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Abstract

This paper describes how the Northern (NL) and South-
ern (VL) varieties of Dutch are modeled in the joint LIMSI-
Vecsys Research speech-to-text transcription systems for broad-
cast news (BN) and conversational telephone speech (CTS). Us-
ing the Spoken Dutch Corpus resources (CGN), systems were
developed and evaluated in the 2008 N-Best benchmark. Mod-
eling techniques that are used in our systems for other languages
were found to be effective for the Dutch language, however it
was also found to be important to have acoustic and language
models, and statistical pronunciation generation rules adapted
to each variety. This was in particular true for the MLP features
which were only effective when trained separately for Dutch and
Flemish. The joint submissions obtained the lowest WERs in the
benchmark by a significant margin.
Index Terms: speech recognition, Dutch, Flemish, CGN, N-
best, broadcast news, conversational telephone speech, MLP.

1. Introduction
This paper describes the speech-to-text transcription systems de-
veloped at LIMSI and Vecsys Research to process Broadcast
News (BN) and Conversational Telephone Speech (CTS) data in
two main varieties of Dutch (Northern and Southern) as spoken
by people from The Netherlands and from Flanders (Belgium),
respectively. It was found to be beneficial to specifically model
the two varieties in both the acoustic and language models. Con-
cerning lexical modeling, separate grapheme-to-phoneme sys-
tems (sharing the same phone set) were used for the two vari-
eties, and these were merged to form the final common lexicon
in order to share the pronunciation probabilities.

The 2008 N-Best (Northern and Southern Dutch Benchmark
Evaluation of Speech recognition Technology) project of the
Dutch-Flemish Stevin program (speech.tm.tno.nl/n-best) orga-
nized a benchmark evaluation in large vocabulary speech recog-
nition for the Dutch language. The evaluation was conducted
by TNO Human Factors Soesterberg, the Netherlands in co-
operation with Spex in Nijmegen, and aims to foster the devel-
opment of speech corpora and technologies for the Dutch lan-
guage [13]. The participants in the benchmark were provided
with a common speech database, the Corpus Gesproken Neder-
lands (CGN) for acoustic training of their primary systems, as
well as other common resources for language modeling and pro-
nunciation modeling.

† This work was in part supported by OSEO under the Quaero pro-
gram.

Speech Duration (hours) # total words
NL VL NL VL

BN 99.4 / 84.0 52.9 / 48.0 1.1 M 572.2 K
CTS 92.0 / 80.0 64.0 / 60.0 1.3 M 808.3 K

Table 1: N-Best acoustic data provided by CGN (total
data / transcribed training data).

2. Task and data description
The baseline acoustic and language modeling training data are
shown in Table 1 according to variety and type. There are
about 100 hours of audio data for Northern Dutch (NL) and over
50 hours for Southern Dutch (VL), with (∼1.2M words) and
(∼700K words) of manual transcripts respectively. Since the de-
velopment data sets were also taken from the CGN data, they had
to be removed from training. The language model training data
are comprised newspaper articles from 1999 to 2004, obtained
from the Dutch publisher PCM and the Flemish Mediargus. The
data contain approximately 360M words of Dutch and 1418M
words of Flemish, with respectively about 7.2M and 14.8M dis-
tinct lexical forms. Table 2 summarizes the development data.
For the CTS audio files the conversations were recorded on two
different channels, each channel was decoded separately. The
development files were mainly composed of CGN excerpts, ex-
cept for the BN-NL task which also included parts from another
data source. There is a total of about 1 hour of speech (∼9K
words) for each BN task and just under 2 hours (∼7K words) for
each CTS task.

3. Speech recognizer overview
This section gives an overview of speech recognizers used in
this work, more details about the models are given in Sections 4-
6. The recognizers use the same basic statistical modeling tech-
niques and decoding strategy as in the LIMSI English broadcast
news system [8]. Prior to transcription, an audio partitioner di-
vides the continuous audio stream into homogeneous segments,
associating cluster, gender and labels with each non-overlapping
segment [7, 8]. For the CTS the clustering step is not needed
since all speech segments are assumed to come from the same
speaker. The acoustic and language models are language and
task specific. The Dutch and Flemish lexicons use the same
word list, phone symbol set and pronunciation variants, but the
pronunciation probabilities collected during the acoustic training
are task-specific.

