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Optimization of RNN-Based Speech
Activity Detection

Gregory Gelly and Jean-Luc Gauvain, Member, IEEE

Abstract—Speech activity detection (SAD) is an essential compo-
nent of automatic speech recognition systems impacting the overall
system performance. This paper investigates an optimization pro-
cess for recurrent neural network (RNN) based SAD. This process
optimizes all system parameters including those used for feature
extraction, the NN weights, and the back-end parameters. Three
cost functions are considered for SAD optimization: the frame er-
ror rate, the NIST detection cost function, and the word error rate
of a downstream speech recognizer. Different types of RNN models
and optimization methods are investigated. Three types of RNNs
are compared: a basic RNN, long short-term memory (LSTM) net-
work with peepholes, and a coordinated-gate LSTM (CG-LSTM)
network introduced by Gelly and Gauvain. Well suited for non-
differentiable optimization problems, quantum-behaved particle
swarm optimization is used to optimize feature extraction and pos-
terior smoothing, as well as for the initial training of the neural net-
works. Experimental SAD results are reported on the NIST 2015
SAD evaluation data as well as REPERE and AMI meeting cor-
pora. Speech recognition results are reported on the OpenKWS’13
test data. For all tasks and conditions, the proposed optimization
method significantly improves the SAD performance and among
all the tested SAD methods the CG-LSTM model gives the best
results.

Index Terms—Speech activity detection, recurrent neural
networks, long short-term memory, particle swarm optimization.

I. INTRODUCTION

S PEECH activity detection (SAD) is a crucial task in any
speech processing system. Although there has been a long

history of research on this subject, interest has renewed over the
last few years specifically for challenging conditions covering
a variety of acoustic environments. This can be seen in recent
research projects and challenges (e.g., DARPA RATS program,
NIST OpenSAD, CHIME challenge).

Numerous SAD methods and models have been proposed
exploiting the spectro-temporal properties of speech and
noise to effectively separate speech from non-speech [2], [3].
Some of these methods are energy-based [4], [5], others use
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autocorrelation coefficients [6], [7], or features that characterize
the degree of non-stationarity of the signal on windows of 200
to 300 ms [8], [9].

Neural Network (NN) based methods have been proposed to
estimate the probability of speech using low-level acoustic fea-
tures [10]–[13] from a given audio segment (10 to 30 ms).
NN have also been used for a fusion and decision making
operating on higher level features [14], [15]. Among these NN-
based methods, Recurrent Neural Networks (RNN) and espe-
cially Long Short-Term Memory (LSTM) networks have several
properties that make them an attractive choice for SAD [16]–
[18]. Contrary to a Multi-Layer Perceptron (MLP), a recurrent
network does not work on a fixed-size window but with an un-
limited temporal context. Even though RNNs were notoriously
difficult to train due to the vanishing gradient problem, recent
developments [19]–[21] have popularized training techniques
to cope with this issue.

We compare three types of RNNs for SAD: a basic RNN,
an LSTM network with peepholes and forget units [22], and a
coordinated-gate LSTM (CG-LSTM) network that we intro-
duced in [1] which provides more flexibility than the latter
LSTM cell. We also compare the three RNN-based SAD meth-
ods to a standard MLP-based method and two feature-based
SAD methods. The first feature-based method uses the noise
robust CrossCorr score defined in [7] as a measure of the peri-
odicity of the autocorrelation function linearly combined with
the value of the maximum peak of the autocorrelation function
as proposed in [7], and the second method uses the Long-Term
Signal Variability (LTSV) proposed in [9].

A schematic representation of the three types of SAD systems
considered in this work is given in Fig. 1. In all cases, the signal
is processed at a 10 ms frame rate to compute the associated
set of features: the CrossCorr score [7], a short term power
spectrum for the LTSV method, and an MFCC vector [23] for
the three types of NNs. The raw scalar output of each SAD
model is post-processed using the same decision and smoothing
back-end. The final SAD output is a set of speech segments
defined by their start and end points.

We investigate a global optimization process for RNN-based
SAD in order to optimize all system parameters including the
feature extraction parameters, the NN weights, and the back-
end parameters. Three cost functions are considered for SAD
optimization: the frame error rate (FER), the NIST detection
cost function (DCF), and the word error rate (WER) which is
particularly suitable when the SAD system is used in the front-
end of a speech recognizer.
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Fig. 1. Schematic representation of the SAD systems: The audio signal is pro-
cessed by the appropriate front-end (CrossCorr score, short term spectrum, and
MFCC). The SAD model produces a scalar output post-processed by the deci-
sion and smoothing component. The thick arrows represent the trainable/tunable
parameters.

Given this objective, there is a need to optimize non-
differentiable model components such as the CrossCorr score,
the LTSV, and the smoothing back-end, while employing
a complex loss function (WER). This led us to investigate
quantum-behaved particle swarm optimization (QPSO) which
we compare to, and also combine with, the usual gradient
descent (GD) training method for NN-based SADs.

In order to validate our method across languages and data
types, the experimental work was carried out on broadcast
data coming from the REPERE evaluation,1 the AMI meet-
ing corpus2 and telephone data from two NIST evaluations:
OpenSAD’153 and OpenKWS’13.4

The remainder of this paper is organized as follows. Section II
provides details about the explored neural network architectures
including the coordinated-gate LSTM [1]. Section III describes
the hybrid QPSO-GD training along with the considered loss
functions. The experimental setup is presented in Section IV and
results are given in Section V. Finally conclusions are drawn in
Section VI. Details of the back-propagation algorithm used to
train the CG-LSTM network and which have not been previously
published are provided in the Appendix.

II. NETWORK ARCHITECTURE

This section overviews the architectures of the neural net-
works used in our experiments. These include a basic RNN as
introduced by Elman [24] and RNNs based on two flavors of
LSTM cells: the LSTM with peepholes as introduced by Gers
et al. [22], and the coordinated-gate LSTM (CG-LSTM) intro-
duced in [1].

