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Abstract

One of our major research activities at LIMSI is multilingual, speaker-

independent, large vocabulary speech dictation. The multilingual aspect

of this work is of particular importance in Europe, where each country

has it's own national language. Speaker-independence and large vocabu-

lary are characteristics necessary to envision real world applications of

such technology. The recognizer makes use of phone-based continuous

density HMM for acoustic modeling and n-gram statistics estimated on

newspaper texts for language modeling. The system has been evaluated

on two dictation tasks developed with read, newspaper-based corpora,

the ARPA Wall Street Journal corpus of American English and the

BREF Le Monde corpus of French. Experimental results under closely

matched conditions are reported. For both languages an average word ac-

curacy of 95% is obtained for a 5k vocabulary test. For a 20,000 word

lexicon with an unrestricted vocabulary test the word error for WSJ is

10% and for BREF is 16%.

Key words : speaker-independent,speech recognition

1. Introduction

Speech recognition research at LIMSI aims to develop

recognizers that are task-, speaker-, and vocabulary-

independent so as to be easily adapted to a variety of

applications. The applicability of speech recognition tech-

niques used for one language to other languages is of partic-

ular importance in Europe. The multilingual aspects are in

part carried out in the context of the LRE SQALE (Speech

recognizer Quality Assessment for Linguistic Engineering)

project, which is aimed at assessing language dependent is-

sues in multilingual recognizer evaluation. In this project,

the same system will be evaluated on comparable tasks in

di�erent languages (English, French and German) to deter-

mine cross-lingual di�erences, and di�erent recognizers will

be compared on the same language to compare advantages

of di�erent recognition strategies.

In this paper some of the primary issues in large vocabulary,

speaker-independent, continuous speech recognition for dic-

tation are addressed. These issues include language mod-

eling, acoustic modeling , lexical representation, and de-

coding. Acoustic modeling makes use of continuous density

HMM with Gaussian mixture of context-dependent phone

models. For language modeling n-gram statistics are esti-

mated on text material. To deal with phonological variabil-

ity alternate pronunciations are included in the lexicon, and

optional phonological rules are applied during training and

recognition. The decoder uses a time-synchronous graph-

search strategy[20] for a �rst pass with a bigram back-o�

language model (LM)[13]. A trigram LM is used in a sec-

ond acoustic decoding pass which incorporates the word

graph generated in the �rst pass[10]. Experimental results

are reported on the ARPA Wall Street Journal (WSJ)[24]

and BREF[6, 14] corpora, using for both corpora over 37k

utterances for acoustic training and more than 37M words

of newspaper text for language model training. It has been

shown[9] that for both corpora increasing the amount of
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training utterances by an order of magnitude reduces the

word error by about 30%. The use of a trigram LM in a

second pass also gives an error reduction of 20% to 30%.

The combined error reduction is on the order of 50%.

2. D�e�nition du probl�eme et fonde-

ments

In speech dictation we are principally concerned with the

problem of transcribing the speech signal as a sequence of

words. Today's most performant systems are for the most

part based on a statistical modelisation of the talker. From

this point of view, message generation is represented by

a language model which provides estimates of Pr(w) for

all word strings w, and the acoustic channel encoding the

message w in the signal x is represented by a probability

density function f(xjw). The speech decoding problem con-

sists then of maximizing the a posteriori probability of w,

or equivalently, maximizing the product Pr(w)f(xjw).

The principles on which these systems are based have been

known for many years now, and include the application of

information theory to speech recognition[1, 12], the use of

a spectral representation of the speech signal [4, 5], the use

of dynamic programming for decoding[28, 29], and the use

of context-dependent phone models[26, 3, 18]. Despite the

fact that some these techniques were proposed well over a

decade ago, considerable progress has been made in recent

years that makes speaker-independent, continuous speech

dictation feasible for vocabularies of at least 20,000 words.

This progress has been substantially aided by the avail-

ability of large speech and text corpora and by signi�cant

advances made in micro-electronics which has enabled the

development of more complex models and algorithms.

The same modeling techniques can be adapted to other

related applications, such as speech understanding or spo-

ken language systems or in the identi�cation of what we

can refer to as \non-linguistic" speech features[17]. These

feature-speci�c models may also be directly used to more

accurately model the speech signal thus in consequence im-

proving the performance of the speech recognizer.

