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Abstract

This paper presents recent progress in developing speech-to-

text (STT) and keyword spotting (KWS) systems for the 2014

IARPA-Babel evaluation. Systems have been developed for

the limited language pack condition for four of the five de-

velopment languages in this program phase: Assamese, Ben-

gali, Haitian Creole and Zulu. The systems have several novel

characteristics that support rapid development of KWS systems.

On the STT side different acoustic units are explored based on

phonemic or graphemic representations, and system combina-

tion is used to improve STT performance. The acoustic models

are trained on only 10 hours of speech data with manual tran-

scriptions, completed with unsupervised training on additional

untranscribed data. Both word and subword units (morphologi-

cally decomposed, syllables, phonemes) are used for KWS. The

KWS systems are based on the multi-hypotheses produced by

a consensus network decoding or searching word lattices. The

word error rates of the individual STT systems are on the or-

der of 50-60%, and the KWS systems obtain Maximum Term

Weighted Values ranging from 30-45% for all keywords (in-

vocabulary and out-of-vocabulary (OOV)). Sub-word units are

shown to be successful at locating some of the OOV keywords,

and system combination improves system performance.

Index Terms: STT, KWS, semi-supervised training, lattice,

consensus network, sub-word lexical units, Morfessor

1. Introduction

This paper describes our recent research carried out within

the context IARPA Babel program and aimed at developing

speech-to-text (STT) and keyword spotting (KWS) systems

for low-resourced languages. The IARPA Babel program [1]

aims to support the rapid development of speech technolo-

gies for effective word-based search in varied audio data in

a variety of languages. The languages are chosen to present

challenges at different levels (written scripts & writing con-

ventions, phonological, morphological, dialectal). For each

targeted language the program provides a build pack, which

contains transcribed speech data, a pronunciation dictionary

and a brief descriptive “Language Specific Peculiarities” docu-

ment [2]. The techniques developed in the program on what are

referred to as development languages are also applied a surprise

language as part of the NIST Open Keyword Search Evaluation

(OpenKWS13,OpenKWS14) [3, 4].

During the base phase of the IARPA-funded BABEL pro-

gram [5], we built full language pack [3, 4] (FullLP) STT sys-

tems for five languages: 4 development languages (Cantonese,

Pashto, Tagalog, Turkish); and 1 surprise language: (Viet-

namese). The FullLP STT systems, trained on all available re-

sources, for these languages obtained CER/WER ranging from

37.8% (for Cantonese) to 51.4% (for Pashto). We built a limited

language pack (LLP) system only for Vietnamese.

This year our effort has focused on the LLP condition and

STT and KWS systems have been developed for four languages.

A variety of ideas have been explored with the aim of improv-

ing both STT and KWS. Different acoustic units are explored

for STT based on phonemic or graphemic representations, and

system combination is used to improve STT performance. The

acoustic models are trained on only about 10 hours of manu-

ally transcribed speech data complemented with unsupervised

training on additional untranscribed data [6], and then adapted

to the supervised portion. We also report on some initial limited

experiments with crosslingual and multilingual modeling. For

KWS, both word and subword units (morphologically decom-

posed, syllables, automatically discovered) are explored. The

automatically discovered lexical units [7] are found to be effec-

tive for detecting OOV keywords. The KWS systems are based

on the multi-hypotheses produced by a consensus network (CN)

decoding or searching word lattices. In all KWS experiments

presented in this paper, the no test audio re-use (NTAR) condi-

tion is used. That means the KWS system does not re-process

the test audio after keywords are provided [3].

2. Experimental setup

2.1. Data

All data used to train the STT systems were provided in

the context of the IARPA-funded BABEL program. Five devel-

opment languages were targeted in this second program phase:

Assamese, Bengali, Haitian Creole, Lao, and Zulu. For the LLP

condition about 10 hours of transcribed speech are provided

from 60 speakers. The data contain both conversational speech

(∼80%) and scripted speech (∼20%).1 In this work, the lan-

guage packs used are: Assamese (iarpa babel op1 103), Ben-

gali (iarpa babel op1 102), Haitian Creole (iarpa-babel201b-

v0.2b) and Zulu (iarpa-babel206b-v0.1d). As a total about 60

hours of transcribed speech are provided for each language for

the FullLP condition, the remaining audio could be used in an

unsupervised manner to complement the transcribed speech for

the LLP condition. The speech data were collected for 3 dialects

in Assamese, Bengali, and Creole, and one dialect for Zulu.