The primary recognition submission results from a
ROVER [4] between two system outputs, using different acoustic
features: PLP and MLP, each generated in 2 decoding passes.
Each of these systems include rescoring by a 4-gram neural net-
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Task Data Total Scored
Type Duration (h) Duration (h) #words

BN-NL Dev. 1.1 1.0 8721
BN-VL Dev. 1.0 1.0 10406
CTS-NL Dev. 2.0 (x2 ch.) 1.8 6695
CTS-VL Dev. 1.9 (x2 ch.) 1.8 6790

Table 2: Development data. Scored duration corresponds to the
duration of the segments given by the UEM file (only these seg-
ments, whose size in words is given, are scored).

Task Processing time
Primary 10xRT Contrast 1xRT

BN 2-pass PLP ⊕ 1-pass MLP 1-pass PLP
CTS 2-pass PLP ⊕ 2-pass MLP 1-pass PLP

Table 3: Summary of the speech recognizer characteristics for
the Primary and Contrast submissions (⊕ means ”ROVER”).
The contrastive 1xRT PLP system output is also used as the first
pass of the primary 10xRT PLP system.

work LM. The PLP systems for both BN and CTS reuse the
1xRT output as a first pass to adapt the acoustic models. Unsu-
pervised acoustic model adaptation is also used in the CTS MLP
system (also with the 1xRT system hypotheses), but adaptation
is not performed in the BN MLP system.

The LIMSI-Vecsys Research primary systems process the
audio data in under 10 times real-time. The 1xRT word recogni-
tion is performed in a single decoding pass, using a 2-gram LM
for decoding and a 4-gram LM for rescoring. Table 3 summa-
rizes the submissions.

4. Acoustic features and models
Two sets of features are used for each task. The first are stan-
dard cepstral features (perceptual linear prediction - PLP), and
the second, cepstral features produced with a multi layer percep-
tron (MLP) [6, 20]. The MLP features are based on a recently
proposed Bottle-Neck architecture [11] with long-term warped
LP-TRAP speech representation at the input.

The PLP feature vector has 39 cepstral parameters derived
from a Mel frequency spectrum estimated on the 0-8kHz band
every 10ms (0-3.8kHz band for CTS). For each 30ms frame the
Mel scale power spectrum is computed, and the cubic root taken
followed by an inverse Fourier transform. Then LPC-based cep-
strum coefficients are computed. The cepstral coefficients are
normalized on a segment-cluster basis using cepstral mean re-
moval and variance normalization. Thus each cepstral coeffi-
cient for each cluster has a zero mean and unity variance. The
39-component acoustic feature vector consists of 12 cepstrum
coefficients and the log energy, along with the first and second
order derivatives.

The MLP features are generated in two steps. First raw fea-
tures, typically with a wide temporal context of 100–500 ms,
are extracted and input to the MLP. These features are then pro-
cessed by the MLP followed by a principal component analysis
(PCA) transform to yield the hidden Markov models (HMM)
features. Time-warped linear predictive TRAP (wLP-TRAP) [5]
features are used. Separate Dutch and Flemish MLPs were
trained for each task 1, using 180 state targets (one for each state
of the 38 phones, and one state for each non-phone unit) using

1Features produced by a single MLP trained on both varieties were
less effective.

#words 300K 500K
Language NL+VL NL+VL
#phones 41 41
#nonspeech 3 3
prons per word 4.37 4.91

Table 4: Recognition lexicons. For each word list, separate lexi-
cons are generated for each variety, and the two are merged.

the training scheme described in [6]. The MLP features are then
concatenated with the PLP features resulting in a 78-component
feature vector.

All acoustic models (AMs) are tied-state, left-to-right
context-dependent (CD), HMMs with Gaussian mixtures. The
triphone-based CD phone models are word-independent but
position-dependent. The tied states are obtained by means of
a decision tree. Different sets of gender-independent AMs were
trained for each task (BN and CTS), and each variety (NL and
VL). The models all use speaker-adaptive (SAT) and Maxi-
mum Mutual Information Estimation (MMIE) training. For each
task and variety, models were trained using both standard PLP
and concatenated MLP+PLP features. For the PLP models, a
maximum-likelihood linear transform (MLLT) is also used.