3. Mod�elisation du langage

Language modeling entails incorporating constraints on the

allowable sequences of words which form a sentence. Sta-

tistical n-gram models attempt to capture the syntactic

and semantic constraints by estimating the frequencies of

sequences of n words. A backo� mechanism[13] is used to

smooth the estimates of the probabilities of rare n-grams by

relying on a lower order n-gram when there is insu�cient

training data, and to provide a means of modeling unob-

served n-grams. Another advantage of the backo� mecha-

nism is that LM size can be arbitrarily reduced by relying

more on the backo�, by increasing the minimumnumber of

required n-gram observations needed to include the n-gram.

This property can be used in the �rst bigram decoding pass

to reduce computational requirements. The LM training

data consists of 37M words of the WSJ and 38M words of

Le Monde. In order to be able to construct LMs for BREF,

it was necessary to normalize the text material of Le Monde

newspaper[8], which entailed a pre-treatment rather di�er-

ent from that used to normalize the WSJ texts[24].

Table ?? compares some characteristics of the WSJ and

Le Monde text corpora. In the same size training texts,

there are almost 60% more distinct words for Le Monde

than for WSJ without taking case into account. If case is

kept when distinctive (the numbers in parentheses), there

are 280k words in the Le Monde training material. As a

consequence, the lexical coverage for a given size lexicon

is smaller for Le Monde than for WSJ. For example, the

20k WSJ lexicon accounts for 97.5% of word occurrences,

but the 20k BREF lexicon only covers 94.9% of word oc-

currences in the training texts. For lexicons in the range of

5k to 40k words, the number of words must be doubled for

Le Monde in order to obtain the same word coverage as for

WSJ.

The lexical ambiguity is also higher for French than for

English. The homophone rate (the number of words which

have a homophone divided by the total number of words) in

the 20k BREF lexicon is 57% compared to 9% in 20k-open

WSJ lexicon. This e�ect is even greater if the word frequen-

cies are taken into account. Given a perfect phonemic tran-

scription, 23% of words in the WSJ training texts is am-

biguous, whereas 75% of the words in the Le Monde train-

ing texts have an ambiguous phonemic transcription. Not

only does one phonemic form correspond to di�erent ortho-

graphic forms, there can also be a relatively large number

of possible pronunciations for a given word. In French, the

alternate pronunciations arise mainly from optional word-

�nal phones, due to liaison and optional word-�nal conso-

nant cluster reduction. There are also a larger number of

frequent, monophone words for Le Monde than for WSJ,

accounting for about 17% and 3% of all word occurrences

in the respective training texts.
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4. Mod�elisation acoustico-phon�etique

The recognizer makes use of continuous density HMM

(CDHMM ) with Gaussian mixture for acoustic modeling.

The main advantage continuous density modeling o�ers

over discrete or semi-continuous (or tied-mixture) obser-

vation density modeling is that the number of parameters

used to model an HMM observation distribution can easily

be adapted to the amount of available training data asso-

ciated to this state. As a consequence, high precision mod-

eling can be achieved for highly frequented states without

the explicit need of smoothing techniques for the densi-

ties of less frequented states. Discrete and semi-continuous

modeling use a �xed number of parameters to represent

a given observation density and therefore cannot achieve

high precision without the use of smoothing techniques.

This problem can be alleviated by tying some states of the

Markov models. However, since this requires careful design

and some a priori assumptions, these techniques are pri-

marily of interest when the training data is limited and

cannot easily be increased.

A 48-component feature vector is computed every 10 ms.

This feature vector consists of 16 Bark-frequency scale

cepstrum coe�cients computed on the 8kHz bandwidth

and their �rst and second order derivatives. The acoustic

models are sets of context-dependent (CD), position in-

dependent phone models, which include both intra-word

and cross-word contexts. The contexts are automatically

selected based on their frequencies in the training data.

The models include triphone models, right- and left-context

phone models, and context-independent phone models.

Each phone model is a left-to-right CDHMM with Gaussian

mixture observation densities (typically 32 components).

The covariance matrices of all the Gaussians are diagonal.