One shortcoming of unidirectional RNNs is that they are only
able to make use of the left context. For SAD purposes there is
no reason not to exploit the right context as well. Bidirectional
recurrent neural networks (BiRNN) were proposed by Schuster
and Paliwal [25] to do just that: two distinct RNNs process

1http://www.defi-repere.fr/
2http://groups.inf.ed.ac.uk/ami/corpus
3www.nist.gov/itl/iad/mig/nist-open-speech-activity-detection-evaluation
4www.nist.gov/itl/iad/mig/open-keyword-search-evaluation

Fig. 2. Bidirectional RNN: two different RNNs process the sequence in op-
posite directions. The output network takes as input the concatenation of the
outputs of the forward and backward layers.

the sequence both forward and backward, and then the output of
both networks are combined and fed into the feedforward output
layers that we call the output network (cf Fig. 2). In the literature
(e.g., [26]–[28]) bidirectional networks are reported to always
outperform unidirectional ones when dealing with frame-wise
classification, so only bidirectional RNNs were used in this
study.5

For all RNNs discussed in this paper, the output network
has only one hidden layer with tanh activation functions and
a logistic activation function for the single output of the final
layer. It therefore produces sequences of real values between 0
and 1 that can be interpreted as the probability that the current
audio frame contains speech.

In order to have a fair comparison between the various types
of neural networks, all the NN-based models that we tested use
MFCC features as input (with first and second order deriva-
tives), and all neural networks are configured to have the same
number of parameters (6k). The MFCC extraction parameters
are optimized jointly with the weights of the NN and with the
parameters of the post-processing component.

A. Basic RNN

Given an input sequence (x(1), ...,x(tf )), a basic recurrent
layer computes the output vector sequence (z(1), ...,z(tf )) by
iterating the (1) for t = 1 → tf :

z(t) = σ(W · x(t) + V · z(t − 1) + b) (1)

with z(0) = 0 and where the weight matrix W and the bias
vectors b define the affine transformation of the input vectors, V
is the interconnection matrix between the current internal state
of the recurrent layer and its output at the previous step, and σ is
the transfer function of the layer. The latter is typically chosen
among bounded non-linear functions such as the hyperbolic
tangent applied element-wise in our case.

5For on-line SAD, one should use unidirectional RNNs. As shown in
Table IV the error rates with the unidirectional RNN is a little higher than
that of the bidirectional RNN. Alternatively, if a delay on the output is accept-
able, a bidirectional RNN can be used with small (e.g., 3 s) overlapping windows
of the signal.
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For the output network, given an input vector x(t) which is
the concatenation of the outputs of both forward and backward
recurrent layers for timestep t, a fully connected feed-forward
network with one hidden layer associates an output vector z(t)
computed as follows:

z(t) = σz (W z · tanh (W h · x(t) + bh) + bz ) (2)

where σz is the logistic function:

σz (x) =
1

1 + e−x
, x ∈ R (3)

B. LSTM RNN

Long Short-Term Memory cells have recently been recog-
nized as the leading approach to modeling sequential structure.
They were introduced to overcome some of the shortcomings
of basic RNNs [29] and were popularized by Graves [27], [28].
Like Graves, we use the LSTM variant with peepholes intro-
duced by Gers et al. [22].

The use of such a LSTM layer instead of the basic RNN layer
modifies the computation of z(t) as follows:

ai(t) = W i · x(t) + V i · z(t − 1) + ui � c(t − 1) + bi

(4)

af (t) = W f · x(t) + V f · z(t − 1) + uf � c(t − 1) + bf

(5)

i(t) = σi (ai(t)) ; f(t) = σf (af (t)) (6)

ac(t) = W c · x(t) + V c · z(t − 1) + bc (7)

c(t) = f(t) � c(t − 1) + i(t) � σc (ac(t)) (8)

ao(t) = W o · x(t) + V o · z(t − 1) + uo � c(t) + bo (9)

o(t) = σo (ao(t)) (10)

z(t) = o(t) � σz (c(t)) r (11)

where � is the element-wise multiplication, i(t), f(t), c(t) and
o(t) are respectively the activation vectors of:

� the input gates that controls the amount of information that
enters the LSTM layer,

� the forget gates that controls the amount of information
that is remembered from the previous step,

� the cells which are the internal state of the LSTM layer,
� the output gates that controls the amount of information

that comes out of the LSTM layer.
All these activation vectors have the same size as the LSTM

layer, as do the vectors ui , uf , and uo in (4), (5) and (9).

C. Coordinated-Gate LSTM RNN

For the CG-LSTM cell that we introduced in [1] and in which
direct links are added between the three gates of a cell, (6) and

(10) are modified into (13), (15) and (17):

ãi(t) = vi � i(t − 1) + wi � f(t − 1) + yi � o(t − 1)
(12)

i(t) = σi (ai(t) + ãi(t)) (13)

ãf (t) = vf � i(t − 1) + wf � f(t − 1) + yf � o(t − 1)
(14)

f(t) = σf (af (t) + ãf (t)) (15)

ão(t) = vo � i(t) + wo � f(t) + yo � o(t − 1) (16)

o(t) = σo (ao(t) + ão(t)) (17)

where we use nine new peepholes vectors v{i,f ,o}, w{i,f ,o} and
y{i,f ,o} and element-wise multiplications � so that a gate can
have access to the gates of the same cell.

With these new links the three gates of a cell can interact
more efficiently and improve the cell behavior (cf. results in
Section V). The back-propagation algorithm for the CG-LSTM
cell is given in the appendix.

III. SAD OPTIMIZATION

This section details the optimization process designed to train
any SAD system whether it aims to minimize the frame error
rate or the word error rate of an ASR system.

This optimization process is based on the heuristic QPSO
algorithm which is augmented by a mini-batch gradient descent
algorithm when at least part of the SAD model is differentiable,
which is the case for all the NN-based SADs.

The choice of QPSO as the optimization algorithm was driven
by the need to cope with non-differentiable optimization prob-
lems, and also by the fact that QPSO, which is well suited for
difficult optimization tasks, has been shown to be more effective
than genetic algorithms.

The raw output of all SAD systems (NN-based or not) is
post-processed by the same decision and smoothing back-end
(cf. Fig. 1), the parameters of which are optimized for each SAD
method. The 6 smoothing parameters are:

� the onset and offset thresholds;
� the duration of padding before and after each speech seg-

ment;
� the threshold for short speech segment deletion;
� the threshold for short silence deletion.
There are different tunable parameters for the different feature

extraction methods. The tunable parameters for each of the three
front-ends are listed in Table I.

