speech. In the experiments reported here, a broadcast news
speech corpus is used. Compared to other languages for which
models and systems have been developed [43], the available
Amharic audio corpus is quite small. It is comprised of 37 h
of broadcast news data from two sources, Deutsche Welle (25 h
26 min) and Radio Medhin (11 h 45 min). The data were tran-
scribed by native Ethiopian speakers, and contain a total of 247k
words with 50k distinct lexemes. Two hours of data taken from
the latest shows of each source were reserved for development
and test. This data contains 14.2 k words, of which almost 15%
do not appear in the training portion. In a previous study [14],
results were reported on the same 2-h corpus that was used for
development purposes. This means that certain parameters, such
as the language model interpolation coefficients were optimized
on the data potentially introducing a bias. Since no additional
data are available, for the experiments reported in this paper,
the same 2-h corpus was divided into two distinct subsets, 80%
for development, and 20% for test (percentages based on the
number of words). Seven distinct dev/test configurations were
randomly selected, in order to do a classical cross-validation.
Table V gives the number of speakers and words in the different
subsets. Depending on the randomly selected files for dev/test,
the number of speakers is between 12 and 15 for the dev, 4 and
7 for test.

In addition to the transcriptions of the audio data, about 4.6
million words of newspaper and web texts have been used for
language model training. Over 340 k distinct words are found
in these texts.



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

PELLEGRINI AND LAMEL: AUTOMATIC WORD DECOMPOUNDING FOR ASR IN A MORPHOLOGICALLY RICH LANGUAGE: APPLICATION TO AMHARIC 7

TABLE V
CHARACTERISTICS OF THE AUDIO CORPUS (NUMBER OF HOURS, SPEAKERS,

AND TOTAL NUMBER OF WORDS FOR TRAINING, DEV AND TEST)

TABLE VI
NUMBER OF MORPH TYPES IN THE LEXICONS WITH AND WITHOUT

“�” FOR DIFFERENT DECOMPOUNDING OPTIONS. (BL: WORD-BASED

SYSTEM, M: BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION

CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS, DFC:
DISTINCTIVE FEATURES FOR CONSONANTS, DFCV: DISTINCTIVE

FEATURES FOR VOWELS AND CONSONANTS)

B. Decompounding the Training Texts

When building a recognition lexicon from training texts, a fre-
quency cutoff is typically applied to get rid of misspelled words
and artifacts. In this study the cutoff is applied after decom-
position. It should be noted that given the CV structure of the
Amharic language, word splits are allowed only after a vowel.
First, a decompounding model is built for a reference lexicon,
and then this model is used to decompose all words in the corpus
without any frequency cutoff. A new reference lexicon is then
selected, applying a frequency cutoff: only morphs occurring at
least three times are included in the lexicon. The OOV rate may
decrease since OOV words may have been decompounded. The
number of lexical tokens in the training text corpus is also in-
creased with this method.

An initial 133 k word-based lexicon was selected. It was com-
prised of the 50 k distinct words in the acoustic training data
transcriptions and all words occurring at least three times in the
newspaper and web texts. The out-of-vocabulary rate of the de-
velopment corpus with this word list is almost 7%, which is
quite high compared to the OOV rates obtained for well-rep-
resented languages which are typically around 1%.

Table VI shows the number of morph types for the different
decompounding options listed in Table IV. Since a morph may
exist both as a word and as an affix, the explicit use of this in-
formation is investigated by adding a “+” sign to prefixes found
by the algorithm in order to simplify the work of recombining
morphs back into entire words in the ASR experiments. The dis-
tinctive feature option for consonants (DFC) gives the smallest
lexicon with about 66 k units, being about half the size of the
original lexicon. The Cc constraint increases lexicon size by
25%–30% relative to the same configuration without the con-
straint, except for the DFC option, for which the increase is

Fig. 1. Number of morph tokens in the training data as a function of the number
of phones for different decomposition options. (BL: word-based system, M:
baseline Morfessor, Cc: confusion constraint, DFCV: distinctive features for
vowels and consonants).

quite a bit larger (43%). This indicates that the use of DFC
splits many words into potentially confusable sub-word units.
Since the word and affix entries corresponding to the morph
will have the same pronunciations in the recognition lexicon,
the choice between forms is made by the language model. The
third column gives for information the number of types when
no explicit distinction is made between words and affixes (i.e.,
no “+” sign is added during decomposition). The difference be-
tween the second and the third columns is the number of morphs
that are also words.