Duration is modeled with a gamma distribution per phone

model. The HMM and duration parameters are estimated

separately and combined in the recognition process for the

Viterbi search. Maximum a posteriori estimators are used

for the HMM parameters[7] and moment estimators for the

gamma distributions. Separate male and female models are

used to more accurately model the speech data.

During system development phone recognition has been

used to evaluate di�erent acoustic model sets. It has been

shown that improvements in phone accuracy are directly in-

dicative of improvements in word accuracy when the same

phone models are used for recognition[16]. Phone recogni-

tion provides the added bene�t that the recognized phone

string can be used to understand word recognition errors

and problems in the lexical representation.

5. Repr�esentation lexicale

The lexicons are represented phonemically,

1

using

language-speci�c sets of phonemes. Alternate pronuncia-

tions are provided for about 10% of the words.

2

A pronun-

ciation graph is generated for each word from the baseform

transcription to which word internal phonological rules are

optionally applied during training and recognition to ac-

count for some of the phonological variations observed in


uent speech.

Word boundary phonological rules are applied in build-

ing the phone graph used by the recognizer so as to allow

for some of the phonological variations observed in 
uent

speech[15]. The principle behind the phonological rules is

to modify the phone network to take into account such vari-

ations. These rules are optionally applied during training

and recognition. Using phonological rules during training

results in better acoustic models, as they are less \polluted"

by wrong transcriptions. Their use during recognition re-

duces the number of mismatches. For English, only well

known phonological rules, such as glide insertion, stop dele-

tion, homorganic stop insertion, palatalization, and voic-

ing assimilation have been incorporated in the system. The

same mechanism has been used to handle liaisons, mute-e,

and �nal consonant cluster reduction for French.

6. Stat�egie de d�ecodage

One of the most important problems in implementing the

decoder of a large vocabulary speech recognizer is the

design of an e�cient search algorithm to deal with the

huge search space, especially when using language mod-

els with a longer span than two successive words, such as

trigrams. The most commonly used approach for small and

mediumvocabulary sizes is the one-pass frame-synchronous

beam search [20] which uses a dynamic programming pro-

cedure. This basic strategy has been recently extended by

adding other features such as \fast match"[11, 2], N-best

rescoring[27], progressive search[19] and one-pass dynamic

network decoding[21]. The two-pass approach used in our

system is based on the idea of progressive search where the

1

The lexicons were all developed at LIMSI. For French, the base pronunciations were obtained using text-to-phoneme rules[25] and extended

to annotate potential liaisons and pronunciation variants.

2

This does not count word �nal optional phonemes marking possible liaisons for French. Including these raises the number of entries with

multiple transcriptions to almost 40%.
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information between levels is transmitted via word graphs.

Prior to word recognition, sex identi�cation is performed

for each sentence using phone-based ergodic HMMs[17].

The word recognizer is then run with a bigram LM us-

ing the acoustic model set corresponding to the identi�ed

sex.

The �rst pass of the decoder uses a bigram-backo� LM with

a tree organization of the lexicon for the backo� component.

This one-pass frame-synchronous beam search, which in-

cludes intra- and inter-word CD phone models, intra- and

inter-word phonological rules, phone duration models, and

gender-dependent models, generates a list of word hypothe-

ses resulting in a word lattice. Two considerations need to

be taken into account at this level. The �rst is whether or

not the dynamic programming procedure used in the �rst

pass, which guarantees the optimality of the search for the

bigram, generates an \optimal" lattice to be used with a

trigram LM. For example, any given word in the lattice will

have many possible ending points, but only a few starting

points. This problem is in fact less severe than expected

since the time information is not critical to generate an

\optimal" word graph from the lattice, i.e. the multiple

word endings provide enough 
exibility to compensate for

single word beginnings. The second consideration is that

the lattice generated in this way cannot be too large or

there is no interest in a two pass approach. To solve this

second problem, two pruning thresholds are used during

the �rst pass, a beam search pruning threshold which is

kept to a level insuring almost no search errors (from the

bigram point of view) and a word lattice pruning threshold

used to control the lattice size.

The following steps give the key elements behind the pro-

cedure used to generate the word graph from the word

lattice.