1A small proportion of the recordings are wide-band for some of the

languages. For the moment these were simply filtered to telephone band

and pooled with the remaining data.
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Table 1: # INV and OOV keywords in dev & eval keyword lists.

KWD Assamese Bengali Creole Zulu
set inv oov inv oov inv oov inv oov

dev 1436 564 1373 627 1680 320 771 1229
eval 2405 648 2369 684 2019 677 2165 985

Results are reported using the official development (dev)

and evaluation (eval) lists provided by NIST for the 2014

IARPA-Babel evaluation. From the lists, in-vocabulary (INV)

and out-of-vocabulary (OOV) sublists are extracted relative to

the decoding vocabulary of the respective STT systems: a key-

word is considered as OOV keyword if it contains at least one

word which is OOV. Otherwise, it is considered as an INV key-

word. The number of INV and OOV keywords in the dev and

eval data for each language are shown in Table 1.

2.2. Language characteristics

The languages share or differ with respect to several char-

acteristics. The Zulu language is particularly challenging hav-

ing a complex morphology (agglutinative, with extensive in-

flection), many borrowed English words, being tonal and hav-

ing clicks among the phonological sound inventory. In con-

trast, Haitian Creole has a minimal derivational morphology

and shares many characteristics with the French language, with

a simpler grapheme-to-phoneme correspondence.

The Bengali and Assamese languages basically share the

same written script. The two differences observed in the Babel

transcripts are: ra, which is represented slightly differently in

Bengali ( ) and Assamese ( ); and an additional letter in the

Assamese script ( ) corresponding to the sound ‘wo’ which

is absent in Bengali. In both Assamese and Bengali scripts,

there are distinct characters representing alveolar and dental

versions of [t, d, n]. However, according to the Appen lan-

guage description, in spoken Assamese this place distinction

is no longer made. Note that these scripts are abugidas (alpha-

syllabary) where vowel graphemes are almost always realized

as diacritics attached to consonant graphemes if present inside

a word. There are 11 vowels and 35 (36 for Assamese) con-

sonants in the scripts. Both Creole and Zulu are written using

Latin characters, with 28 and 40 graphs respectively.

At the phonological level, Bengali and Assamese are also

quite similar, with 33 or 30 consonants, 10 or 9 oral vowels

and 9 nasal vowels. Bengali differentiates three alveolar and

dental phonemes [t, d, n], a distinction not made in Assamese,

and also has a schwa not present in Assamese. In the Appen

dictionary for Assamese the two graphemes are mapped to a

single alveolar phoneme. Haitian Creole has 20 consonants and

12 vowels (including 4 nasal vowels and one diphthong), where

as Zulu has 28 consonants, 7 vowels 9 clicks. The clicks differ

in terms of place of articulation (dental, post-alveolar, alveolar

lateral) and manner of articulation (+/-voicing, +/-aspiration).

In order to explore complementary STT systems for com-

bination, and to avoid having unseen or very few tokens of rare

phones or graphemes, the acoustic unit sets for some languages

were reduced by merging some closely related units. For exam-

ple, smaller phone sets for Bengali and Assamese were created

by merging aspirated and unaspirated plosives and nasal/non-

nasal vowels and splitting complex consonants (diphthongs,

afficates) into a sequence of phonemes.

2.3. Baseline recognition systems

For rapid development of STT systems and in the con-

text of IARPA-Babel program, all phonemic and graphemic

Table 2: Transcribed data characteristics.

Language #words vocab. % 3g-hits 3g-ppl % oov

Assamese 73.4k 8.8k 15.0 241.0 8.46
Bengali 81.9k 9.7k 15.1 248.8 8.78
Creole 103.1k 5.7k 24.0 147.6 4.39
Zulu 68.3k 15.9k 15.9 239.9 21.8

STT systems are built using a flat start. The acoustic mod-

els are tied-state, left-to-right 3-state HMMs with Gaussian

mixture observation densities (typically 32 components) [8].

The triphone-based models are word position-dependent. Ini-

tial sets of context-independent models are first estimated on

the transcribed training data using a 42-component feature vec-

tor [9, 10]. Larger acoustic models covering more context-

dependent units are successively estimated using the same fea-

tures. The final models are trained using discriminative features

produced with a stacked bottle-neck multilayer perceptron and

provided to the Babelon team by BUT [11]. Our systems also

use the BBN voice activity detection [12].