Fig. 1 shows the number of tokens as a function of their length
in phones,2 for different decompounding options. The BL curve
(in black) is the baseline curve, with no decompounding. The
other curves, for which words were decompounded, show a no-
ticeable shift to smaller word lengths. Some decompounding op-
tions have been omitted to keep the figure readable, but these
curves are similar to ones shown. The curves with and without
the “Cc” option form two distinct groups. As expected, the “non
Cc” curves (drawn with “o” points) have substantially more
morph tokens with a length of 2 phones compared to the “Cc”
curves (drawn with “x” points), since more words are decom-
pounded without the constraint. Basically, the DF property for
consonants (DFC) introduces the largest number of small units,
and the M H DFCV curve have almost twice as many 2-phone
units than the other “non Cc” curves. As was written in the intro-
duction, small units are more error-prone than longer units (see
[10], [11]). Reducing their frequency with the phonetic “Cc”
constraint is thus promising, but of course results in a larger lex-
icon size and/or OOV rate.

C. Language Model and OOV Rates

The language models are Kneser–Ney smoothed four-gram
models, and result from the interpolation of two component
LMs: one estimated on the web/newspaper texts and the other
on the manual transcripts of the audio training data. The interpo-
lation coefficient was optimized for each LM by measuring the

2Recall that characters in Amharic correspond to a syllable, so all points are
multiples of 2 phones since the lengths are determined from a canonical pro-
nunciation.
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TABLE VII
AVERAGED OOV RATES (%) ON THE TEST CORPUS. (BL: WORD-BASED

SYSTEM, M: BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION

CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS, DFC:
DISTINCTIVE FEATURES FOR CONSONANTS, DFCV: DISTINCTIVE

FEATURES FOR VOWELS AND CONSONANTS)

perplexity on the development transcripts. Different LMs were
built for each set of decompounding options, and for each devel-
opment/test subdivision. Since some of the words which are not
in the baseline vocabulary are decomposed, the OOV rates are
reduced. Table VII gives the mean token OOV rates averaged
across the seven different test subsets (each about 2.8 k words).
The relative reduction in OOV rate ranges from 35% to 50% de-
pending on the options.

D. ASR Experiments

This section reports recognition results obtained with systems
trained for each of the decomposition option configurations. The
baseline system is the word-based system. The speech recog-
nizers all have two decoding passes, with unsupervised acoustic
model adaptation (MLLR) after the first decoding pass [44].
The acoustic models are all tied-state triphone HMMs, cov-
ering both word-internal and cross-word contexts, with three
states per model and 32 Gaussians per state. State tying is based
on classical decision tree clustering, with backoff on diphones
and monophones. The set of questions concern the phone po-
sition, the distinctive features (and identities) of the phone and
the neighboring phones. Since different decompositions result
in different recognition units (and therefore different word po-
sitions), it was necessary to build specific acoustic models for
each set of options. In all cases both intra- and cross-recogni-
tion unit contexts are modeled. All acoustic model sets cover
about 10.5 k distinct contexts, with a total of about 8.5 k tied
states.

Table VIII gives the OOV and word error rates (WER) for
the different ASR systems, for the seven development/test
configurations, estimated after recombining prefixes (that end
with a “ ” sign) and roots back into full words. The means
of the WERs over the seven configurations are given in the
last column. The OOV rate for the word-based system ranges
from 5.6% to 8.7%, with an average of 6.8%, which is close
to that of the full development data set (6.9%) used in [14].
The largest OOV rate is for subset 3, and the smallest rates
are for subsets 2 and 5. The full-word baseline system has a
mean WER of 23.6%. The five systems M, MH and MHDFV,
MHDFC, MHDFCV, which do not use the confusion constraint
Cc, perform slightly less well than the baseline system. On
the contrary, the five Cc systems all give small gains. The

TABLE VIII
WORD ERROR RATES FOR THE DIFFERENT ASR SYSTEMS. (BL: WORD-BASED

SYSTEM, M: BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION

CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS, DFC: DISTINCTIVE

FEATURES FOR CONSONANTS, DFCV: DISTINCTIVE FEATURES FOR VOWELS

AND CONSONANTS). OOV RATES WITH THE INITIAL 133 K LEXICON

ARE ALSO GIVEN FOR EACH BATCH

confusion constraints between lexical units appears to be useful
for identifying recognition units when used in conjunction with
word decompounding. The worst performance is obtained by
the MHDFCV system, which is the algorithm that splits the
largest number of words. This result illustrates well the compro-
mise between OOV rate reduction and increased confusability
between lexical units when decompounding is used.