The BN and CTS model sets cover about 22k and 20k
phone contexts, respectively, with 11.5k tied states and 32 Gaus-
sians per state. Silence is modeled by a single state with 1024
Gaussians. Initially speaker and region-independent models are
trained on all of the available data for the task (130 hours for BN
and 150 hours for CTS). These models serve as priors for Max-
imum a Posteriori (MAP) [10] estimation of variety-specific
models for each task.

5. Pronunciation lexicons
All pronunciations are based on a set of 41 phones (16 vowels,
22 consonants and 3 other symbols that represent silence, filler
words, and breath noises). These phones are the most common
in the Dutch/Flemish language. Short and long vowels are differ-
entiated, common diphthongs are written with one phone sym-
bol (as opposed to a sequence of phones), as well as the hard and
soft pronunciations of the Dutch “g/ch” graphemes. Infrequent
phones used in loan words (for example, nasalized vowels) were
not included in the phone set.

Two master dictionaries served as basis to generate the lex-
icons used in the transcription tasks. The first one is the Dutch
master dictionary, based on the CELEX [1] dictionary and the
Dutch part of the CGN dictionary. The second one, the Flemish
master dictionary, is derived from the Flemish part of the CGN
dictionary and the FONILEX [16] dictionary.

The pronunciation lexicon is formed by associating a list
words (see Section 6) with one or more pronunciations. If the
words are present in the Dutch/Flemish master lexicon their pro-
nunciations are extracted. Words for which no pronunciation is
present in the master lexicon are phoneticized by a statistical ap-
proach using the translation tools Giza++ [17] and Moses [12].
This approach was inspired by the method described by Deale-
mans and van den Bosch [3]. With this method, multiple pro-
nunciations are generated for a given word, and the best n in
terms of probability are kept. Particular pronunciations are also
added for some classes of words (acronyms and proper nouns).
An acronym can be pronounced as a word or can be spelled. An
additional English pronunciation is given for most proper nouns.
Initially two lexicons were generated – one Dutch-oriented, the
other Flemish-oriented – and then merged into one.

The characteristics of the recognition lexicons are summa-
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Task #words OOV #(2,3,4)g 4g ppx

BN-NL 300K 0.8% (45M, 15M, 4.9M) 254.0
500K 0.6% (49M, 15M, 4.9M) 253.1

BN-VL 300K 0.7% (54M, 21M, 8.3M) 213.9
500K 0.6% (58M, 22M, 8.2M) 213.6

CTS-NL 300K 0.5% (18M, 5.2M, 1.5M) 91.7
CTS-VL 300K 0.5% (15M, 4M, 1M) 112.5

Table 5: Language model development. All models were gener-
ated using a cut-off of 1-2-3 and a pruning value of 1e-10.

rized in Table 4. Two large dictionaries containing 300k and
500k entries cover the two languages involved in this evalua-
tion. Task-oriented versions of the dictionaries were created by
enriching the merged ones with pronunciation counts (BN/CTS)
obtained via forced alignment of the training data with their or-
thographic transcriptions.

6. Language modeling
To facilitate training, common word lists were used for Dutch
and Flemish including all words in the audio training transcripts
and the most frequent words in the text corpora.2 The vocab-
ulary size (n) was chosen to minimize the OOV rate on the 4
development data sets. With a 300K case-sensitive word list, the
OOV rate is under 1% for all 4 data sets. The OOV rate is further
reduced to about 0.5% with a 500K case-sensitive word list.