Language model training is performed with LIMSI STK

toolkit which allows model training without any pruning or cut-

off [10], thus keeping all information in the training data. The

number of training words, vocabulary size, 3-gram hit rates and

perplexity of the development data with 3-gram LMs are shown

in Table 2.

Decoding is carried out in a single-pass, using case sensitive

language models for all languages. Word decoding generates a

word lattice followed by consensus decoding with a 3-gram or

4-gram and with/without pronunciation probabilities.

2.4. Performance Metrics

STT system performance is measured with the common

metric Word Error Rate (WER) which is defined by a function

of insertion, deletion and substitution rates.

For KWS, the Maximum Term-Weighted Value (MTWV)

and Actual Term-Weighted Value (ATWV) are defined as the

measures of interest for IARPA-Babel program [4]. ATWV

was also used in the NIST 2006 Spoken Term Detection evalu-

ation [13]. The keyword specific ATWV for the keyword k at a

specific threshold t can be computed by:

ATWV (k, t) = 1− PFR(k, t)− βPFA(k, t) (1)

where PFR and PFA are the probability of a false reject (miss)

and false accept, respectively. The constant β, set to a value of

999.9, mediates the trade off between false accepts and false re-

jects. The MTWV represents the maximum score over the range

of all possible values of t (score decision threshold). Since the

experiments reported here are performed only on dev data, we

report the KWS performance in terms of MTWV. This metric

weights all keywords equally regardless of its frequency. Miss-

ing a single occurrence of a rare word can affect the final score

as much as missing a more common word dozens of times. This

is why substantial effort is devoted to detecting OOV keywords.

3. Developing limited resourced STT

3.1. Investigating different phonesets

Table 3 reports the WER for the phonemic and graphemic

based STT systems for the four languages. For all systems,

three units correspond to silence, breath noise and fillers. All

models are trained using features (version v3) provided to the

Babelon team by BUT [11, 14]. For each language, the column

‘Sup’ corresponds to the baseline models estimated using only

2485



Table 3: Word error rates of STT systems.

Acoustic % WER

Language Unit Sup Semi-sup SysComb

49 phones 58.6 57.6

Assamese 29 phones 59.3 58.2 57.1

49 graphs 58.5 57.4

55 phones 59.2 58.8

Bengali 34 phones 59.5 58.8 58.4

48 graphs 60.6 59.4

Creole 35 phones 52.0 50.8 50.7

31 graphs 52.3 51.4

Zulu 40 phones 65.4 65.2 64.6

26 graphs 65.2 65.1

Table 4: WER (in %) of common Bengali-Assamese STT system.

System monolingual multilingual mono AM

PLP+f0, ML-SAT AM+LM AM+LM multi LM

Bengali 28ph 72.0 75.4 72.3

Bengali 45gr 72.7 76.1 72.4

Assamese 28 ph 70.7 76.8 72.3

Assamese 45 gr 71.0 75.7 71.8

the transcribed LLP data for supervised acoustic model train-

ing. The WERs range from 52% for Creole to just under 60%

for Assamese and Bengali, to 65% for Zulu. Similar perfor-

mances are obtained with the phonemic and graphemic systems,

and slightly better results with the grapheme based system for

Zulu. During system development models based on the reduced

phone set for Bengali outperformed the full phone set models,

but this difference reversed with the most recent BUT features.

Given the similarity of the Bengali and Assamese lan-

guages, we explored building a common STT system. We de-

fined a common set of 28 phones, where the aspirated phones

were merged with their unaspirated counterparts, the nasal and

oral vowels merged, and diphthongs split into a vowel-glide se-

quence. We retained the schwa present in Bengali but absent in

Assamese. For the multilingual system, the AMs are multilin-

gual (trained by pooling of data from both languages) but both

multilingual and monolingual LMs were estimated. Recogni-

tion results (WER) using PLP+F0 features with ML-SAT train-

ing are reported in Table 4. As these first results were not

promising, this research direction was put on hold.

3.2. Semi-supervised training

Unsupervised training methods have been used for a vari-

ety of tasks, but have only relatively recently been successfully

applied to conversational speech data with high error rates [6].