The Harris modification seems useful since it produces
smaller lexicons than with Morfessor baseline, and the same
mean WER is obtained when using the Cc option (23% WER
for both MCC and MHCc systems). Concerning the DF option,
there is a 0.4% absolute WER reduction between the MHDFV,
MHDFC and MHDFCV systems and their corresponding
Cc version. The best performance is obtained with the DFV
and DFC motivated systems (MHDFVCc and MHDFCCc)
which achieves a 0.7% absolute improvement compared to
the baseline. Nevertheless, the WERs of the two systems vary
depending on the dev/test subdivision, which can surely be
attributed to the small size of the individual sets. It can be seen
that results on batch number 3 are different from the other
batches in that all the morph-based systems performed better
than the word-based system. This may be due to the higher OOV
rate of this subset (8.7%) with the baseline system. Significance
tests at word-level (MAPSSWE) have been conducted with the
“sc_stats” NIST tool, available at www.nist.gov/speech/tools.
In comparison with the word-based system, the system based
on the baseline Morfessor algorithm does not show any signi-
ficative difference for any of the batches, although it performs
slightly worse on all the test sets, with the exception of batch
3. The two best systems (MHDFVCc and MHDFCCc) show
significative differences in performance with the classical 95%
confidence threshold, only for batch number 3. For test sets 4,
5, and 6, the threshold is about 85%, and for the others, the
performance difference is not significative. This indicates that
the modifications seem more useful with test sets that present
the highest OOV rates.

By comparing the distinct types of errors, with the percent-
ages of insertions, deletions and substitutions, it appears that
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TABLE IX
COMPARISON OF THE WORD ERROR RATES (WER) FOR THE MHDFV AND MHDFVCC SYSTEMS WITH FINAL 5-GRAM LM RESCORING WITH THE WER OF THE

CORRESPONDING PREVIOUSLY USED SYSTEMS (4-GRAM LM). OOV RATES WITH WORD-BASED SYSTEMS AND PREVIOUS WERS OBTAINED WITH 4-GRAM

RESCORING ARE ALSO GIVEN. IMPROVEMENTS (WER REDUCTIONS) ARE SHOWN IN BLUE AND DEGRADATIONS (WER INCREASES) ARE SHOWN IN RED (M:
BASELINE MORFESSOR, H: HARRIS’ OPTION, CC: CONFUSION CONSTRAINT, DFV: DISTINCTIVE FEATURES FOR VOWELS)

all the morph-based systems have higher average deletion rates
than the baseline (2.2% for the BL system versus 2.8% for the
M system for example), but lower insertion rates (2.4% for the
BL system, 2.1% for the M system). Systems which do not use
the Cc constraint have higher substitution rates, suggesting that
the Cc constraint is doing what it was designed to do. Looking
at the decoder output, the systems (without Cc) do have a ten-
dency to insert small morphs. However this effect is lost after
recombining morphs into words. When the morphs are glued
together, the errors are counted as substitutions when compared
to the word based reference.

The two best systems (MHDFVCc and MHDFCCc) have
similar insertion plus deletion rates as the baseline, but the
substitution rate is a bit smaller (18.3% vs 19.0%). This im-
provement may be explained by the recognition of ex-OOV
words, as analyzed in the next paragraph.

It was mentioned earlier that word decompounding possibly
allows words that were OOV before decompounding to be rec-
ognized since sub-word units can be combined to form a word
that was not in the initial lexicon. Using batch number 1 for
analysis, the initial test OOV rate is 7.3% with 242 OOV to-
kens for a total of 3321 words. For all the sub-word based sys-
tems, about 80 of the OOV words are covered by the respec-
tive lexicon. Depending upon the system configuration 26 to 30
of these words were correctly recognized. For batch number 3,
which has the highest OOV rate (8.7%), the number of words
that are no longer OOV is larger (between 89 to 104 words
depending on the system options). More than a half of these
words were correctly recognized. For example, with the MH
system, 55 ex-OOV words are correctly recognized. There are
2708 words in the associated reference transcripts for this batch,
which would suggest that an absolute gain of 2.0% should have
been observed. However, as can be seen in Table VIII, the gain
is lower, only 0.8% absolute, therefore new errors, i.e., some
that were not produced by the word-based system, are intro-
duced by the use of the sub-word units, increasing the error rate
by 1.2% absolute. Additional errors may be due to ungrammat-
ical morph sequences, corresponding to the phenomenon called
“over-generation.” For batch number one for example, the M
system output 116 words that are not in the baseline word-based
lexicon. 27 of these words were correctly recognized, and cor-
respond to some ex-OOV words as explained above. The re-
maining 89 words are possibly the result of over-generation, al-
lowing an upper limit on the errors due to over-generation to be
estimated at 2.7%. For the MCc system, that creates less decom-
positions, this estimated upper limit is lower (1.9%). Looking at

some of these words, it is clear that these values overestimate the
number of introduced errors, since the great majority of these
words were already misrecognized with the baseline system.
Finally, considering the very permissive rules of Amharic or-
thography, only an Amharic expert can identify ungrammatical
morph sequences properly [45].