3

First, a word graph is generated from the lattice by

merging three consecutive frames (i.e. the minimum dura-

tion for a word in our system). Then, \similar" graph nodes

are merged with the goal of reducing the overall graph size

and generalizing the word lattice. This step is reiterated

until no further reductions are possible. Finally, based on

the trigram backo� language model a trigram word graph

is then generated by duplicating the nodes having multiple

language model contexts. Bigram backo� nodes are created

when possible to limit the graph expansion.

It should be noted that this decoding strategy based on

two forward passes can in fact be implemented in a single

forward pass using one or two processors. We are using a

two pass solution because it is conceptually simpler, and

also due to memory constraints.

7. R�esultats exp�erimentaux

The recognizer was evaluated under closely matched condi-

tions for American English and for French, with vocabular-

ies of 5k and 20k words. For French the 20k test included

both open and closed vocabulary data. The training data

(see Table ??) include about 38k sentences for each lan-

guage. The standard WSJ0/WSJ1 SI284 training material

containing 37,518 sentences from 284 speakers was used

for English. For French, the BREF training data contains

38,550 sentences from 80 speakers.

TheWSJ system was evaluated in the Nov92 ARPA evalua-

tion test[22] for the 5k-closed vocabulary and in the Nov93

ARPA evaluation test[23] for the 5k and 20k/64k hubs.

4

The word errors using 3306 CD models are given in Ta-

ble ??. With a bigram LM, word errors of 4.8% and 6.8%

are obtained respectively on the Nov92 and Nov93 5k test

data. The trigram second pass reduces the word error by

35% on the Nov92 test data and by 22% on the Nov93

test data. On the 20k-open Nov92 and Nov93 test data the

word errors with a bigramLM are 11.0% and 15.2%. In this

open-vocabulary test data there are slightly over 2% out-

of-vocabulary (OOV) words. Using the trigram LM reduces

the error rate by about 20%.

Recognition results for BREF are given in Table ?? for

1747 CD models with bigram and trigram LMs. The word

error on the 5k test data is 9.0%. The use of a trigram LM

gives an error reduction of 39% to 5.5%. The word errors

on the 20k and 20k-open test data are 12.9% and 19.5% re-

spectively with the bigram LM. The use of the trigram LM

reduces the word error by an additional 29% for the closed

vocabulary test data, but only 16% on the open vocabulary

test data. This di�erence can be attributed to the 3.9% of

the words which are OOV and occur in 72 of the 200 test

sentences. There is almost a 50% increase in word error,

including a three-fold increase in word insertions compared

with the closed vocabulary test. Thus apparently the OOV

words are not simply replaced by another word, but are

more often replaced by a sequence of words.

3

In our implementation, a word lattice di�ers from a word graph only because it includes word endpoint information.

4

The 20k open test for WSJ is also referred to as a 64k test since all of the words in these sentences occur in the 63,495 most frequent words

in the normalizedWSJ text material[24].
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8. Conclusion

In this paper we have addressed some of the major issues in

large vocabulary, speaker-independent, continuous speech

dictation. These include acoustic modeling, language mod-

eling, modeling phonological variations, and decoding. Ex-

perimental results have been presented for English and

French using 5k and 20k vocabularies. Word accuracies on

the order of 95% have been obtained for 5k vocabularies for

both languages. With 20k lexicons and an open vocabulary

test the word error is on the order of 10% forWSJ and 16%

for BREF. This di�erence in word error can be largely at-

tributed to the larger number of out-of-vocabulary words in

French, an e�ect of the lower word coverage for the lexicon.

Performance levels on this general news dictation task are

su�cient to envision commercial application of this tech-

nology on simpler tasks in particular domain areas, such as

dictation of medical, legal, police reports, insurance claims

and contracts and other professional limited domain docu-

ments.

8.Remerciements

The authors wish to thank Gilles Adda for preprocessing

and normalizing the Le Monde text materials.

BIBLIOGRAPHIE

[1] L. Bahl et al., \Preliminary results on the performance of a

system for the automatic recognition of continuous speech,"

ICASSP-76.

[2] L.R. Bahl et al, \A Fast Match for Continuous Speech

Recognition Using Allophonic Models," ICASSP-92.

[3] Y.L. Chow et al., \The Role of Word-Dependent Coartic-

ulatory E�ects in a Phoneme-Based Speech Recognition

System", ICASSP-86.

