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ABSTRACT
This paper reports on experiments using phone and word du-

ration models to improve speech recognition accuracy. The du-
ration information is integrated into state-of-the-art large vo-
cabulary speech recognition systems by rescoring word lattices
that include phone-level segmentations. Experimental results
are given for a conversational telephone speech (CTS) task in
French and for the TC-Star EPPS transcription task in Spanish
and English. An absolute word error rate reduction of about
0.5% is observed for the CTS task, and smaller but consistent
gains are observed for the EPPS task.

1. INTRODUCTION
It is well known that HMMs do not properly model

phone and word durations. Even if just the state dura-
tion is considered, regular HMMs do not offer a realistic
model for duration [1]. The transition probabilities usu-
ally have no impact on the recognizer accuracy. It is often
said that a uniform distribution can be more appropriate
than the distribution given by the transition probabilities
estimated on the training data.

When using triphone HMMs (with derivative features),
the segment durations (state and phone) are encoded in
the model topology and the derivative features in addi-
tion to the transition probabilities. None of these model
parameters can properly capture segment duration when
considering a context wider than a triphone. More spe-
cific duration models must be used to adequately model
longer span durations. Duration features can be added at
various levels of the acoustic models so as to represent
HMM state durations, phone durations, and word dura-
tions. In this work only the phone and word durations are
considered.

The duration models are used in a post-precessing step
by rescoring word lattices with phone segmentations.
The word lattices must include the phone segmentation
for each word edge, i.e. the word lattices can be seen as
phone lattices with lexical constraints. Lattice rescoring
is a more desirable method thanN -best rescoring for at
least two reasons. First, rescoring word lattices instead of
N -best lists is more accurate and more efficient. Second,
N -best rescoring does not fit very well with consensus
decoding which is known to significantly reduce the word

error rate over a regular MAP decoding [6]1, i.e. the gain
due to the use of duration models may be lost by backing
off to MAP decoding ifN -best rescoring is used.

In the following sections, the duration models used in
this work are described along with how they are used in
the speech recognizer. Experimental results are given for
a conversational telephone speech (CTS) task in French
and for the TC-Star European Parliament Plenary Ses-
sions (EPPS) transcription task in Spanish and English.

2. DURATION MODELING
As stated in the introduction, HMMs do not properly

model the speech segment durations, this is particularly
true when only considering the transition probabilities.
Figures 1 and 2 show the empirical distributions of the
phone duration in the French CTS training data obtained
after performing a forced alignment (via Viterbi decod-
ing) of the orthographic transcriptions (with a dictio-
nary allowing alternative pronunciations) and the acous-
tic data. The vowel distributions are given in Figure 1
and the consonant distributions are in Figure 2. Other
phones not represented in these two figures are the semi-
vowels and the special phones used for hesitations and
pauses. It can be seen that these distributions are mostly
unimodal. Some distributions are strictly decreasing (the
schwa vowel and the liquid l) showing that the minimal
duration imposed by the three state left-to-right HMM
modeling each phone may not be appropriate for these
phones. Looking at these distributions, it is apparent that
phone duration can be helpful to differentiate the phones.
The three state left-to-right topology implies that the pdf
of the phone duration is the convolution of three geomet-
ric distributions. It is known that this does not reflect
reality as is illustrated in Figure 3 where the empirical
distribution for the triphonee(s,t) (phone /e/ in the
context (/s /,/t /)) observed in the French CTS corpus is
represented along with a 3-state geometric pdf, a gamma
pdf, and a Gaussian mixture pdf whose parameters are
estimated on the CTS training data. By comparing these
distributions, it is clear that the Gaussian mixture pdf is a

1N -best consensus decoding is less effective than regular consensus
decoding.
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Figure 1: Empirical duration distribution for 13 vowels in the
140 hour French CTS corpus. (Horizontal axis in seconds.)

better approximation than the 3-state geometric pdf and
the gamma pdf. The gamma pdf is shown here since it
has often been used to model HMM state durations and
phone durations [1, 5, 2, 8].

Directly modeling the word duration with a pdf [9]
may be a viable solution for small vocabulary tasks, in
particular for short words (1 or 2 syllables), but for very
large vocabularies it is more appropriate to use a model
with a back-off mechanism (in case a word rarely or never
occurs in the training data), and with the capability to
also model phone durations within a word. For this work,
the model proposed by Gadde [7] was adopted, where
each word is represented by a vector composed of the
durations of the individual phones in the word. Phone
and word durations are modeled with Gaussian mixtures,
using word duration (seen as a vector of phones) when
enough data is available to properly estimate the word
model, and backing off to phone durations if this is not
the case. As in [7] the duration models are used in a
post-decoding step, but instead of applying such post-
processing to anN -best list, it is applied to a word lat-
tice. The augmented edge likelihood is the product of
the HMM likelihood and the duration likelihood properly
scaled.