When sub-word units are used, the effective span of an
n-gram language model is reduced. Shorter units naturally
require longer n-grams. In [4] for example, speech recognition
experiments were carried out with 5-gram, 7-gram, and 8-gram
LMs for respectively Turkish, Finnish and Estonian. The results
reported previously in this section all used a 4-gram span for
the language models, which may favor the word-based system.
A complementary experiment with 5-gram LMs has been
conducted.

In this experiment, a rescoring with 5-gram LMs of the best
hypotheses is carried out, using the lattices generated by the pre-
viously used decoders (these lattices were generated by 4-gram
LMs). Results are reported for the MHDFV Cc system, that
had the best recognition performance, and with the MHDFV
system to evaluate the impact of the Cc option. Table IX gives
the absolute differences between WERs obtained with 5-gram
rescoring, in comparison to the previous WERs obtained with
4-gram rescoring, reminded in the table. The lattices used for
rescoring are identical, the only change is in the order of the
LMs. In the table, improvements are shown in blue and increases
in WER are shown in red. Globally, for both options, there are
more improvements than degradations in performance, but the
differences are quite small. The average improvement for the
MHDFV system is larger than for the corresponding system
with the Cc option (0.13% against 0.04% in mean), which seems
natural since there are more word decompositions without the
Cc constraint, and therefore more small morphs that can benefit
from a longer-span LM. However for both systems, the differ-
ences are very small, and further experiments with longer-span
LMs would be needed to draw firm conclusions.

VI. DISCUSSION

In this paper, sub-word units have been investigated to ad-
dress the issue of very large lexical variety found in morpholog-
ically-rich languages, for the task of automatic speech recogni-
tion of broadcast news data. An unsupervised data-driven word
decompounding algorithm, which extends the Morfessor algo-
rithm to better suit speech recognition, has been described. The
original and modified algorithms have been tested in recogni-
tion experiments, where OOV and WER reductions have been
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obtained on a morphologically rich and less-represented lan-
guage in which grammatical morphemes are glued to roots. For
some systems, gains in performance were achieved since words
that were out-of-vocabulary with respect to an initial word lex-
icon were able to be recognized by the morphologically decom-
pounded ones. Nevertheless, the use of small units, often re-
ferred to as “morphs,” introduces new errors due to an increased
confusability between lexical units. This article has attempted to
address both the problem of high OOV rates observed for mor-
phologically rich languages, and the problem of increased con-
fusability when using sub-word units as recognition units.

The “Morfessor” algorithm splits words into smaller units in
an iterative manner by maximizing a MAP estimate of a lex-
icon given a word list with frequency counts. The end-of-word
probability computation has been modified to allow more splits.
A new phonemic-based parameter motivated by distinctive fea-
tures (DF), was incorporated as well as phonemic confusion
constraints derived from previous experiments with automatic
alignment of audio data. Systems built with different combina-
tions of options were compared. The best systems all include
the confusion constraint, and the phonemic-based DF param-
eter for consonants or for vowels. For these systems, the lexicon
sizes are reduced by about 10%, along with a small absolute
gain in WER (0.7%) relative to the reference error (23.6%) of
the word-based system. Without the confusion constraints, all
systems had slightly worse performance than the baseline. This
result demonstrates the usefulness of the confusion constraints.
Without the constraint, small units (2 phones long) are very fre-
quent and somewhat error-prone. The differences in errors of the
word based and sub-word based systems were analyzed in order
to assess how successful the approach is recovering errors due
to words that were OOV for the word-based system. The recog-
nition of “ex-OOV” words gives around a 2% absolute gain, but
since new errors are introduced, the overall gain is smaller. Con-
trastive experiments with longer-span LMs (5-gram LMs) were
conducted, but showed very little improvement over the 4-gram
LMs used throughout this work.

The DF parameter is a phonetically motivated parameter, in-
troduced for vowels and for consonants. Further investigation
should be carried out to confirm the usefulness of this parameter.
In the current implementation, the different terms in the MAP
estimate are summed, however it may be useful to weight these
terms in order to optimize each contribution. Future plans are
to test the algorithm on another language similar to Amharic,
Arabic for instance, for which ample training data are avail-
able, as well as on a language in which the word compounding
generation process is even more important, such as German or
Turkish.
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