[4] J. Dreyfus-Graf, \Sonograph and SounSpeaker-InSpeaker-

Ind Mechanics," JASA, 22, 1949.

[5] H. Dudley, S. Balashek, \Automatic Recognition of Pho-

netic Patterns in Speech," JASA, 30, 1958.

[6] J.L. Gauvain, L.F. Lamel, M. Esk�enazi, \Design considera-

tions & text selection for BREF, a large French read-speech

corpus," ICSLP-90.

[7] J.L. Gauvain, C.H. Lee, \Bayesian Learning for Hidden

Markov Model with Gaussian Mixture State Observation

Densities," Speech Communication, 11(2-3), 1992.

[8] J.L. Gauvain et al., \Speaker-InSpeaker-Independent Con-

tinuous Speech Dictation," Eurospeech-93.

[9] J.L. Gauvain et al., \The LIMSI Continuous Speech Dic-

tation System," ARPA HLT Workshop, 1994.

[10] J.L. Gauvain et al., \The LIMSI Continuous Speech Dicta-

tion System : Evaluation on the ARPA Wall Street Journal

Task," ICASSP-94.

[11] L. Gillick, R. Roth, \A Rapid Match Algorithm for Con-

tinuous Speech Recognition," DARPA Sp&NL Workshop,

1990.

[12] F. Jelinek, \Continuous Speech Recognition by Statistical

Methods," Proc. of the IEEE, 64(4), april 1976.

[13] S.M. Katz, \Estimation of Probabilities from Sparse Data

for the Language Model Component of a Speech Recog-

nizer," IEEE Trans. ASSP, 35(3), 1987.

[14] L.F. Lamel, J.L. Gauvain, M. Esk�enazi, \BREF, a Large

Vocabulary Spoken Corpus for French," Eurospeech-91.

[15] L. Lamel, J.L. Gauvain, \Continuous Speech Recognition

at LIMSI," Final review DARPA ANNT Speech Prog., Sep.

1992.

[16] L. Lamel, J.L.Gauvain,\High Performance Speaker-Inde-

pendent Phone Recognition Using CDHMM," Eurospeech-

93.

[17] L. Lamel, J.L. Gauvain, \Identifying Non-Linguistic

Speech Features," Eurospeech-93.

[18] K.F. Lee, \Large-Vocabulary Speaker-Independent Contin-

uous Speech Recognition : The SPHINX System," Ph.D.

Thesis, CMU, 1988.

[19] H. Murveit et al, \Large-Vocabulary Dictation using SRI's

Decipher Speech Recognition System : Progressive Search

Techniques," ICASSP-93.

[20] H. Ney, \The Use of a One-Stage Dynamic Programming

Algorithm for Connected Word Recognition," IEEE Trans.

ASSP, 32(2), pp. 263-271, April 1984.

[21] J.J. Odell et al., \A One Pass Decoder Design for Large

Vocabulary Recognition," ARPA HLT Workshop, 1994.

[22] D.S. Pallett et al., \Benchmark Tests for the DARPA Spo-

ken Language Program," ARPA HLT Workshop, 1993.

[23] D.S. Pallett et al., \1993 Benchmark Tests for the ARPA

Spoken Language Program," ARPA HLT Workshop, 1994.

[24] D.B. Paul, J.M. Baker, \The Design for the Wall Street

Journal-based CSR Corpus," ICSLP-92.

[25] B. Prouts,\Contribution �a la synth�ese de la parole �a partir

du texte : Transcription graph�eme-phon�eme en temps r�eel

sur microprocesseur", Th�ese de docteur-ing�enieur, Univer-

sit�e Paris XI, Nov. 1980.

[26] R. Schwartz et al, \Improved Hidden Markov Modeling of

Phonemes for Continuous Speech Recognition," ICASSP-

84.

[27] R. Schwartz et al.,\New uses for N-Best Sentence Hypoth-

esis, within the BYBLOS Speech Recognition System,"

ICASSP-92.

[28] T.K. Vintsyuk, \Speech discrimination by dynamic pro-

gramming," Kibnernetika, 4, 1968.

[29] T.K. Vintsyuk, \Elements-wise recognition of continuous

speech composed of words from a speci�ed dictionary,"

Kibernetika, 7, 1971.

Traitement du Signal 1994 { Volume 11 - n

�

1 5