3. MODEL ESTIMATION

Given a training corpus with orthographic transcrip-
tions, the phone and word durations are obtained after
forced alignment between the phone transcriptions (as
given by the pronunciation dictionary) and the speech
signal, using a set of tied-state context-dependent phone
models. For all the experiments reported in this paper, the
acoustic models include about 10K tied HMM states with
32 Gaussians per state (cf. the decoding section (Sec-
tion 4 for more details about the recognizer models).

Given the phone segmentations, for each word pronun-
ciationH = (h1, . . . , hNH ) observed in the training data,
the parameters of anNH dimensional Gaussian mix-
ture (GMM) representing the pdff(d1, . . . , dNH |H,W )
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Figure 2: Empirical duration distribution for 17 consonants in
the 140 hour French CTS corpus. (Horizontal axis in seconds.)
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Figure 3: Duration pdf for the phone /e/ in context /(s,t)/ in the
French CTS training corpus: empirical distribution; multigaus-
sian distribution (4 Gaussians); gamma distribution; and convo-
lution of three geometrical distributions (for a 3-state HMM).
(Horizontal axis in seconds.)

are estimated, whered1 . . . dNH are the duration of the
phones in the word pronunciationH of the wordW . As
is usually done for GMMs, the pdf parameters are es-
timated by using the EM algorithm starting with a sin-
gle Gaussian and iteratively splitting each Gaussian until
the desired number of mixture components is reached.
Since a very large vocabulary system is being targeted,
the sparse training problem is a major issue as a large
proportion of the words in the recognizer vocabulary are
never or rarely observed in the acoustic training data.
Table 1 contains the proportions of pronunciations with
no more thann occurrences in the French CTS training
data. The recognizer vocabulary contains 50K words and
about 74K pronunciations. It can be seen that about 56%
of the prononunciations2 are never observed in the train-
ing data, and about 80% of the prononunciations occur
at most twice, and only 8% of the pronunciations occur
more than 10 times in the acoustic training data. This

2The term pronunciation here is used to refer to a particular pronun-
ciation of a given word.
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n %pron %occur

0 55.6% 0.9%
1 73.3% 1.4%
2 80.4% 1.9%
5 88.3% 2.9%

10 92.5% 4.1%

Table 1: Proportions of the vocabulary pronunciations with no
more thann occurrences in the training data (French CTS data).
The third columns gives the corresponding proportions of run-
ning words in the development data.

clearly demonstrates the data sparseness issue and the
need for a smoothing and/or a back-off mechanism. The
third column of Table 1 gives the corresponding propor-
tions of the running words in the recognizer hypotheses
on a set of development data (i.e. the counts are weighted
by the word frequencies). These proportions show that
words that are rare in the training data are generally also
going to be rare in the data to be processed by the sys-
tems. Therefore, even though there is a data sparseness
problem, it should not have too large an effect on word
error rate since only 4% of the hypothesized pronuncia-
tions have a frequency count lower than 10 in the training
data.

Combining MAP smoothing [3] and back-off to phone
models [7] gave the best results on the development data.
The prior pdf for each pronunciation model is obtained
from the single Gaussian model of each phone compos-
ing the pronunciation. If the number of occurrences for
a given pronunciation in the training data is lower than
20, we just back-off to the phone models. Here it should
be noted that the back-off phone models can be GMMs
whereas the MAP smoothing can only rely on a single
Gaussian phone pdf, as there is no easy way to get an ad-
equate prior pdf for a word pronunciation from the GMM
phone models, even though diagonal covariances are used
for the pronunciation duration vectors.

The multivariate word duration pdfs are therefore esti-
mated as follow:

f(d1, . . . , dNH |H,W ) ={
fm(d1, . . . , dNH |H,W ) if C(H,W )) > Ct,∏NH
i=1 f(di|pH,i) otherwise

(1)
wherefm(·|H,W ) is the MAP estimate of the duration
model for the word pronunciation(H,W ), C(·) is the
frequency of the word pronunciation in the training cor-
pus,pH,i is the i-th phone of the pronunciationH, and
Ct is the frequency count threshold. In the current imple-
mentation both the MAP prior pdfs and the phone back-
off pdfs are context independent. The threshold parame-
ter and the pdf prior weight were optimized by maximiz-
ing the likelihood of the development data.

4. DECODING WITH DURATION MODELS
For the three systems on which experimental results

are reported, decoding is carried out in multiple passes

where the hypothesis of one pass is used by the next pass
for acoustic model adaptation. For each decoding pass,
the acoustic models are first adapted using both the CM-
LLR and MLLR adaptation methods. MLLR adaptation
relies on a tree organization of the tied states to create
the regression classes as a function of the available data.
Then a word lattice is produced for each speech segment
using a dynamic network decoder with a 2-gram or a 3-
gram language model. This word lattice is rescored with
a 4-gram language model and converted into a confusion
network [6] taking into account the pronunciation prob-
abilities. The words with the highest posterior in each
confusion set are hypothesized along with their posterior
probabilities. For the CTS data, the first hypothesis is
also used to estimate VTLN warp factors for each con-
versation side [4].