Using automatic transcripts produced by a different speech rec-

ognizer can also give the added benefit of cross-system adap-

tation. In this work we have used automatic transcripts (with-

out thresholding on confidence scores) provided to the Babelon

team by BBN. The column ‘Semi-sup’ in Table 3 reports re-

sults using AMs trained by pooling the supervised data with

the remaining data (about 35 hours per language) using the au-

tomatic transcripts, and adapting the resulting models with the

supervised data. Using the additional data is seen to reduce the

WER by around 1% for most languages and acoustic unit sets.

A notable exception Zulu for which almost no improvement is

observed for the two systems. The rightmost column reports the

results of Rover-based [15] combination of the individual sys-

tems. System combination is seen to reduce the WER by 0.1%

Table 5: MTWV results (INV keywords only) for different KWS

methods on fused dev+eval keyword lists.

Language Unit WER MTWV (INV) SysComb
(%) lat CN 2-way 3-way

49 ph 57.6 0.393 0.401
0.422

Assamese 29 ph 58.2 0.399 0.401 0.435
49 gr 57.4 0.376 0.382

55 ph 58.9 0.396 0.396
0.421

Bengali 34 ph 58.8 0.398 0.404 0.429
48 gr 59.4 0.373 0.367

Creole 35 ph 51.0 0.513 0.501
0.529

31 gr 51.5 0.513 0.500

Zulu 40 ph 65.4 0.343 0.385
0.415

26 gr 65.2 0.344 0.379

(Creole) to 0.5% (Zulu) over the best single system. It is inter-

esting to note that system combination gives the largest gain for

Zulu, for which semi-supervised training was the least effective.

4. Keyword spotting

4.1. Search method

Two keyword search methods were investigated in our ex-

periments: lattice based and consensus network (CN) based

search, both using an exact match. For the lattice based keyword

search, all possible word n-grams (n is limited to 5 in our exper-

iments) with timecode are generated for each lattice. N-grams

with near or overlapping timecodes are fusioned to reduce the

index size. Then each keyword is matched against all n-grams

either ignoring or keeping word boundaries. In CN-based key-

word search is performed on a consensus network which cre-

ated from a word/sub-word lattice [16]. For each keyword, the

CN is searched to locate all sequences of word/sub-words either

keeping or ignoring word boundaries. The KW hits are com-

bined based on time-codes and ranked using a geometric mean

score [17]. The raw KW scores from both search methods are

further normalized and calibrated by BBN’s KST normalization

tool [18, 19]. Score normalization produces significantly better

results and approaches the ATWV results to the MTWV ones.

Table 5 compares MTWV results on INV keywords with

both search methods, keeping word boundaries. The lattice-

based systems are seen to give similar performance to CN-based

systems for Assamese and Bengali, to obtain slightly better per-

formance for Haitian Creole and worse performance for Zulu.

Concerning computation time, indexing is much slower for

the lattice-based method than the CN-based method, but search-

ing is faster. For example, the total indexing time on dev+eval

data (15 hours) for Bengali is about 16 hours for the CN-based

and 112 hours for lattice-based method. The total search time

with dev+eval keyword list is about 10 hours and 2.5 hours for

the CN- and lattice-based methods respectively. Another draw-

back of lattice-based search is that all possible n-grams need to

be stored and indexed, which requires more disk space than the

CN-based search (indexing by word slot).

An important advantage of the CN-based search is that de-

coding can output word/sub-word sequences that were never ob-

served in the LM training texts and do not exist in the original

lattice. This is useful for detecting rare keywords (all words are

INV but the sequence is not in training) or OOV keywords using

sub-word units as discussed in Section 4.4.

4.2. Combining phonetic and graphemic KWS systems

The different KWS are combined by taking a weighted av-

erage of the raw (unnormalized) scores of keyword hits with
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Table 6: MTWV results with/out WB in keywords.

Language Unit keep WB remove WB

all IV OOV all INV OOV

49 ph 0.306 0.393 0 0.317 0.396 0.041
Assamese 29 ph 0.311 0.399 0 0.321 0.401 0.041

49 gr 0.293 0.376 0 0.304 0.376 0.053

55 ph 0.302 0.396 0 0.312 0.396 0.045
Bengali 34 ph 0.304 0.398 0 0.314 0.398 0.045

48 gr 0.284 0.373 0 0.298 0.373 0.062

Creole 35 ph 0.448 0.513 0 0.427 0.475 0.103
31 gr 0.449 0.513 0 0.429 0.473 0.121