For the NN-based SADs, QPSO is first used to jointly opti-
mize the MFCC front-end, the neural network weights and the
smoothing back-end parameters, where these three sets of pa-
rameters are seen by QPSO as a single large parameter vector.
GD training is then used to improve the neural network weights.
Finally, QPSO is optionally used to refine the back-end param-
eters to take into account the changes in the NN weights. The
impact of this alternating strategy is shown in Section V-B,
Table IV.
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TABLE I
TUNABLE PARAMETERS FOR THE THREE FRONT-ENDS: CrossCor, LTSV,

AND MFCC

6 CrossCor front-end

1 pre-emphasis coefficient
1 analysis window size
2 autocorrelation lag range
1 level of white noise added to the signal
1 relative weight between autocorrelation peak and cross-correlation

coefficient
9 LTSV front-end

1 pre-emphasis coefficient
1 level of white noise added to the signal
5 FFT parameters: window type and size, frame step, minimum and

maximum frequencies
2 analysis span and step in number of frames

8 MFCC front-end

2 window type and size
2 minimum and maximum frequencies
1 number of filters
1 number of DCT coefficients
2 Δ and ΔΔ cepstrum context sizes

The number of parameters is given in the first column.

For the CrossCorr and LTSV SAD methods, only QPSO is
used to optimize the model parameters jointly with the decision
and smoothing back-end parameters.

More details of the optimization process are given in the
following subsections.

A. QPSO

The benefits of heuristic optimization techniques such as ge-
netic algorithms for minimizing complex loss functions was
shown in [30]. Since then, similar but more efficient methods
such as quantum-behaved particle swarm optimization (QPSO)
were developed ([31]–[33]). QPSO is a variant of the PSO al-
gorithm which was motivated by the social behavior of bird
flocks and was first introduced by Kennedy and Eberhart as a
population-based optimization technique ([34], [35]. Although
the PSO algorithm is comparable in performance to genetic
algorithms, QPSO was shown to be a more powerful tool
than both of them when performing difficult optimization tasks
(cf. [32]).

As for many other heuristic optimization schemes, the main
idea behind QPSO is to encode the whole set of M parameters
to be optimized into a single vector of dimension M , start-
ing with random positions in the search space Xj , j ∈ [[1, N ]]
for N particles. Then, QPSO produces at each iteration of the
optimization process new positions based on the performance
of the current particles’ positions, the memory of the best po-
sitions P j , j ∈ [[1, N ]] seen so far by each particle, and the
global best position G. The pseudo-code for QPSO is given in
Algorithm 1.

B. Gradient Descent

We found that using a second optimization technique specific
to neural networks is beneficial to locally improve the solution

Algorithm 1: QPSO.
for j = 1..N do

Randomly initialize Xj and P j for particle j
Evaluate the losses L(Xj ) and L(P j )

end for
Find the global best position G among Xj and P j for
j ∈ [[1, N ]]
while stopping criterion = false do

for j = 1..N do
for i = 1..M do

Randomly select φ, u and α from a uniform
distribution on ]0, 1]
y = φ · Pi,j + (1 − φ) · Gi

if α > 0.5 then
Xi,j = y + |Xi,j − Pi,j | ln(1/u)

else
Xi,j = y − |Xi,j − Pi,j | ln(1/u)

end if
end for
Evaluate the loss L(Xj) for the new Xj

Update G and P j if necessary (e.g.,
L(Xj) < L(G))

end for
end while

Algorithm 2: SMORMS3.
Initialize p the parameters of the neural network with the
best candidate G obtained at the end of QPSO.
Initialize the internal vectors (same size as p):
m = 1, a = 0 and asq = 0
while stopping criterion = false do

Compute the gradient ∇L(p) of the loss function L
w.r.t. p using back-propagation as described in
appendix B.
Update the internal vectors:

r = 1/(m + 1)
a = (1 − r) · a + r · ∇L(p)
asq = (1 − r) · asq + r · (∇L(p))2

m = 1 + m · (1 − a2/(asq + ε))
Update the NN parameters:

p = p −∇L(p) · min(0.001,a2/(asq + ε))/
(√asq + ε)

end while
(products, divisions and min are performed element-wise)

found by QPSO. As a reminder this is only applicable to the
NN components (which are differentiable). Back-propagation
as detailed in appendix B is combined with the SMORMS3
mini-batch gradient descent algorithm as proposed in [36] (cf.
Algorithm 2 for the pseudo-code). SMORMS3 was chosen as
it yielded better results than RPROP [37], RMSPROP [38],
Adam [39] or the Sum of Functions Optimizer [40].
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C. Mini-Batch Selection

For both the QPSO and GD algorithms, a small number of
audio segments (about 200 of 60 seconds each) are randomly
selected for a mini-batch training at each iteration of the opti-
mization loop. We also keep track of the 100 audio segments
that lead to the highest error rates (worst cases) seen so far and
add them to our mini-batch at each training step. The effect
of keeping the worst cases is shown in Table IV (compare the
second and last rows).

D. Loss Functions

In this section the two loss functions used in training the SAD
systems are defined. LFER is the weighted frame error rate for
which only basic annotations are needed (time codes of speech
segments) and is straight-forward to implement. LWER is a loss
function specifically designed to optimize SAD models for ASR
systems that was introduced in [1].

1) Weighted Frame Error Rate (LFER): The weighted frame
error rate with respect to manual annotations is defined as:

LFER = α
∑

ts ∈S

(1 − z(ts)) + (1 − α)
∑

tn ∈N

z(tn ) (18)

where S is the set of speech frames, N is the set of non-speech
frames, α is a weight reflecting the relative importance of the
two types of errors (errors on speech frames vs non-speech
frames), and z(t) is the binary output of the SAD system at time
t. z(t) = 0 if the current frame is recognized as a non-speech
frame and z(t) = 1 if the current frame is recognized as a speech
frame.

Gradient descent training requires a differentiable loss func-
tion in order to be able to determine the gradient with respect to
the parameters. Therefore, a weighted version of the maximum
likelihood loss function of a binary classifier is used to mimic
the behavior of LFER:

L′
FER = −α

∑

ts ∈S

ln(1 − z(ts)) − (1 − α)
∑

tn ∈N

ln(z(tn ))

(19)
where ∀t, z(t) ∈ [0, 1] is the real valued output of the neural
network.

2) WER-Like Metric (LWER): Optimizing an SAD algorithm
to minimize the WER of an ASR system would be best achieved
by computing the actual WER for all the SAD settings. Unfortu-
nately, the computational load is too high for this to be a realistic
solution.

Instead a loss function LWER was designed that makes use of
the ASR output and takes into account the fact that all words,
independently of their length, have the same weight.