The texts were normalized to a common form. To facili-
tate the text normalization the transcriptions and the newspaper
articles were processed separately. No special treatment was ap-
plied to convert the written texts closer to a spoken form, and
all language models were estimated on the same normalized text
corpus for the four tasks. Text normalization entails multiple
steps. First, identical articles were removed. Then numerical
expressions were treated (“497,2 miljoen euro” becomes “vier-
honderdzevenennegentig komma twee miljoen euro”). Since the
capitalization of words is scored, a step was added to properly
re-case all of the texts. The pseudo-compounded words (i.e.,
words with a dash) were separated but the dash was kept in the
text, either alone or joined to the previous or following word.
The apostrophes were kept agglutinated to the words except in
some cases (“d’rachter” becomes “d’r achter”, “euro’s” becomes
“euro ’s”). The texts were finally split into sentences and the
main punctuation was removed. After processing, the number
of words available was about 3.7M words in the transcriptions
and 1.5G words in the text articles, with a global vocabulary size
of about 6M words. In order to build the language models the
transcriptions were split into subsets by task and language: i.e.,
separate parts for BN-NL, BN-VL, CTS-NL, and the CTS-VL
transcriptions. The articles were also split according to source
(ie: Algemeen Dagblad, De Morgen, De Standard, etc.).

For all systems, n-gram language models were obtained
by interpolation of backoff n-gram language models using the
modified Kneser-Ney smoothing (as implemented in the SRI
toolkit [19]) trained on separate subsets of the available language
model training texts. The characteristics of the language models
are summarized in Table 5. The language models result from the
interpolation of component LMs trained on 26 sources:
1) Audio transcriptions (4 sources, one for each task): 3.8M
words (cut-off 0-0-0).
2) NL texts (10 sources): 357M words (cut-off 0-1-2)
3) VL texts (12 sources): 1215M words (cut-off 0-1-2)

2There are about 66 K/44 K distinct lexical items in the NL/VL audio
transcripts, with only 23 K common words. For the significantly larger
LM texts, a similar proportion of the distinct words were also shared.

AM Training BN-NL BN-VL
NL (84h) / VL (48h) 21.7 24.2

NL+VL (132h) 20.5 23.0
NL+VL ⇒ NL/VL 20.2 21.2

Table 6: Case sensitive WER (%) on dev08 with different acous-
tic model training (NL or VL only, pooled, pooled+MAP) and
with 87k word NL or VL specific LMs estimated only on the train-
ing transcripts.

Task System Decoding pass
Pass1 Pass2

BN-NL PLP 11.9 10.0
MLP 10.3 -

BN-VL PLP 11.6 9.1
MLP 9.3 -

CTS-NL PLP 37.8 33.2
MLP 36.8 33.7

CTS-VL PLP 48.8 45.5
MLP 46.0 42.5

Table 7: Case sensitive WER (in %) after each decoding pass on
the dev08 development data for PLP and MLP systems. Punctu-
ation and non-lexical events are not scored.

The mixture weights were automatically chosen by an EM algo-
rithm to minimize the perplexity of the development data. The
2-gram models used for decoding were heavily pruned and con-
tain fewer than 1M 2-grams. The 4-gram models were pruned
with a coefficient of 1e-10 and contain about 5M 4-grams for
BN-NL, 8M for BN-VL, 1M for CTS-NL and 1.5 for CTS-VL.
The perplexity obtained on the BN-NL, BN-VL, CTS-NL and
CTS-VL development data sets are respectively 254.0, 253.1,
91.7 and 112.5.

7. Experimental results
Initial model development was carried out using only the BN au-
dio data and associated transcriptions. The first acoustic models
were trained separately for each variety and used in a first pass
decode for that variety, The initial case-sensitive word error rates
(WER) are shown in the first entry of Table 6. Pooling together
all the audio is seen to improve both varieties (NL+VL), and
an additional gain is obtained using MAP adaptation for each
one, with a notably larger improvement for VL for which there
is less training data. (Using cross-variety acoustic models de-
grades performance by about 20% relative.) All further acoustic
model development used the pooled data with variety adapta-
tion. The next series of experiments were directed at improv-
ing the language models, exploring different text normalizations
(mainly affecting the definition of a word) and using the news-
paper training texts. System development was primarily carried
out for the BN task, after which the same strategies were applied
for CTS.