The acoustic training data for the three systems (CTS
French, EPPS English, and EPPS Spanish) include re-
spectively 140h, 72h, and 79h of speech. The acoustic
models used in the last decoding pass of each system in-
clude about 10K tied states with about 32 Gaussians per
state. The respective vocabularies include 50K words,
60K words, and 65K words, with respectively 74k, 74k,
and 94k pronunciations. The language models include
23M 3-grams and 15M 4-grams for French CTS, 33M
3-grams and 24M 4-grams of English EPPS, and 22M 3-
grams and 45M 4-grams for Spanish EPPS.

During the last decoding step, a word lattice includ-
ing the phone segmentation for each word edge is gener-
ated for each test segment. The duration log-likelihood
as given in Equation 1 is then added to each edge log-
likelihood score assuming that the acoustic models and
the duration models are modeling independent variables.
Two additional parameters are used to optimize the com-
bination: a duration model weight to scale the word dura-
tion likelihood, and an additive constant proportional to
the number of phones in the given word pronunciation.
These two parameters have been optimized on the devel-
opment test set for each task, but they are in fact pretty
much task independent as the results are basically the
same when the same values are used for the three tasks.
After adding the duration scores to the lattice, the recog-
nizer hypothesis is obtained by carrying out a consensus
decoding in the same way it is done without the duration
model.

An issue often raised about duration models is that
word duration depend on the speaker, or more specifi-
cally, on the rate of speech. Therefore it may be desirable
to normalize the word and phone durations by the rate of
speech. This can be done by normalizing the overall av-
erage phone duration of data for each speaker in the train-
ing data and in the test data. Doing this normalization on
the training data is easy since the phone durations can be
scaled after forced alignment with the manual transcrip-
tions. For the test data the lattice posterior probabilities
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Conditions DEV EVAL DEV+EVAL
2h 2h 4h

4-gram MAP 32.95 34.84 33.88
+ duration models 32.47 34.42 33.44
Consensus 32.03 33.77 32.90
+ duration models 31.61 33.32 32.45

Table 2: Word error rates on the French CTS development and
test sets (28 conversation sides for each set, about 2h) using four
rescoring configurations: 4-gram MAP decoding, MAP decod-
ing with duration models, consensus decoding, and consensus
decoding with duration models.

have been used to estimate the expected average duration
given the current best models.

5. EXPERIMENTAL RESULTS
A first set of experiments has been carried out on the

French CTS data. The best results are obtained using 2
Gaussians for the word duration models and 4 Gaussians
for the phone models with a back-off threshold of 20 (the
number of occurrences of the given word pronunciation
in the training data). The HMM and duration models
were trained on all the acoustic training data (140h) and
the system parameters were optimized on the 2h develop-
ment data set. The decoding parameters for the baseline
system (i.e. without a duration model) have been care-
fully optimized and give word error rates of 32.0% and
33.8% respectively on the development data and the eval-
uation test set. The main results on this data are reported
in Table 2. The use of duration models reduces the word
error by about 0.5% absolute on the evaluation data (from
33.8% to 33.3%). It can also be seen that this gain is less
than the gain obtained by consensus decoding compared
to a standard MAP decoding. This shows the interest of
using a decoding scheme for the duration models which
is compatible with consensus decoding.

Experiments have also been carried out after normaliz-
ing the rate of speech in test and/or in the training data as
described in Section 4, but these experiments resulted in
no additional gain.

Results for the English and Spanish EPPS tasks are re-
ported in Table 3. The data used for these experiments
are the TC-Star Dev06 and Eval06 test sets. The Span-
ish data sets are about twice as large as the English sets
as they also include about 3h of the Spanish Parliament
data in addition to the EPPS data. These results are sim-
ilar to those obtained on the French CTS data, but the
error reductions are smaller since the baseline results are
significantly better. It can also be seen that the duration
models help the Spanish system more than the English
system.

6. CONCLUSIONS
In the paper experiments have been reported showing

that word and phone duration models can help reduce
the word error rate of carefully optimized state-of-the-art

English Spanish
Conditions DEV EVAL DEV EVAL

3.2h 3.2h 6.1h 7.0h
4-gram MAP 11.51 9.53 7.83 11.20
+ duration models 11.22 9.19 7.62 10.97
Consensus 10.84 9.05 7.55 10.85
+ duration models 10.71 8.86 7.39 10.61

Table 3: Word error rates on the English and Spanish EPPS
development and test sets using four rescoring configurations:
4-gram MAP decoding, MAP decoding with duration mod-
els, consensus decoding, and consensus decoding with duration
models.

LVCSR systems. The proposed approach is based on the
rescoring of word lattices including phone segmentations
for each word edge, thereby allowing the duration mod-
els to be compatible with a consensus network decoding
framework. Experimental results were given for a con-
versational telephone speech task in French and for the
TC-Star EPPS transcription task in Spanish and English.
A word error rate reduction of about 0.5% absolute is re-
ported for the CTS task, and smaller but consistent gains
are reported for the EPPS task.
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