Let C, S,D and I be respectively the sets of correct word
occurrences, substitutions, deletions and insertions in the ASR
output with respect to the human reference for the whole audio
file. For each word occurrence w ∈ C ∪ S ∪ I, we denote Fw

the set of audio frames corresponding to w in the ASR output.
The sets S′, D′ and I′ are defined as follows:

� a word w ∈ S′ if and only if w ∈ S and all frames in Fw

are classified as speech by the SAD system.

� a word w ∈ D′ if and only if either w ∈ D or if w ∈ C ∪ S
and at least one frame in Fw is classified as non-speech by
the SAD system.

� a word w ∈ I′ if and only if w ∈ I and at least one frame
in Fw is classified as speech by the SAD system.

The following two ratios are also introduced:
� τw

d is the ratio between the duration of the word w not
detected as speech and the whole duration of the word.

� τw
i is the ratio between the duration of the word w detected

as speech and the whole duration of the word.
Finally the LWER loss function is defined as

LWER =
|S′| + |D′| + |I′| + τi + τd

Nr
(20)

with τi =
∑

w∈pWI

τw
i and τd =

∑

w∈WC ∪WS

τw
d (21)

where Nr is the number of words in the reference transcription.
The two terms τi and τd were introduced to smooth the discon-
tinuities of the metric. Doing so the optimization algorithm is
less prone to being trapped on a plateau of the loss function.

For GD training, we need a differentiable loss function to
be able to compute the gradient with respect to the parameters.
Thus, we designed a differentiable equivalent to (20):

L′
WER = −

∑

w∈WC ∪WS

(
1
δw

∑

tw ∈Fw

ln(z(tw ))

)

−
∑

w∈WI

(
1
δw

∑

tw ∈Fw

ln(1 − z(tw ))

)
(22)

where ∀t, z(t) ∈ [0; 1] is the output of the neural network for
the frame tw of the word w and δw is the number of frames in
the word w.

E. Overall Optimization Process

The optimization process for the CrossCorr and LTSV SAD
methods is performed in one step. This step consists of using
QPSO to jointly optimize the feature extraction parameters and
the parameters of the decision and smoothing back-end. To do
so requires using the adequate loss function for the evaluation
metric (i.e., LFER to minimize the FER and LWER to minimize
the WER).

For the NN-based SADs, the optimization process is com-
posed of three steps:

1) QPSO is first used to jointly optimize the MFCC front-
end, the NN weights and the parameters of the decision
and smoothing back-end. This first step is denoted QPSO
in the table of results.

2) GD training is used to refine the NN weights, the other
parameters being kept at the values estimated with QPSO
in step 1. This second step is denoted GD.

3) QPSO is then used to refine the parameters of the decision
and smoothing back-end. This step is denoted back-end
QPSO in the following.

In steps 1 and 3 the loss functions LFER and LWER are used.
Their differentiable versions, L′

FER and L′
WER are used in step 2.
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For all of the results presented in this paper, the durations
of the 3 optimization steps (QPSO, GD, back-end QPSO) are
identical by design, i.e., the number of iterations in each step
was set to require roughly the same computation time for each
of the 3 steps.

IV. EXPERIMENTAL CONDITIONS

This section describes the four sets of data used in the ex-
periments reported here: the NIST OpenSAD’15 evaluation
data, the REPERE and AMI Meeting corpora, and the NIST
OpenKWS’13 evaluation data for speech recognition purposes.

A. OpenSAD’15 Data and Conditions

The goal of the NIST open Speech Activity Detection 2015
(OpenSAD’15) [41] evaluation was to assess the state-of-the-art
in identifying speech activity regions in signals from distorted,
degraded, weak, and/or noisy communication channels. Most of
the evaluation data came from sequestered data from the DARPA
Robust Automatic Transcription of Speech (RATS) program.
The data is challenging for SAD as it is highly heterogeneous
including a variety of transmitter/receiver radio-link channels,
noisy conditions and long segments with only little speech.
The speech data was originally collected over public telephone
networks (landline or cell) and was retransmitted/received over 7
HF/VHF/UHF channels called A, B, C, E, F and G. Two of these
channels (A and C) were present only in the evaluation data.
This corpus contains conversations in five languages: English,
Levantine Arabic, Farsi, Pashto and Urdu.

The evaluation metric is the detection cost function (DCF)
defined as follows:

DCF = 0.75 · Pmiss + 0.25 · Pf a (23)

which is a weighted combination of misses and false alarms.
The behavior of the DCF is close to the behavior of the

weighted frame error rate loss function LFER defined in (18)
with α = 0.75. The difference resides in the denominators used
for computing Pmiss and Pf a (i.e., the total duration of speech
and the total duration of non-speech). Since the data used in
the OpenSAD evaluation originally comes from telephone con-
versations, these two denominators are approximately the same.
Collars are used to compute the NIST DCF which has a smooth-
ing effect on the DCF values.

It is important to mention that scoring of the evaluation data
could only be carried out by NIST as the annotations of the eval-
uation data have not been distributed, therefore the contrastive
results are reported on the development data set.

B. REPERE Data

As explained in [42] and [43], the main task of the REPERE
evaluation was the multimedia recognition of persons in TV
shows. The REPERE corpus is comprised of news shows from
two French TV channels: LCP and BFMTV. The video files
contain very different show types such as debates, interviews,
reports in the field. This corpus includes audio tracks with a great
variety of acoustic environments which can be challenging for

SAD systems. These characteristics make the REPERE corpus
a good choice to evaluate the robustness of the various SAD
methods for broadcast conditions. The FER is used to evaluate
the SAD results on this data.

C. AMI Data

The European-funded AMI project collected a set of recorded
meetings that is now available as a public resource. The AMI
Meeting Corpus consists of 100 hours of meetings recorded
in three rooms with different acoustic properties. While the
language of the meetings is English, most of the speakers are
non-native. This meeting scenario is very different for the other
audio data types and is challenging for SAD. As for the REPERE
data, the FER metric is used to evaluate the SAD results.

D. OpenKWS’13 Data

Data from the IARPA Babel program were used to assess
the SAD systems optimized for ASR. Experiments were carried
out using data in four languages: Vietnamese, Pashto, Turkish
and Tagalog. The Babel datasets6 are approximately gender-
balanced and contain a diversity of styles, speakers and en-
vironments. The training set includes 160 hours of audio for
approximately 90 hours of speech per language. The evaluation
set contains 30 hours of audio for approximately 17 hours of
speech for each language. Orthographic transcriptions to train
and evaluate ASR systems are provided for this data. These
transcriptions are used to evaluate all of the SAD methods that
are optimized to minimize the WER of the downstream ASR
system.