Zulu 40 ph 0.186 0.343 0 0.226 0.379 0.048
26 gr 0.186 0.344 0 0.209 0.343 0.053

near or overlapping timecodes. The combined scores are then

normalized and calibrated by KST normalization [18, 19]. The

rightmost column of Table 5 gives 2-way (full and reduced

phone sets with equal weight) and 3-way (all) systems for Ben-

gali and Assamese. On the INV keywords an absolute MTWV

improvement of about 2% with the 2-way system, with an ad-

ditional gain of 0.8–1.3% combining this with the respective

graphemic systems (with weight 0.3). Table 5 also shows com-

bination results for phonetic and graphemic based systems for

Haitian Creole and Zulu. For both languages combination im-

proves the MTWV by about 3% absolute.

4.3. Influence of word boundaries

During the development of lattice-based search, we ob-

served that removing word boundaries (WB) allows a significant

portion of the OOV keywords to be detected with little effect on

the INV keywords. The same observation is also observed for

CN-based search [7]. Table 6 presents MTWV results keeping

or ignoring the WB. Except for Creole, the MTWV results for

INV keywords are nearly the same but removing the WB suc-

cessfully detects some OOV keywords. For Haitian Creole, all

clitics (frequent in the vocabulary) are separated by underscore

from the word in the transcripts [2]. When removing WB, the

underscore and white space are systematically removed, so the

clitics are glued to the original words. This approach seems to

increase the confusion for Creole more than for other languages,

which may be why the performance of INV keyword detection

is worse when WB are ignored. In contrast OOV keyword de-

tection is much better than for the other languages.

4.4. KWS using sub-word units

Different types of sub-word units (Morfessor-based, sylla-

ble, phoneme) are investigated with the aim of detecting OOV

keywords. The first set of units are derived using Morfessor,

a tool for unsupervised morphological decomposition [20, 21].

Given the list of words in the training texts with their frequen-

cies, Morfessor learns a set of morphological units that are

then used to segment the training texts and the keyword list.

The second unit type corresponds to syllables. The dictionar-

ies provided by Appen include the syllable segmentation for

the words in the training data. To determine segmentations for

OOV words, a syllable-based trigram LM is used to determine

the segmentation with the highest likelihood for each word. To

ensure that a segmentation is possible, all individual characters

are included in the LM. The training corpus and keyword list are

segmented into syllables. For the phoneme units, the Sequitur

G2P converter [22] is employed to learn and generate pronun-

ciations for OOV words.

The original word lattices from the word-based STT sys-

tems are used, and the words in each lattice are simply decom-

Table 7: Subword units for Bengali KWS with word-to-subword

CN decoding. Results using dev keywords.

System MTWV

all inv oov

s0: word 0.300 0.437 0

s1: syllable 0.297 0.400 0.076

s2: morfessor 0.326 0.434 0.094

s3: phone 0.214 0.292 0.045

s1+s2+s3 0.322 0.417 0.118

s0+s1+s2+s3 0.333 0.437 0.118

posed into sub-word sequences, from which a sub-word CN is

built. In fact, the same technique was employed for the syllable-

based languages such as Chinese and Vietnamese where the

STT results are usually measured in terms of character error rate

(CER) or syllable error rate (SLER) instead of WER. Instead of

using the word CN, the character- or syllable-based CN can im-

prove the CER or SLER [23, 24].

Table 7 provides the MTWV results for the Bengali system

using the dev keyword list. All subword units lead to some of

the OOV keywords are detected. The Morfessor-based system

seems to work better than the others. Combining the hits from

all systems (word and sub-word) results in the best KWS per-

formance for both INV and OOV keywords.

5. Conclusions and Perspectives

The STT and KWS systems developed for four low resourced

languages in the context of the IARPA Babel program have

been described. Several novel research directions have been

explored and successfully applied to the KWS task. On the

STT side different acoustic units were considered and it was

found that graphemic representations give comparable perfor-

mance to phonemic ones. For KWS both word and subword

units (morphologically decomposed, syllables, phonemes) were

used, and KWS based on multi-hypotheses produced by a con-

sensus network decoding or searching word lattices were inves-

tigates. Sub-word units were shown to be successful at locating

some of the OOV keywords, and system combination improves

KWS performance. The reported results on the development

data will be completed with those on the evaluation data when

available. The same techniques will be applied to the surprise

language (currently unknown) as part of the NIST Open Key-

word Search 2014 Evaluation [3] and results will be reported in

the final version of this paper.
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