For the final system, word recognition is performed with two
distinct systems, each using one or two decoding passes. The
first system uses a classical PLP signal analysis whereas the sec-
ond uses a MLP analysis. Each decoding pass produces a word
lattice with cross-word, word-position dependent acoustic mod-
els, followed by consensus decoding with a 4-gram language
model and pronunciation probabilities. Unsupervised acoustic
model adaptation is performed for each segment cluster using
the CMLLR and MLLR [14]. The lattices produced in the last
pass are rescored by the neural network LM interpolated with
a 4-gram back-off LM. Then, a ROVER combination of the two
systems is carried out. More specifically, the decoding steps are:
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Task System
Primary (10xRT) Contrastive (1xRT)

BN-NL 9.5 / 8.2 11.9 / 10.6
BN-VL 8.7 / 7.8 11.6 / 10.7
CTS-NL 31.6 / 31.4 37.8 / 37.6
CTS-VL 41.9 / 41.7 48.8 / 48.6

Table 8: Final case-sensitive/case-insensitive WER (in %) on the
dev08 data for the 4 tasks for the primary (also under 10xRT)
system and the contrastive systems (1xRT: PLP-pass1). Punctu-
ation and non-lexical events are not scored.

Task System Decoding pass
Pass1 Pass2 Pass3 ROVER

CTS-NL PLP 37.8 35.4 33.1 31.1MLP 36.8 32.5 -

CTS-VL PLP 48.8 45.8 44.6 41.0MLP 46.0 41.6 -

Table 9: Case sensitive WER (in %) for the CTS data after each
decoding pass on the dev08 data for PLP and MLP systems.
Punctuation and non-lexical events are not scored.

1) Initial hypothesis generation using large MLLT and MMIE-
trained AMs (∼ 1.0xRT). The submission for the 1xRT condi-
tion is the result of this first pass.
2) Multiple-class MLLR adaptation of first pass AMs, followed
by a rescoring of the produced lattices with a neural network in-
terpolated with 4-gram back-off LM. A decision tree is used to
determine the number of MLLR transforms given the available
adaptation data and the tied states associated to each regression
class. Tables 7 and 8 give the word error rates on the N-Best
dev08 data. For the primary system, which also serves as an un-
der 10xRT submission, the word error rates are 9.5% for BN-NL,
8.7% for BN-VL, 31.6% for CTS-NL and 41.9% for CTS-VL. If
case is not scored, the WER decreases by about 1% on average
for the BN tasks, but only by about 0.2% on the CTS tasks.

Table 9 gives the word error rates for a slower CTS system
that runs in under 20xRT. An intermediary adaptation pass us-
ing a single MLLR class has been inserted between the first and
second pass of the PLP based system. The 3-pass PLP based
system achieves a WER reduction of 0.1% for NL and 0.9% for
VL (compare the pass 3 results in Table 9 to the pass 2 results in
Table 7). For the MLP based system, a slower second pass de-
coding is carried out, which results in a WER reduction of 1.2%
and 0.9% for NL and VL respectively. The rightmost columns
gives the ROVER result for the 3-pass PLP system and the 2-pass
MLP system. Compared to the CTS results in Table 8 the word
error rate for NL is reduced by 0.5% (from 31.6% to 31.1%) and
by 0.9% (from 41.9% to 41.0%) for VL. Scoring without case
distinction reduces the word error rates to 31.0% and 40.8% re-
spectively.

8. Summary
This paper has given an overview of the way in which Northern
and Southern variety and task-specific models were developed
for the speech recognizers that served as a joint submission by
LIMSI and Vecsys Research to the Dutch N-Best 2008 evalua-
tion. In total 8 systems were developed (1xRT and 10xRT), for
each variety (NL and VL) and task (BN and CTS). It was found
that techniques used for other languages were generally also ef-
fective for Dutch. Given the differences between the two vari-
eties, using variety-specific models was also found to be impor-
tant. At the acoustic level, variety-specific models were obtained
by MAP adaptation of speaker-independent models trained on

all the data for the task. Variety-specific pronunciation rules and
dictionaries were used in the early stages of system development,
and then merged to simplify the data sharing. The statistical
method made use of translation tools to generate multiple pro-
nunciations for words not present in the available dictionaries.
A common word list was used for all tasks and varieties, with
different language model interpolation coefficients for the dif-
ferent conditions. Word error rates under 10% were obtained on
BN development data, and on the order of 30% for Dutch and
40% Flemish conversational data. On the evaluation data, these
systems obtained the lowest word error rates (17.8% BN-NL,
15.9% BN-V, 35.1% CTS-NL and 46.1 CTS-VL) by a signifi-
cant margin.
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