State-of-the-art ASR systems were trained on only the dis-
tributed Babel data. All systems used hybrid HMM-MLP acous-
tic models and 4-gram language models with vocabularies sizes
of 10 K words similar to the systems described in [44].

V. RESULTS

This section provides the results using the studied SAD
methods for the four different corpora. All models were trained
using the optimization framework introduced in Section III.
Contrastive results are given in Tables II and III with and
without QPSO optimization. Without QPSO optimization, the
setup proposed in [7] and [9] are used for the non-NN methods,
CrossCorr and LTSV respectively. The LIMSI standard MFCC
front-end and gradient-descent alone is used for NN training.

A. FER Optimization

Six SAD systems trained using the LFER or L′
FER loss func-

tions are compared on all four datasets. The NIST DCF values
for OpenSAD’15 and the FER for the other three corpora are
given in Table II. For the REPERE and AMI data, the SAD met-
ric to minimize is the FER and we use the LFER loss function
with α = 0.5 to train the SAD systems.

The BiRNN architecture depicted in Fig. 2 with only one
recurrent layer for each direction is used for all RNN-based

6Vietnamese IARPA-babel107b-v0.7, Pashto IARPA-babel104b-v0.4b,
Turkish IARPA-babel105b-v0.5, Tagalog IARPA-babel106-v0.2g
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TABLE II
RESULTS ON THE FOUR DATASETS FOR 6 SAD SYSTEMS TRAINED USING THE LFER LOSS FUNCTION

Metric FER DCF

Cost function FER (LFER; α = 0.5) LFER (α = 0.75)

Corpus REPERE AMI OpenKWS’13 OpenSAD’15

CrossCorr 17.94 (29.85) 8.34 (45.38) 7.60 (19.52) 12.0 (13.6)
LTSV 16.67 (19.13) 8.29 (54.94) 7.85 (19.02) 10.1 (13.7)
MLP 15.62 (17.20) 6.84 (10.23) 6.29 (12.15) 5.3 (6.7)
Basic RNN 15.45 (16.13) 6.55 (6.93) 6.24 (8.33) 4.1 (4.5)
LSTM 13.37 (15.25) 6.20 (6.53) 5.83 (8.07) 3.4 (3.7)
CG-LSTM 12.66 (14.83) 5.93 (6.40) 5.76 (7.84) 3.0 (3.2)

Results are given in terms of DCF for the OpenSAD’15 data and in terms of FER for the 3 others.
Numbers in parentheses are without any QPSO optimization.

TABLE III
WERS ON THE OPENKWS EVALUATION DATA FOR FOUR LANGUAGES AFTER OPTIMIZING EACH SAD MODEL USING THE LWER LOSS FUNCTION

Metric WER

Cost function FER (LFER; α = 0.5) LWER

Corpus Vietnamese Pashto Turkish Tagalog

CrossCorr 56.7 (58.8) 56.1 (58.8) 63.9 (64.9) 60.6 (62.9) 57.1 (60.0)
LTSV 57.1 (58.5) 55.6 (58.5) 64.0 (64.5) 60.6 (61.2) 56.7 (56.9)
MLP 56.6 (61.5) 55.4 (61.1) 63.5 (64.2) 60.3 (62.4) 56.2 (59.4)
Basic RNN 56.5 (56.8) 55.2 (56.5) 63.5 (63.8) 60.2 (60.7) 56.3 (57.7)
LSTM 56.5 (56.4) 54.8 (56.0) 63.2 (63.7) 60.2 (60.5) 56.2 (57.5)
CG-LSTM 56.4 (56.2) 54.6 (55.7) 63.2 (63.6) 60.0 (60.5) 56.0 (57.4)

Contrastive results based on the FER and the LFER loss function are given for Vietnamese. Numbers in parentheses
are without any QPSO optimization.

SADs. For the comparison to be fair, all the NN models have
6 K weights. The size of the recurrent layer is 35 for the basic
RNN and 13 for the LSTM networks. The output network of
the RNNs has one hidden layer with 16 neurons. For the MLP-
based SAD, only the output network with a hidden layer of size
164 is used.7

As shown in Table II, the NN-based SAD systems are seen
to consistently outperform the non NN-based SAD models and
the RNN-based systems outperform the MLP-based one. The
best performance is obtained with the LSTM networks, the CG-
LSTM network improving the DCF by 12% relative over the
original LSTM network on the OpenSAD’15 data and reducing
the FER by 4% relative on average on the three other corpora.

It should be noted that network size is quite small leading to
fast decoding. For the CG-LSTM network, decoding is done in
0.001xRT on a standard desktop CPU.

B. WER Optimization

The impact of the different SAD systems on the ASR perfor-
mance is measured by the actual WER on the OpenKWS evalu-
ation data. The four NN-based systems have the same number of
parameters (6 K weights). The WERs on the evaluation data are
given in Table III. These results were obtained after optimizing

7While a more sophisticated non-recurrent architecture using more contextual
information could improve the SAD performance, the goal here was to compare
both recurrent and non-recurrent simple architectures on the exact same input
sequence.

each SAD system using the loss function LWER (and L′
WER) de-

fined in (19) for each of the four languages (Vietnamese, Pashto,
Turkish and Tagalog).

The impact of using a task specific loss function can be seen by
comparing the two sets of results for the Vietnamese language.
Using the LWER loss function, designed to mimic the WER,
leads to an average relative gain of 2.9% in WER for all SAD
models compared to using the FER.

The differences in WER performance across the various SAD
models is much less important than the differences in DCF for
the OpenSAD task and in FER on the REPERE and AMI cor-
pora, however the overall ranking remains the same. As can be
expected the WER of a downstream ASR system is less impacted
by SAD than the DCF or the FER. To take the extreme case, if
the entire audio signal is wrongly hypothesized as speech, there
will generally be only a small impact on the WER as the ASR
can ignore noisy segments, whereas the FER and the DCF will
be directly correlated with the real amount of non-speech data.

Overall the relative differences in results for the tested con-
ditions are comparable across the 4 languages, exhibiting the
language independence of the optimization method.

The CG-LSTM network obtains the lowest WER for all lan-
guages. This network reduces the WER by 1.8% relative com-
pared to the best non-neural SAD system using LTSV. A more
detailed analysis shows that this gain mainly comes from reduc-
ing the number of insertions (e.g., 5.0% to 3.6% for Vietnamese),
the CG-LSTM model being able to discard signal (even speech)
that causes ASR insertions.
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TABLE IV
DCFS ON THE OPENSAD DATA, FERS AND WERS ON THE OPENKWS DATA (VIETAMESE ONLY) WITH DIFFERENT STRATEGIES TO TRAIN BIDIRECTIONAL (BIDIR)

LSTM NETWORKS

Optimization strategy Bidir CG OpenSAD’15 OpenKWS’13

QPSO GD back-end QPSO WC addition DCF FER WER

� � � � 6.42 9.96 56.6
� � � � � 3.22 7.13 56.4

� � � � 3.19 7.84 55.7
� � � � � 3.17 6.65 55.4

� � � � 3.15 6.12 55.4
� � � � � 3.04 5.83 55.0
� � � � � 3.38 5.83 54.8
� � � � � � 3.01 5.76 54.6

The column ‘WC addition’ indicates whether or not training includes the worst case (WC) segments in the mini-batch.

Since the performance difference between the best two sys-
tems (LSTM and CG-LSTM) is quite small (0.2), we used
NIST’s sc_stats tool to perform a two-tailed significance test
with the null hypothesis that there is no performance difference
between the two systems. With the “Matched Pair Sentence
Segment (Word Error)” test a significant difference between the
two systems was found at the level of p = 0.05 (i.e., the NIST
standard condition to compare ASR systems) on the Vietnamese
and Turkish data.

C. Importance of the Optimization Strategy

To evaluate the relative importance of the QPSO and the gra-
dient descent algorithms, different combinations of these two
optimization schemes have been tested for training the CG-
LSTM network. When we do not perform the QPSO step, the
SAD system uses standard MFCC extraction parameters which
are not optimized to improve the performance. Similarly, when
we do not perform the back-end QPSO step, the decision thresh-
olds are set to 0.5 and the boundaries of the speech segments are
determined without any smoothing. Table IV reports the result-
ing DCFs on the OpenSAD development data and the WERs on
the OpenKWS Vietnamese evaluation data set. For a fair com-
parison, all these results were obtained with identical overall
training times.

These results show that even though GD alone leads to good
results, using the 3-step approach achieves the best perfor-
mance. In particular, combining the two optimization techniques
through the QPSO and GD steps lowers the FER by 23% rela-
tive, the WER by 1.5% relative and the DCF by more than 5%
relative compared to the best optimization method used alone.
The gains brought by the back-end QPSO step are small8 but
consistent. Adding the worst cases in the mini-batch training
as described in Section III-C Table IV (2nd and last row) leads
to a 19.2% relative reduction in FER and a 3.2% relative gain
in WER and improves the DCF by close to 7% relative. The
comparison of uni- and bi-directional RNNs is given in lines 5
and 6. The differences are small but significant.

8We performed a two-tailed significance test with the null hypothesis that
there is no performance difference between the systems with and without
smoothing and found a significant difference between the two systems at the
level of p < 0.001.

VI. CONCLUSIONS

In this paper, we proposed an optimization method for neural-
network based speech activity detection, with the goal of opti-
mizing all system parameters, including the feature extraction
parameters, the NN weights, and the back-end parameters. Three
metrics are considered: the frame error rate, the NIST detection
cost function, and the WER of a downstream speech recognizer.
Being well suited for non-differentiable optimization problems,
QPSO training is used to tune the MFCC front-end and the
smoothing back-end, and for the initial training of the neural
network. Gradient descent training is then used to refine the
neural network weights. We defined two loss functions, LFER

and LWER, approximating the FER, the NIST DCF and the
WER, along with their differentiable versions (L′

FER and L′
WER)

for use with GD training. Three types of RNNs were investi-
gated: a basic RNN, an LSTM network with peepholes, and a
coordinated-gate LSTM network.

Experimental results were reported using the DCF, FER
and WER metrics on four different corpora covering a range
of data types and languages: the REPERE evaluation data,
the AMI meeting corpus, the NIST OpenSAD’15 evaluation
data and the multilingual conversational corpus from the NIST
OpenKWS’13 evaluation. The proposed optimization method
outperforms gradient-descent training alone. Using appropriate
loss functions allows optimization of either the frame error rate
or the word error rate of a downstream ASR system. For all con-
ditions the CG-LSTM network outperforms the original LSTM
network, a basic RNN as well as an MLP-based and two other
baseline SAD systems.

APPENDIX

CG-LSTM BACK-PROPAGATION

This appendix details the back-propagation algorithm for a
bidirectional CG-LSTM network.

The goal of the back-propagation is to efficiently compute the
first derivatives of the loss function L that we want to minimize
with respect to the weights and biases of the neural network. To
do so, we first compute the gradient of L w.r.t. the output z(t)
of the neural network for t = tf → 1 and then back-propagate
these gradients through all the layers from the last to the first
using the derivation chain rule.
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First, we detail the back-propagation through the output net-
work. Then, we fully describe the back-propagation of the gra-
dients in a CG-LSTM layer.

A. Output Network

For an MLP such as the output network of our bidirectional
RNN architecture, we rewrite (2) as follows:

ah(t) = W h · x(t) + bh (24)

h(t) = tanh (ah(t)) (25)

and

az (t) = W z · h(t) + bz (26)

z(t) = σz (az (t)) (27)

Then, we first back-propagate the gradient through the acti-
vation function of the output layer defined in (27). To do that,
we need to compute Jσz

(az (t)) the Jacobian matrix of σz at the
point az (t) and then the chain rule for partial derivatives gives:

∂L

∂az
(t) = Jσz

(az (t)) · ∂L

∂z
(t) (28)

In our case where σz is the logistic function (cf. (3)) applied
element-wise to az (t), Jσz

(az (t)) is diagonal and (28) can be
rewritten in a simpler and a more computationally efficient way:

∂L

∂az
(t) = z(t) � (1 − z(t)) � ∂L

∂z
(t) (29)

Then, using again the chain rule we can back-propagate
through (26) and (25):

∂L

∂h
(t) = W T

z · ∂L

∂az
(t) (30)

∂L

∂ah
(t) = Jσh

(ah(t)) · ∂L

∂h
(t) (31)

where W T
z is the transpose of W z .

Since σh is in our case the hyperbolic tangent applied element-
wise we can rewrite (31) similarly to what we did to obtain (29):

∂L

∂ah
(t) = (1 − h(t) � h(t)) � ∂L

∂h
(t) (32)

Now, we have everything needed to compute the first deriva-
tives of L w.r.t. the weight matrices and the bias vectors by
summing the independent contributions of each time-step to the
gradients:

∂L

∂W z
=

tf∑

t=1

∂L

∂az
(t) · h(t)T ;

∂L

∂bz
=

tf∑

t=1

∂L

∂az
(t) (33)

and

∂L

∂W h
=

tf∑

t=1

∂L

∂ah
(t) · x(t)T ;

∂L

∂bh
=

tf∑

t=1

∂L

∂ah
(t) (34)

Since we need to back-propagate the gradient further into the
recurrent layers, we have to compute the derivatives of L w.r.t.

the input sequence (x(1), ...,x(tf )) of the output network:

∂L

∂x
(t) = W T

h · ∂L

∂ah
(t) (35)

Then, these gradients are given as input to the back-
propagation algorithm for the CG-LSTM layers.

B. CG-LSTM

For a CG-LSTM layer, we use a slightly different back-
propagation algorithm which is called back-propagation through
time (BPTT [45]). As for standard back-propagation, BPTT con-
sists in repeatedly applying the chain rule, but for a recurrent
layer we also need to take into account the back-propagation of
the gradient through the recurrent links. Hence, we iterate over
time from the last step to the first (t : tf → 1) back-propagating
through (11) to (4) for each time-step. For the CG-LSTM model,
one also needs to take into account the new links between the
gates described by (12) to (17).

Thus, first we back-propagate the gradient through (11) and
we have:

∂L

∂o
(t) =

(
∂L

∂z
(t) + ε(t + 1)

)
� σz (c(t)) + βo(t + 1)

(36)
where ε(t + 1) is define by (54) and corresponds to the contri-
bution of the recurrent links to the gradient with ε(tf + 1) = 0
since no contribution to the gradient can come from after the
end of the sequence. And with

βo(t) = yi � ∂L

∂ai
(t) + yf � ∂L

∂af
(t) + yo � ∂L

∂ao
(t) (37)

and βo(tf + 1) = 0.
Then, back-propagating the gradient through (10), we can

compute:

∂L

∂ao
(t) = Jσo

(ao(t)) · ∂L

∂o
(t) (38)

We introduce the following notations to describe the 2 contri-
butions of the output gates to the gradients of the current LSTM
layer when back-propagating the gradient through (9):

εo(t) = V T
o · ∂L

∂ao
(t) (39)

γo(t) = uo � ∂L

∂ao
(t) (40)

Then, we can compute:

∂L

∂c
(t) = Jσz

(c(t)) ·
((

∂L

∂z
(t) + ε(t + 1)

)
� o(t)

)
+ γ(t)

(41)
where

γ(t) = γo(t) + γc(t + 1) + γf (t + 1) + γi(t + 1) (42)

with γ(tf ) = γo(tf ) since no contribution to the gradient can
come from after the end of the sequence.
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Then, back-propagating through (8) using the chain rule, we
get:

∂L

∂ac
(t) = Jσc

(ac(t)) ·
(

∂L

∂c
(t) � i(t)

)
(43)

and

γc(t) =
∂L

∂c
(t) � f(t) (44)

and also the gradients w.r.t. the activation vectors of the input
and forget gates:

∂L

∂f
(t) =

∂L

∂c
(t) � c(t − 1) + βf (t + 1) (45)

∂L

∂i
(t) =

∂L

∂c
(t) � σc(ac(t)) + βi(t + 1) (46)

where

βf (t) = wi � ∂L

∂ai
(t) + wf � ∂L

∂af
(t) + wo � ∂L

∂ao
(t − 1)

(47)

βi(t) = vi � ∂L

∂ai
(t) + vf � ∂L

∂af
(t) + vo � ∂L

∂ao
(t − 1)

(48)

Similarly to what we did for the output gates, we can back-
propagate the gradient through both equations in (6):

∂L

∂af
(t) = Jσf

(af (t)) · ∂L

∂f
(t) (49)

∂L

∂ai
(t) = Jσi

(ai(t)) · ∂L

∂i
(t) (50)

Now, we introduce the following notations to describe the
contributions of the input and forget gates to the gradients of
the rest of the LSTM layer when back-propagating the gradient
through (4) and (5):

εf (t) = V T
f · ∂L

∂af
(t) ; εi(t) = V T

i · ∂L

∂ai
(t) (51)

γf (t) = uf � ∂L

∂af
(t) ; γi(t) = ui � ∂L

∂ai
(t) (52)

Finally, we back-propagate the gradient through (7) :

εc(t) = V T
c · ∂L

∂ac
(t) (53)

We can now determine the contribution of the recurrent links
in the (36) and (41) for the next computation (i.e., t − 1):

ε(t) = εo(t) + εs(t) + εf (t) + εi(t) (54)

When we reach t = 1, we can compute the first derivatives
of L w.r.t. the weight matrices and the bias vectors by summing
the contribution of all time steps. Thus, for g ∈ {i, f, c, o}, we

have:

∂L

∂W g
=

tf∑

t=1

∂L

∂ag
(t) · x(t)T (55)

∂L

∂V g
=

tf∑

t=2

∂L

∂ag
(t) · z(t − 1)T (56)

∂L

∂bg
=

tf∑

t=1

∂L

∂ag
(t) (57)

as well as for the input, forget and output gates (g ∈ {i, f, o}):

∂L

∂ug
=

tf∑

t=2

∂L

∂ag
(t) · c(t − 1)T (58)

Finally, we can also compute the first derivatives of L w.r.t.
the nine new links between the gates for g ∈ {i, f}:

∂L

∂vg
=

tf∑

t=2

∂L

∂ag
(t) � i(t − 1) (59)

∂L

∂wg
=

tf∑

t=2

∂L

∂ag
(t) � f(t − 1) (60)

and

∂L

∂vo
=

tf∑

t=1

∂L

∂ao
(t) � i(t) (61)

∂L

∂wo
=

tf∑

t=1

∂L

∂ao
(t) � f(t) (62)

and for g ∈ {i, f, o}:

∂L

∂yg
=

tf∑

t=2

∂L

∂ag
(t) � o(t − 1) (63)

ACKNOWLEDGMENT

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of IARPA,
DoD/ARL, or the U.S. Government.

REFERENCES

[1] G. Gelly and J.-L. Gauvain, “Minimum word error training of RNN-based
voice activity detection,” in Proc. Interspeech, 2015, pp. 2650–2654.

[2] S. Van Gerven and F. Xie, “A comparative study of speech detection
methods,” in Proc. Eurospeech, vol. 97, 1997.

[3] P. C. Khoa, “Noise robust voice activity detection,” Ph.D. dissertation,
School Comput. Eng., Nanyang Technol. Univ., Singapore, 2012.

[4] L. Lamel, L. Rabiner, A. E. Rosenberg, and J. G. Wilpon, “An improved
endpoint detector for isolated word recognition,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-29, no. 4, pp. 777–785, Aug. 1981.

[5] G. Evangelopoulos and P. Maragos, “Speech event detection using multi-
band modulation energy,” in Proc. Interspeech, 2005, pp. 685–688.



656 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 26, NO. 3, MARCH 2018

[6] T. Kristjansson, S. Deligne, and P. Olsen, “Voicing features for robust
speech detection,” Entropy, vol. 2, no. 2.5, pp. 369–372, 2005.

[7] H. Ghaemmaghami, B. J. Baker, R. J. Vogt, and S. Sridharan, “Noise
robust voice activity detection using features extracted from the time-
domain autocorrelation function,” in Proc. Interspeech, 2010.

[8] J. Ramırez, J. C. Segura, C. Benıtez, A. De La Torre, and A. Rubio,
“Efficient voice activity detection algorithms using long-term speech in-
formation,” Speech Commun., vol. 42, no. 3, pp. 271–287, 2004.

[9] P. K. Ghosh, A. Tsiartas, and S. Narayanan, “Robust voice activity detec-
tion using long-term signal variability,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 3, pp. 600–613, Mar. 2011.

[10] T. Ng et al., “Developing a speech activity detection system for the DARPA
RATS program,” in Proc. Interspeech, 2012, pp. 1969–1972.

[11] I. Shafran and R. Rose, “Robust speech detection and segmentation for
real-time ASR applications,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 1, 2003, pp. I-432–I-435.

[12] G. Saon, S. Thomas, H. Soltau, S. Ganapathy, and B. Kingsbury, “The
IBM speech activity detection system for the DARPA RATS program,” in
Proc. INTERSPEECH, 2013, pp. 3497–3501.

[13] X.-L. Zhang and J. Wu, “Deep belief networks based voice activity detec-
tion,” IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 4, pp. 697–
710, Apr. 2013.

[14] T. Drugman, Y. Stylianou, Y. Kida, and M. Akamine, “Voice activity detec-
tion: Merging source and filter-based information,” IEEE Signal Process.
Lett., vol. 23, no. 2, pp. 252–256, Feb. 2016.

[15] N. Ryant, M. Liberman, and J. Yuan, “Speech activity detection on youtube
using deep neural networks,” in Proc. Interspeech, 2013, pp. 728–731.

[16] T. Hughes and K. Mierle, “Recurrent neural networks for voice activity
detection,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2013, pp. 7378–7382.

[17] S. Tong, H. Gu, and K. Yu, “A comparative study of robustness of deep
learning approaches for VAD,” in Proc. 2016 IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2016, pp. 5695–5699.

[18] F. Eyben, F. Weninger, S. Squartini, and B. Schuller, “Real-life voice
activity detection with LSTM recurrent neural networks and an application
to Hollywood movies,” in Proc. 2013 IEEE Int. Conf. Acoust., Speech,
Signal Process., 2013, pp. 483–487.

[19] J. Martens and I. Sutskever, “Learning recurrent neural networks with
hessian-free optimization,” in Proc. 28th Int. Conf. Mach. Learn., 2011,
pp. 1033–1040.

[20] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in
optimizing recurrent networks,” in Proc. 2013 IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2013, pp. 8624–8628.

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., vol. 28,
2013, pp. 1310–1318.

[22] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks,” J. Mach. Learn. Res., vol. 3, no.
Aug, pp. 115–143, 2002.

[23] S. Davis and P. Mermelstein, “Comparison of parametric representations
of monosyllabic word recognition in continuously spoken sentences,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 4,
pp. 357–366, Aug. 1980.

[24] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2, pp. 179–
211, 1990.

[25] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681,
Nov. 1997.

[26] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploiting the
past and the future in protein secondary structure prediction,” Bioinfor-
matics, vol. 15, no. 11, pp. 937–946, 1999.

[27] A. Graves, Supervised Sequence Labelling With Recurrent Neural Net-
works, vol. 385. Berlin, Germany: Springer, 2012.

[28] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. 2013 IEEE Acoust., Speech,
Signal Process., 2013, pp. 6645–6649.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[30] G. Gelly and P. Vernis, “Neural networks as a guidance solution for
soft-landing and aerocapture,” in Proc. AIAA Guid. Navig. Control Conf.
Chicago, IL, USA, 2009, pp. 5664–5685.

[31] J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with parti-
cles having quantum behavior,” in Proc. Congr. Evol. Comput., 2004,
pp. 325–331.

[32] J. Sun, X. Wu, V. Palade, W. Fang, C.-H. Lai, and W. Xu, “Convergence
analysis and improvements of quantum-behaved particle swarm optimiza-
tion,” Inf. Sci., vol. 193, pp. 81–103, 2012.

[33] X. Fu, W. Liu, B. Zhang, and H. Deng, “Quantum behaved particle swarm
optimization with neighborhood search for numerical optimization,” Math.
Probl. Eng., vol. 2013, 2013, Art. no. 469723.

[34] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., New York, NY,
USA, vol. 1, 1995, pp. 39–43.

[35] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[36] S. Funk, “RMSPROP loses to SMORMS3,” 2015. [Online]. Available:
http://sifter.org/ simon/journal/20150420.html

[37] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in Proc. IEEE Int. Conf.
Neural Netw., 1993, pp. 586–591.

[38] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude,” COURSERA: Neural Netw.
Mach. Learn., vol. 4, pp. 26–30, 2012.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv: 1412.6980, 2014.

[40] J. Sohl-Dickstein, B. Poole, and S. Ganguli, “An adaptive low dimensional
quasi-Newton sum of functions optimizer,” arXiv: 1311.2115, 2013. [On-
line]. Available: http://arxiv.org/abs/1311.2115

[41] G. Sanders, “NIST open speech-activity-detection evaluation,” Nat. Inst.
Std. Technol., Gaithersburg, MD, USA, 2015.

[42] J. Kahn, O. Galibert, L. Quintard, M. Carré, A. Giraudel, and P. Joly, “A
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